8.7

### Lab 13: Accumulators and generative recursion

Remember to follow (and when necessary, adapt) the design recipe for each function. When you write a generative recursive function, you must provide a termination argument. When you write a function using an accumulator, you must provide an accumulator statement.

#### 1Accumulators This section is all about accumulators. There is no generative recursion in this section. When you write a function using an accumulator, you must provide an accumulator statement.

Let’s review a simple example. Assume you have a list of numbers and you want to calculate the sum of those numbers. You have learned many ways of doing this already; here it is done using an accumulator.

 ; sum : [ListOf Number] -> Number ; sums the numbers in the given list (define (sum lon) (local [; sum/a : [ListOf Number] Number -> Number ; adds the numbers in the list one by one to the second argument ; *Accumulator*: sum-so-far is the sum of numbers seen so far ; ; examples: ;   lon                 sum-so-far     output ; ------------------------------------------------------ ;   (list 1 2 3 4 5)              0    (+ 0 1 2 3 4 5) ;   (list 2 3 4 5)       0 + 1 =  1    (+ 0 1 2 3 4 5) ;   (list 3 4 5)         1 + 2 =  3    (+ 0 1 2 3 4 5) ;   (list 4 5)           3 + 3 =  6    (+ 0 1 2 3 4 5) ;   (list 5)             6 + 4 = 10    (+ 0 1 2 3 4 5) ;   empty               10 + 5 = 15    (+ 0 1 2 3 4 5) ; (define (sum/a lon sum-so-far) (cond [(empty? lon) sum-so-far] [else (sum/a (rest lon) (+ (first lon) sum-so-far))]))] (sum/a lon 0))) (check-expect (sum (list 1 2 3 4 5)) (+ 0 1 2 3 4 5))

Note that every such function will have a helper written using an accumulator. Both the original function sum and the helper sum/a need their signatures and purpose statements clearly indicated. For every function using an accumulator, we need to clearly identify the accumulator and write an accumulator statement. An accumulator statement should explain what the accumulator is, not how to use or change the accumulator.

As usual, we also need to write examples for every function. A function using an accumulator should have many examples, because each time the original function is used once, the helper is used many times. In the function sum above, all the examples for sum/a arise from the one and only example for sum. Each example for sum/a shows the list being processed and the accumulator being updated.

Exercise 1. The sum/a function above is defined locally. Convert it to a top-level definition and convert all the examples to tests. Write a new test for sum and write all the corresponding tests for sum/a.

For each remaining exercise in this lab, we describe a strategy for using an accumulator. Your job is to design a helper function that uses an accumulator in the way we describe. You also need to design an original function that calls the helper function and passes the initial accumulator value.

Exercise 2. Design a function alternating-sum to compute the alternating sum of all elements in a list of numbers.
 (check-expect (alternating-sum empty) 0) (check-expect (alternating-sum (list 1 4 9 16 9 7 4 9 11)) (+ 1 -4 9 -16 9 -7 4 -9 11))
Your helper function should use accumulators in the following way: (We have provided the accumulator statements.)
 ; An Operation is one of: ; - "add" ; - "subtract" ; *Accumulator*: operation is whether to add or subtract the next number ; *Accumulator*: sum-so-far is the sum of numbers seen so far ; examples: ;   numbers                       operation     sum-so-far       output ; ----------------------------------------------------------------------- ;   (list 1 4 9 16 9 7 4 9 11)    "add"           0              -2 ;   (list   4 9 16 9 7 4 9 11)    "subtract"      0 +  1 =   1   -2 ;   (list     9 16 9 7 4 9 11)    "add"           1 -  4 =  -3   -2 ;   (list       16 9 7 4 9 11)    "subtract"     -3 +  9 =   6   -2 ;   (list          9 7 4 9 11)    "add"           6 - 16 = -10   -2 ;   (list            7 4 9 11)    "subtract"    -10 +  9 =  -1   -2 ;   (list              4 9 11)    "add"          -1 -  7 =  -8   -2 ;   (list                9 11)    "subtract"     -8 +  4 =  -4   -2 ;   (list                  11)    "add"          -4 -  9 = -13   -2 ;   empty                         "subtract"    -13 + 11 =  -2   -2
So, do not use generative recursion; stick with structural recursion and follow the template for processing a list of numbers.

