
An Overview of GOOD

Jan Paredaens Jan Van den Bussche a
Marc Andr ies Marc Gemis Marc Gyssens b Inge Thyssens

University of Antwerp (UIA), Dept. Math. & Comp. Science, B-2610 Antwerp, Belgium

Dirk Van Gucht Vijay Sara thy Lawrence Saxton c

Indiana University, Computer Science D e p a r t m e n t , BIoomington, IN 47405, USA

~Aspirant NFWO.
*University of Lhnburg, Dept. WNIF, B-3590 Diepenbeek, Belgium.
"University of Regina, Dept. Computer Science, Regina, Saskatchewan S4SOA2, Canada.

A b s t r a c t

GOOD is an acronym, standing for Graph-Oriented
Object Database. GOOD is being developed as a
joint research effort of Indiana University and the
University of Antwerp. The main thrust behind
the project is to indicate general concepts that are
fundamental to any graph-oriented database user-
interface. GOOD does not restrict its attention
to well-considered topics such as ad-hoc query fa-
cilities, but wants to cover the full spectrum of
database manipulations. The idea of graph-pattern
matching as a uniform object manipulation primi-
tive offers a uniform framework in which this can
be accomplished.

1 T h e G O O D m o d e l

In this section, we informally introduce the basic
model of GOOD. For a complete t reatment , see
[1, 2, 3].

Basic to any graphical database user-interface is
the visualization of the database scheme. In GOOD
we take an approach as general and simple as pos-
sible, considering a scheme to be a directed, labeled
graph whose nodes represent classes of objects and
whose edges represent relationships or properties
that can exist between objects of these classes. For
example, Figure 1 shows the scheme for a hyper-
media system, storing documents that may contain
text, graphics and sound information. A rectangu-
lar node (like Text) represents an abstract class;
an oval node (like Long-St r±ng) represents a ba-
sic class. The #chars edge indicates the number of

SIGMOD RECORD, Vol. 21, No. 1, March

characters in a text. Note that Refe rence , Sound,
Text and Graphics are subclasses of Info-Node.
They inherit all its properties.

The key idea in GOOD is that even a database
instance can be seen as a graph (at least conceptu-
ally). In this graph, each object and each value is
represented by a unique node, in accordance with
the paradigm of object identity. Furthermore, each
such node is labeled by a class name occurring in
the database scheme; basic class nodes are addi-
tionally labeled by their value. Finally, the edges
in the instance graph stand for the various rela-
tionships or properties between the objects in the
instance and must be labeled conforming to the
scheme, i.e., for each edge in the instance graph
there must be a corresponding edge in the scheme
graph having the same labels for the source node,
target node, and the edge itself. Due to space lim-
itations, we omit an instance graph example.

It is typical in graph-based database user-
interfaces to express queries visually by graphs
which are built from components of the scheme
graph. The actual structure of this query graph
specifies which portions of the database are to be
retrieved by the query. In GOOD, the function
of the query graph is abstracted in the concept
of pattern, which wi].l serve as a natural, uniform
primitive for all database manipulations (not only
querying).

A pat tern is very similar to an instance graph.
Syntactically, the only difference is that in an in-
stance graph the basic class nodes are labeled by
their values, whereas, in a pat tern this is not re-
quired. Also semantically, the pat tern stands for a

1992 25

"sample" of (a part of) the instance. Informally,
applying a pat tern to an instance results in a num-
ber of matchings, each of them corresponding to a
subgraph of the instance that corresponds to the
pattern. Formally, a matching of a pat tern J in
an instance I is a mapping from the nodes of J
to the nodes of I , preserving all edges between the
nodes, and all labels. For example, in Figure 2,
two patterns are shown. Each matching of the left-
most pat tern represents an Info-node with name
'Reggae' together with an Info-node to which it is
linked, and the creation date of the latter. Each
matching of the rightmost pat tern stands for an
Info-node with one of its references that refers to
the node itself. (It may be interesting to note that ,
since patterns are syntactically database instances,
they can be t reated (e.g., stored) in the same way
as "real" instances. The objects of a pat tern can
be thought of as "computational" or "virtual" ob-
jects.)

