Today we discuss and implement "Money or Tiger".
Below, five more problems from Linear Algebra section of The Highlights Quiz.
Type them in and see how they behave.**Question 1.** Add vectors $v = \begin{pmatrix} i \\ 2 \end{pmatrix}$ and $w = \begin{pmatrix} 3 \\ -100 \end{pmatrix}$. See example 2.1 on page 32 in Martin LaForest. See also below. -- import numpy as np v = np.array([[1j], [2]]) w = np.array([[3], [-100]]) print(v + w) # in WolframAlpha just type: {{i}, {2}} + {{3}, {-100}} -- **Question 2.** Calculate $\begin{pmatrix} 3 & 3 & -1+2i \\ 1 & -3 & 0 \end{pmatrix} + \begin{pmatrix} 2 & -1 & i \\ 0 & 2 + 3i & -3\end{pmatrix}$ See example 2.4 on page 36 in Martin LaForest. -- import numpy as np a = np.array([[3, 3, -1+2j], [1, -3, 0]]) b = np.array([[2, -1, 1j], [0, 2+3j, -3]]) print(a + b) # in WolframAlpha just type: # {{3, 3, -1+2i}, {1, -3, 0}} + {{2, -1, i}, {0, 2+3i, -3}} -- Question 3. First let's review how we can improve the output of these calculations. -- import numpy as np import sympy as sym from IPython.display import display, Math A = np.array([[12, 5, 2], [20, 4, 8], [ 2, 4, 3], [ 7, 1,10]]) A = sym.Matrix(A) display(A) -- a = np.array([[3, 3, -1+2j], [1, -3, 0]]) b = np.array([[2, -1, 1j], [0, 2+3j, -3]]) sum = a + b display(sym.Matrix(sum)) -- Now let's calculate $2 \cdot \begin{pmatrix} 3 & 3 & -1 + 2i \\ 1 & -3 & 0 \end{pmatrix}$. See page 36 in Martin LaForest's document (example 2.4). -- a = np.array([[3, 3, -1+2j], [1, -3, 0]]) result = 2 * a display(sym.Matrix(result)) # in WolframAlpha just type: # 2 * {{3, 3, -1+2i}, {1, -3, 0}} -- **Question 4.** Calculate $\begin{pmatrix} 2 & 3 & i \\ 3 & -2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 0 & 12 \\ 3 & -2 \end{pmatrix}$ See Definition 2.24 on page 36 and explanations on pp. 37, 38. This is Example 2.7 on page 39. Practice calculating by hand as explained. -- a = np.array([[2, 3, 1j], [3, -2, 1]]) b = np.array([[0, 1], [0, 12], [3, -2]]) result = np.dot(a, b) display(sym.Matrix(result)) # in WolframAlpha just type: # {{2, 3, i}, {3, -2, 1}} * {{0, 1}, {0, 12}, {3, -2}} -- **Question 5.** Calculate $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ This is Example 2.7 on page 39. -- a = np.array([[1, 0], [0, -1]]) b = np.array([[3], [2]]) result = np.dot(a, b) display(sym.Matrix(result)) # in WolframAlpha just type: # {{1, 0}, {0, -1}} * {{3}, {2}} -- **Question 6.** Calculate $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$. This is example 2.8 on pp. 39, 40 in Martin LaForest's booklet. -- from sympy import symbols v1, v2 = symbols('v1 v2') a = np.array([[-1, 0], [0, 1]]) b = np.array([[v1], [v2]]) result = np.dot(a, b) display(sym.Matrix(result)) # in WolframAlpha just type: # {{-1, 0}, {0, 1}} * {{v1}, {v2}} -- **Question 7.** If $M = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$ and $N = \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix}$ calculate $MN$ and $NM$. This is observation. 2.2.8 on page 40 in Martin LaForest's booklet. -- M = np.array([[1, 2], [3, 1]]) N = np.array([[4, 3], [2, 1]]) mn = np.dot(M, N) nm = np.dot(N, M) display(sym.Matrix(nm)) print("---------") display(sym.Matrix(mn)) # in WolframAlpha just type: # {{1, 2}, {3, 1}} * {{4, 3}, {2, 1}} # and then {{4, 3}, {2, 1}} * {{1, 2}, {3, 1}} --