Exercise 3. Design a function funky that takes a [ListOf 1String] as input and produces the same [ListOf 1String] as output, except the output should alternate between upper-case and lower-case.
 (check-expect (funky empty) empty) (check-expect (funky (explode "Computer Science")) (explode "CoMpUtEr sCiEnCe"))
Your helper function should use an accumulator in the following way: (You must provide an accumulator statement.)
 ; A Case is one of: ; - "up" ; - "down" ; examples: ;   letters                         case      output ; -------------------------------------------------------------------------- ;   (explode "Computer Science")    "up"      (explode "CoMpUtEr sCiEnCe") ;   (explode  "omputer Science")    "down"    (explode  "oMpUtEr sCiEnCe") ;   (explode   "mputer Science")    "up"      (explode   "MpUtEr sCiEnCe") ;   (explode    "puter Science")    "down"    (explode    "pUtEr sCiEnCe") ;   (explode     "uter Science")    "up"      (explode     "UtEr sCiEnCe") ;   (explode      "ter Science")    "down"    (explode      "tEr sCiEnCe") ;   (explode       "er Science")    "up"      (explode       "Er sCiEnCe") ;   (explode        "r Science")    "down"    (explode        "r sCiEnCe") ;   (explode         " Science")    "up"      (explode         " sCiEnCe") ;   (explode          "Science")    "down"    (explode          "sCiEnCe") ;   (explode           "cience")    "up"      (explode           "CiEnCe") ;   (explode            "ience")    "down"    (explode            "iEnCe") ;   (explode             "ence")    "up"      (explode             "EnCe") ;   (explode              "nce")    "down"    (explode              "nCe") ;   (explode               "ce")    "up"      (explode               "Ce") ;   (explode                "e")    "down"    (explode                "e") ;   (explode                 "")    "up"      (explode                 "")
So, do not use generative recursion; stick with structural recursion and follow the template for processing a [ListOf 1String]. Use string-upcase, string-downcase, and not.

Exercise 4. Design a function sentence that takes a [ListOf 1String] as input and produces the same [ListOf 1String] as output, except the first 1String should become upper-case, and whenever a period appears, the next non-whitespace 1String should also become upper-case. This process is like how automatic capitalization works on some keyboards.
 (check-expect (sentence empty) empty) (check-expect (sentence (explode "hey. whats up")) (explode "Hey. Whats up"))
Your helper function should use an accumulator in the following way: (You must provide an accumulator statement.)
 ; examples: ;   letters                      capitalize    output ; ------------------------------------------------------------------------ ;   (explode "hey. whats up")    true          (explode "Hey. Whats up") ;   (explode  "ey. whats up")    false         (explode  "ey. Whats up") ;   (explode   "y. whats up")    false         (explode   "y. Whats up") ;   (explode    ". whats up")    false         (explode    ". Whats up") ;   (explode     " whats up")    true          (explode     " Whats up") ;   (explode      "whats up")    true          (explode      "Whats up") ;   (explode       "hats up")    false         (explode       "hats up") ;   (explode        "ats up")    false         (explode        "ats up") ;   (explode         "ts up")    false         (explode         "ts up") ;   (explode          "s up")    false         (explode          "s up") ;   (explode           " up")    false         (explode           " up") ;   (explode            "up")    false         (explode            "up") ;   (explode             "p")    false         (explode             "p") ;   (explode              "")    false         (explode              "")
So, do not use generative recursion; stick with structural recursion and follow the template for processing a [ListOf 1String]. Use string-upcase and string-whitespace?.

Exercise 5. Interpret a list of numbers as a sequence of deposit and withdrawal transactions in the same bank account, ordered from oldest to newest. Design a function overdrawn? that takes such a list as input, starting with opening the account, and returns a boolean that says whether the account balance ever becomes negative at any point in the history of the account.
 (check-expect (overdrawn? (list 20 100 -80)) false) (check-expect (overdrawn? (list 20 -80 100)) true) (check-expect (overdrawn? (list 100 -80 20)) false)
Use an accumulator that is the current account balance.

