Lecture 24: Quick sort
This assignment is due on Tuesday, April 8 at 11:59pm. Submit it using Handin as assignment lecture24.
5 6 2 1 8 2 3 7 |
Use this app to draw the decomposition. Make a rectangle for every problem.
Click the “Copy to clipboard” button in the lower-left corner of the app.
- Paste the code as a comment, like this:
; Quick sort: ; <bpmn:definitions ..... ..... ..... ; ..... ..... ..... ..... ..... ..... ; ..... ..... ..... ..... ..... ..... ; ..... ..... </bpmn:definitions>
; A PivotTree is one of: ; - (make-no-pivot) ; - (make-pivot PivotTree Number PivotTree) (define-struct no-pivot []) (define-struct pivot [left val right]) (define pt0 (make-no-pivot)) (define pt1 (make-pivot pt0 1 (make-no-pivot))) (define pt2 (make-pivot pt1 2 (make-pivot (make-no-pivot) 3 (make-no-pivot))))
5 6 2 1 8 2 3 7 |
Exercise 3. Write the template for a function that processes a PivotTree. Make it look like a function called process-pivottree, and do not put it in a comment.
Exercise 5. What would happen if smaller used < instead of <=? Write a correct test for the quick-sort function that would detect the problem. In other words, the test should fail if smaller used < instead of <=.
The code written in the videos above is available for your reference. To download it, don’t use “Save Page As” or “Save As”; use “Save Link As” or “Download Linked File” in your Web browser. If you can’t find the command, try right-clicking or two-finger-tapping or long-pressing.
; sum : ListOfNumbers -> Number (define (sum lon) (cond [(empty? lon) 0] [else (+ (first lon) (sum (rest lon)))])) ; The function sum does not need a termination argument, ; because its recursive call follows the template for processing a ListOfNumbers. ; generate-merge-tree : [NEListOf Number] -> MergeTree (define (generate-merge-tree lon) (cond [(= 1 (length lon)) (make-single (first lon))] [else (make-split (generate-merge-tree (take (floor (/ (length lon) 2)) lon)) (generate-merge-tree (drop (floor (/ (length lon) 2)) lon)))])) ; The function generate-merge-tree needs a termination argument, ; because its recursive calls do not follow the template for processing a [NEListOf Number]. ; optophone : NaturalNumber -> Image (define (optophone n) (cond [(= n 0) figure] [else (overlay (optophone (- n 1)) (circle (- (* n 20) 10) "solid" "white") (circle (* n 20) "solid" "black"))])) ; binary : NaturalNumber -> String (define (binary n) (cond [(= n 0) "a"] [(even? n) (string-append (binary (/ n 2)) "b")] [else (string-append (binary (- n 1)) "c")])) ; marquee : Number -> Number (define (marquee n) (cond [(< n -9) 10] [else (marquee (- n 1))])) ; insert-sort : [ListOf Number] -> [ListOf Number] (define (insert-sort lon) (cond [(empty? lon) lon] [else (insert (first lon) (insert-sort (rest lon)))])) ; insert : Number ListOfNumbers -> ListOfNumbers (define (insert n lon) (cond [(empty? lon) (list n)] [(<= n (first lon)) (cons n lon)] [else (cons (first lon) (insert n (rest lon)))])) ; every-other : [ListOf String] -> [ListOf String] (define (every-other los) (cond [(empty? los) los] [(empty? (rest los)) (list (first los))] [else (cons (first los) (every-other (rest (rest los))))])) ; greet : [ListOf String] -> [ListOf String] (define (greet los) (cond [(empty? los) empty] [(cons? los) (cons (string-append "Hello " (first los)) (greet (rest los)))])) ; ftoc : Number -> Number (define (ftoc f) (/ (- f 32) 1.8)) ; measure : Posn -> Number (define (measure p) (cond [(= 0 (posn-y p)) (posn-x p)] [else (measure (make-posn (posn-y p) (remainder (posn-x p) (posn-y p))))])) ; draw-posn : Posn -> Image (define (draw-posn p) (place-image dot (posn-x p) (posn-y p) background))