We now come to the operations of the GOOD
model. At the conceptual level, every GOOD op-
eration has the effect of a graph transformation.
Operations consist of a pat tern together with an
action. When applying the operation to an in-
stance, the action is performed on each matching of
the pat tern, in parallel. More concretely, there are
five basic operations defined in GOOD: node ad-
dition, edge addition, node deletion, edge deletion,
and abstraction. Furthermore, there is a construct
for grouping operations in methods. Here, we will
only explain node/edge addition/deletion. For ab-
straction, we refer to [4]; for methods, see [2, 3].

The node addition serves to add data, be it as
derived data in a query or as an update, in the
form of new nodes in the instance graph, with out-
going edges ending in objects that already exist.
Syntactically, a node addition has the form shown
in Figure 3 (top). The pat tern specifies the places
in the instance where new nodes are to be added.
The pat tern is augmented with an additional bold
node and outgoing edges. This means that for each
matching of the pat tern, such a new node and cor-
responding edges are added. For example, the node
addition of Figure 3 has the effect that for each
pair of Info-nodes (the first of which having name
'Rock') an object of class Pair is created with an
attribute-edge named parent for the creation date
of the first object and an attribute-edge named
child for the creation data of the second object.

The edge addition serves to add data in the form
of new edges in the instance graph. Syntactically,
an edge addition has the form shown in Figure 3,
bot tom. The pat tern specifies the places in the
instance where new edges are to be added. The
pat tern is augmented with one or more bold edges.
This means that for each matching of the pattern,
the corresponding edges are added. For example,
the edge addition of Figure 3 has the effect that the
creation date of the CPinkfloyd' Info-node is associ-
ated with all Text-nodes linked to it.

Both addition operations have an addition as ef-
fect. There are two corresponding, complementary
operations, the node and edge deletion, whose ef-
fect is a deletion, be it as an update , or be it in a
query to express negation. They are syntactically
specified by a pat tern, in which certain nodes or
edges are indicated in double outline. This means
that in each matching of the pat tern, the corre-
sponding nodes or edges have to be removed. Space
limitations prevent us from giving an example.

Using the GOOD operations the user can express
almost all computable transformations on the in-
stance graph. As such he specifies a sequence of
operations to be applied to the database. Such a
sequence is called a GOOD-program.

2 T h e G O O D s y s t e m

In this section, we briefly explain how the GOOD
model can be used in practice and sketch the state
of affairs in implementing the GOOD system at the
University of Antwerp. The work is divided into
two major parts: the user-interface, which fully
supports the GOOD database language as the uni-
form means by which the user specifies the database
tasks to be performed by the system, and the
database management, part which supports the l ink
between the user-interface and the actual DBMS.

2.1 T h e G O O D u s e r - i n t e r f a c e

Initially, an experimental prototype of a GOOD-
based user-interface was developed on a Macintosh
[5]. Based on this experience we decided to develop
a full-fledged user-interface for the GOOD system.
New design decisions were made, some of which are
reported in [7]. The actual implementation efforts
are currently on-going: the program is built under

26 SIGMOD RECORD, Vol. 21, No. 1, March 1992

X Window, using OSF/Motif . 1

Naturally, the central component of the user-
interface is the graphical representation of the
database scheme, which contains all relevant "syn-
tactic" information. There are two simple, yet pow-
erful facilities [7] that allow the user to alter the
specific graphical representation used to depict the
scheme. By decomposing the scheme graph on a
particular class node, the fragment of the scheme
concerned with that class is disconnected from the
rest of the graph. Decomposition can be undone
by the corresponding compose facility. Using com-
position and decomposition, the user's perspective
on the database scheme can be altered flexibly.

The scheme graph is important since it is the ba-
sic means by which the user can specify patterns.
We discussed how syntactically a pat tern is a graph
that conforms to the structure of the scheme. Al-
ternatively, a pat tern can be seen as being "gener-
ated" by the scheme graph. This last observation
is exploited in the user-interface: the user assem-
bles a pat tern simply by copying, duplicating and
identifying nodes and edges from the scheme graph.
An advantage of this approach is that it is syntax-
directed in a natural, graph-oriented manner. In-
deed, it is impossible to construct illegal patterns,
and hence almost all syntactical and many seman-
tical errors are avoided. 2 Moreover, taking into ac-
count the pat tern-matching semantics of GOOD,
we obtain a mode of user interaction compatible
with the direct manipulation paradigm for object
manipulation. Indeed, as the user builds a pattern-
operation, he can actually think of this pat tern as
a "sample" of the database with which he is work-
ing. Impor tant for the bulk-processing nature so
typical for database applications is that in reality,
all matchings of the pat tern are considered.