#### 2Generative terrain This section is all about generative recursion. There is no accumulator in this section. When you write a generative recursive function, you must provide a termination argument.

In this section, you’ll design a program to generate random terrain like this: You will use generative recursion: given two points p and q to connect, your program will decompose the problem of connecting p to q into the problem of connecting p to r and the problem of connecting r to q. Here r is almost the midpoint of p and q, but randomly moved a little bit. Such a decomposition can be expressed using a CurveTree:
 ; A CurveTree is one of: ; - (make-segment Posn Posn) ; - (make-connect CurveTree CurveTree) (define-struct segment [p1 p2]) (define-struct connect [c1 c2])

Exercise 6. Here is a typical function that processes a CurveTree:
 (require 2htdp/image) ; draw-curve-tree : CurveTree Image -> Image ; Draw the given CurveTree on the given image (define (draw-curve-tree c i) (cond [(segment? c) (scene+line i (posn-x (segment-p1 c)) (posn-y (segment-p1 c)) (posn-x (segment-p2 c)) (posn-y (segment-p2 c)) "blue")] [(connect? c) (draw-curve-tree (connect-c1 c) (draw-curve-tree (connect-c2 c) i))]))
Write an example for draw-curve-tree with at least 3 segments.

Exercise 7. Design a function midpoint that takes two Posns as input and returns the Posn that is their midpoint.
 (check-expect (midpoint (make-posn 50 100) (make-posn 350 500)) (make-posn 200 300))

Exercise 8. Design a function almost-midpoint that takes two Posns and two Numbers as input and returns the Posn that is almost the midpoint of the given Posns, except with the given Numbers added to the X and Y coordinates.
 (check-expect (almost-midpoint (make-posn 50 100) (make-posn 350 500) -1 2) (make-posn 199 302))

Exercise 9. Here is a handy function:
 ; drift : Number -> Number ; pick a random number between (- amount) and amount (check-random (drift 5) (- (/ (random 10001) 1000) 5)) (define (drift amount) (* amount (- (/ (random 10001) 5000) 1)))
Study the signature and purpose of this function, then try it out in the Interactions Window. How does (drift 100) behave differently from (drift 2)?

Exercise 10. Design a function between that takes two Posns as input and returns a Posn that is almost their midpoint, but randomly moved a little bit. The picture below illustrates the difference between the functions midpoint and between. The distance of random movement must be proportional to the distance between the two inputs, so use (drift (* 0.2 (dist ... ...))) twice, once to move the x coordinate and once to move the y coordinate.
 (check-random (between (make-posn 50 100) (make-posn 350 500)) (make-posn (+ 200 (drift 100)) (+ 300 (drift 100)))) (check-random (between (make-posn 50 80) (make-posn 60 80)) (make-posn (+ 55 (drift 2)) (+ 80 (drift 2)))) ; dist : Posn Posn -> Number ; compute the distance between the given Posns (check-expect (dist (make-posn 50 100) (make-posn 350 500)) 500) (check-expect (dist (make-posn 50 80) (make-posn 60 80)) 10) (define (dist p q) (sqrt (+ (sqr (- (posn-x p) (posn-x q))) (sqr (- (posn-y p) (posn-y q))))))
So use dist, drift, and almost-midpoint.

Exercise 11. Finally, design a function to generate a random terrain.
 ; generate-terrain : Posn Posn -> CurveTree ; generate a random terrain connecting the two given points ; *Termination*: ??? (define (generate-terrain p q) (cond [??? (make-segment ??? ???)] [else (local [; r : Posn (define r (between p q))] (make-connect (generate-terrain ??? ???) (generate-terrain ??? ???)))]))
Again, use generative recursion: if p and q are not close, then decompose the problem of connecting p to q into the problem of connecting p to r and the problem of connecting r to q. To check if p and q are close, you can use dist. You don’t have to test this function generate-terrain using check-expect or check-random, but do try it out using draw-curve-tree!