Once patterns can be constructed, arbitrary
GOOD programs can be built. This is imple-
mented in the standard Motif user-interface look
and feel. Actually, our user-interface understands
a superset of the basic GOOD language described
earlier. Indeed, several macros, consisting of fre-
quently needed sequences of operations, and slight
extensions of the pat tern concept to deal with arith-
metic and the like are supported [3, 6].

1 0 S F / M o t i f is a trademark of the Open Software
Foundation.

Here, syntax must be interpreted broadly, since our pro-
grams are expressed as graphs, not texts.

Finally, we mention that we have developed two
rather novel mechanisms, viewing and browsing [7],
which allow the user to interact with the real data.
These two tools are basically meant to inspect the
result of a GOOD program (see below for a dis-
cussion of what this result exactly is). However,
these mechanisms can as well be used for simple ad-
hoe querying (viewing) and for navigational object-
centered access (browsing). Viewing and browsing
are again uniformly based on the concept of pat-
terns. For example, we define browsing as an ex-
tension of pat tern matching where certain nodes of
the pat tern are constrained to be mapped to spe-
cific, predetermined objects in the instance.

2 .2 D a t a b a s e m a n a g e m e n t in G O O D

Up to now, the effect of a GOOD program was for-
mally considered to be a general transformation of
the input database into the output database. How-
ever, in practice, the actual effect of this transfor-
mation on the stored database is determined by
the one out of five different modes in which the
user elects to run his program [5, 7]. Each mode
interprets the formal transformation in its own par-
ticular way, both on the schema and on the instance
level, either as a restructuring, a query, a constraint
specification, an update, or a schema modification.

Once the operations to be performed on the real
data have been determined from the running mode,
they must be executed by a concrete DBMS. For
this purpose, we store a GOOD database, both
whose scheme and instance are graphs only on
the conceptual level, in a relational DBMS. Con-
sequently, the algorithms for pat tern matchings
and the corresponding GOOD operations are trans-
lated into a relational DML. Of course, we must
also support the other direction of this translation,
since the result of the produced relational transac-
tion must be interpreted back to the graph-oriented
viewing and browsing tools described earlier.

Since we do not want to be dependent upon one
particular DML, we have formally specified an re-
lational database abstract machine, listing the ca-
pabilities that GOOD requires of any underlying
DBMS. Then all database commands issued by the
GOOD system call only upon this abstract ma-
chine.

SIGMOD RECORD, Vol. 21, No. 1, March 1992 27

3 Future research d i rec t ions

3.1 I m p l e m e n t a t i o n of G O O D in t h e
T a r s k i D a t a b a s e M o d e l

As discussed in Section 2.2 a natural way to imple-
ment GOOD is on a relational database abstract
machine. This strategy however deviates from the
main philosophy of the GOOD model, which is to
specify all database objects and processes in terms
of graphs. To remain close to this philosophy, we
developed the Tarski database model (TDM) [8].
In the TDM, all data is represented in (untyped)
binary relations (i.e., graphs) and all processes are
formulated as expressions in the (extended) Tarski
algebra. The core of this algebra is an adaptation
of an algebra of Tarski and Givant 3 to the domain
of finite binary relations. The core has six opera-
tors. Of those, the union (r Us), the relational com-
position (r . s), the inverse (r-x), and the (finite)
complement (~) are well-known. In addition, there
are two tagging operators, the left-tagging operator
(r ~) and the right-tagging operator (r*). These op-
erators associate unique tags to the ordered pairs
in a relation (see Figure 4) 4. As shown in [8],
this core of the (extended) Tarski algebra is as ex-
pressive as the Codd-relational algebra. The ad-
jective "extended" indicates that the core algebra
is extended with standard programming language
constructs such as variables and assignment, com-
pound, if-then-else, and iterative statements.

The Tarski database model allows for graph-
oriented support of GOOD instances at the phys-
ical level. Let us illustrate this with an example.
Consider the persons database shown as a GOOD
instance in Figure 5 (top). In Figure 5 (middle) we
show a corresponding physical representation as a
set of binary relations. In this representation, there
is a separate relation for each node type (except for
the atomic node types) and there is a separate re-
lation for each edge type s . Now consider the edge

3A. Tarski and S. Givant, A formalization of set theory
without variables, American Mathematical Society, 1986.

4 As pointed out by Ore (Theory of Graphs, American
Mathematical Society, 1962), there is a natural interpre-
tation of the first four operators in t erms of graphs ma-
nipulations (for example, ~ corresponds to computing the
complement-graph o f t viewed as a graph). (These tags serve
the role of object identifies for the ordered pairs.) The left
and right tagging operation on a relation r can best be un-
derstood in terms of a GOOD node addition.

6Clearly, this is not the only reasonable representation of
this GOOD database as a set of binary relations

addition and node addition operations shown in
Figure 5 (bottom). The edge addition can be per-
formed in the Tarski algebra with the assignment
statement grandparent := parent • parent and the
node addition can be performed by the statements
6.

fa therFerson := child t" . (sez . {(ma:i.e,male)})l';
isPerson := f atherPerson*;
Father := isPerson t~

It might be objected that Tarski algebra expres-
sions are complex and difficult to interpret. This is
indeed the case. However, this doesn't render the
algebra an uninteresting target language. In fact,
work on the decomposed storage model r points to
advantages of the Tarski relational approach rel-
ative to the Codd relational approach, especially
in the context of parallel computation. Therefore,
we are currently coupling the GOOD model, via
the Tarski data model, to the decomposed storage
model. Within this scope, an interesting research
avenue will be the study of query optimization of
GOOD data manipulation expressed as equivalent
(extended) Tarski algebra expressions.

3.2 G O O D a n d g r a p h i c a l i n t e r f a c e s

Section 2.1 describes an implementation effort of
the GOOD user-interface that corresponds closely
to the basic design of the GOOD model [1, 2, 3].
Although this interface exhibits high-level graphi-
cal features, there exists database applications that
are not "naturally" modeled within it.

To stay within the realm of database applications
involving graphs, consider a recursive roadrnap. At
the top level such a roadmap might be a graph with
the major cities of the United States as nodes and
with the main direct routes between these cities as
edges. In addition, the recursive roadmap has two
special features: 1) most of the interesting data
(such as type of route, distance in miles, distance
in kilometers) is associated directly to the edges
(routes) of the roadmap, and 2) the roadmap is

6 In these statements the operation r z~ denotes the ex-
pression (r4) - 1 . r q and {(male,male)~ denotes the singleton
binary relation containing the pair (male,male). I t should
be clear that there are other programs to simulate the above
GOOD operations.

7S. Khoshafian, G. Copeland, T. Jagodits, H. Boral, and
P. Valduriez, A query processing strategy for the decomposed
storage model, in Prac. of Data Engineering Conference, Los
Angeles, CA, 1987, pp. 636-643.

28 SIGMOD RECORD, Vol. 21, No. 1, March 1992

recursive in the sense that a city on the roadmap
might have its own associated (recursive) roadmap,
being a graph of landmarks within that city and
their connecting routes. Although GOOD can con-
ceptually model this roadmap, this conceptualiza-
tion is not in itself a natural graphical rendering of
the (typical) roadmap. This is because 1) edges
in GOOD carry no information but their labels
(thus edges with "semantics" need to be modeled
as nodes in GOOD and therefore loose their natural
edge status), and 2) at the conceptual level, GOOD
is essentially a "fiat" model, i.e., in the recursive
roadmap, it would model cities and landmarks at
the same level of abstraction.

Our view is that, in its pure formulation, the
GOOD model is a conceptual model that facil-
itates reasoning about graphical database user-
interfaces. More specifically, the two-dimensional,
graph-oriented way of specifying database ma-
nipulations of GOOD offers advantages over the

more common one-dimensional sentence-oriented
way. However, as we pointed out in the recursive
roadmap example, proper conceptualization is dif-
ferent from natural graphical rendering. To address
this issue, but keep the advantages of the GOOD
approach, we axe designing a database model which
remmns close to the basic graph-oriented philoso-
phy of the GOOD model but which differs from
it markedly in two respects. First, in this database
model, there is a symmetric treatment of nodes and
edges. For example, whereas in the GOOD model
only nodes are in a natural way associated with
properties and values, in our new database model,
this becomes valid for edges as well Second, nodes
and edges have an internal organization and state
that is (by default) hidden or encapsulated, but
that can be revealed if needed or desired. This
second feature offers the opportunity to present
information at different levels of abstraction, a
technique so common in current graphical user-
interfaces, but under-developed or under-exploited
in database user-interfaces. We plan to implement
a graphical user-interface supporting this database
model in the X Window OSF/Motif environment,
just as is now done for the GOOD interface.

References

[I] M. Gyssens, J. Paredsens, and D. Van Gucht. A
graph-oriented object database model. In Proc.
gth PODS, pp. 417---424. 1990.

[2] M. Gyssens, J. Paredaens, and D. Van Gucht.
A graph-oriented object database model for
database end-user interfaces. In Proc. 1990
SIGMOD, pp. 24-33.

[3] M. Gyssens, J. Paredaens, Jan Van den Buss-
che, and Dirk Van Gucht. A graph-oriented
object database model. Technical Report 327,
Computer science department, Indiana Univer-
sity, 1991. Submitted to IEEE Trans. Knowl.
Data Eng.

[4] J. Van den Bussche and J. Paredsens. The
expressive power of structured values in pure
OODB's. In Proc. lOth PODS, pp. 291-299.
1991.

[5] M. Andries, M. Gem.is,
J. Paredsens, I. Thyssens, and J. Van den Buss-
che. A graph-oriented user interface for object
databases. Technical Report 91-04, University
of Antwerp (ULA), 1991.

[6] M. Andries and J. Paredaens. Macros for the
GOOD Transformation language. Technical Re-
port 91-20, University of Antwerp (UIA), 1991.

[z] M. Andrie s, M. Gemis, J. Paredsens,
I. Thyssens, and J. Vaaa den Bussche. Concepts
for graph-oriented object manipulation. Techni-
cal Report 91-36, University of Antwerp (UIA),
1991. To appear in EDBT 1992.

Is] M. Gyssens, L.V. Saxton, and D. Van Gucht.
Tagging as an alternative to object creation.
Submitted.

SIGMOD RECORD, Vol. 21, No. 1, March 1992 29

Pro ram 611aer 5te
PPosral Stelp Ed i t ~o lands Paler • I~elp

data

is

data

echar$

I vernllon-Node ~ O ~
old

Step 1 0¢ program Untttlte~2

Figure 1: A GOOD database scheme.

--Program _Step [dlt Commands Paler Help

lullui I in.o_Node ~ Into-Node i created

Reggae

i L in ~s I Re4~erence ~ . ~ In4~o-Hode I
Isa

Step 1 o? program patterns.pr
IM

Figure 2: GOOD patterns.

I Pr;T;~-~sii-ffff--s t ~
_Program Step _£Ott E_ommanOs Paler

eatea ~ o ~ ~

treat e d ~ ~ -

Step I o¢ progralm node aOOltlon.pr

Help

-program Step [dit ~o~anOs Palet Help

~ @ PtnkFloyO

Jan 14. 1990

Step 2 o¢ prosram ..rogranlBullder/edge addltlon.pr

Figure 3: GOOD operations.

30 SIGMOD RECORD, Vol. 21, No. 1, March 1992

I" ~ r ~

Figure 4: Example of left and right tagging a relation. The tag 1 is a succinct representation of the

ordered pair (a, b).

Prosram Step £dlt Commands Paler
Builder

Help

X

Female

chi Id ~ PePson I

Male

4m
Step 1 o? program daughter.pr

IB

P e r s o R

Pl Pl

P2 P2

t93 193

P4 t94

child

Pl P2

P2 I p4

P3 P4

3e~

Pl Female

P2 Female

P3 Male

P4 Male

Program 6uil0er

~rogram Step Edit Commanas Pa!et ~elp

grandparent

_ ~ _ J L _ ~ _ U ~ ~
Steo I o~ prosram grandoarenc.pr

Pro ram Bullder 5re

P-ogram 5ted Edit Commands Palet Help

Nale

Ste~ I of prosram ?ather.pr

Figure 5: A persons database as a GOOD instance (top). A representation of the persons database as
a set of binary relations (middle); the values pl, p2 etc. denote unique person identifiers. A GOOD
edge addition and a GOOD node addition (bottom)

SIGMOD RECORD, Vol. 21, No. 1, March 1992 31

