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Abstract 

This paper introduces and studies the relational meta a1ge- 
bra, a statically typed extension of the relational algebra to 
nllow for m&a programming in databases. In this meta al- 
gebra one can manipulate database relations involving not 
only stored data values (as in classical relational databases) 
but also stored relational algebra expressions. Topics dii- 
cussed include modeling of advanced database applications 
involving “procedural data”; desirability as well as limita- 
tions of a strict typing discipline in this context; equivalence 
with a first-order calculus; and global expressive power and 
non-redundancy of the proposed formalism. 

1 Introduction 

Various advanced database systems, such as active and object- 
orjcntcd systems, as well as the data dictionaries of &an- 
dard relational database systems, provide the functionality 
of “stored procedures”, The potential functionality of such 
systems was already envisaged by Stonebraker and hi col- 
laborators in the ’80s [20, 211. However, little work has 
been done on formal models providing logical foundations 
for such systems, Indeed, current systems approaches treat 
stored procedures simply as string values. Only the special 
cast of “schema querying” has received a significant amount 
of attention (e.g., [7, 13)). 

The purpose of the present paper is to contribute to- 
wards these needed logical foundations, *by proposing and 
studying an extension of the relational algebra to allow for 
m&a programming, The proposed relationa! meta algebra, 
dcnotcd by MA, extends the relational algebra with three 
new operators for computing with relations in which not 
only ordinary data values, but also relational algebra ex- 
pressions can be stored. The first new operator is extract, 
used to extract subexpressions from stored expressions. The 
second is rewrite, used to rewrite subexpressions according 
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to certain patterns (as is familiar from algebraic query op- 
timization). 

The third and most important new operator of MA is 
evdl, used to dynamically evaluate stored expressions. A 
fundamental property one wants to achieve is type safety of 
eval, in the sense that this dynamic evaluation never results 
in a run-time error. To guarantee type safety, the operators 
extract and rewrite are carefully calibrated so that they 
preserve syntactical correctness and so that the type of the 
expressions resulting from their manipulations is determined 
statically. 

The type system we put on MA is an adaptation of 
the simple two-level type system discussed by Sheard and 
Hook in the context of Meta-ML [19]. We type ordinary 
relations by their width, type relational algebra expressions 
by the type of their result relations, and type relations con- 
taining relational algebra expressions by typing the columns 
as containing either ordinary data values or expressions of 
a designated type. Expressions of MA, f?nally, are again 
typed by the type of their result relations (which may con- 
tain expressions). 

The contents of this paper are summarized as follows. 
We begin by recalling the necessary definitions concerning 
relational databases and relational algebra, and introduce 
our extension of the relational database model to allow for 
stored relational algebra expressions in relations (Section 2). 
Then we introduce the operators of MA and give examples 
of interesting queries definable in MA (Section 3). 

After that, we investigate the expressive power of our for- 
malism (Section 4). Specifically, we establish the following 
resmts: 

1. We present a many-sorted first-order calculus whose 
%afe” fragment is equivalent to MA, thus extending 
Codd’s classical theorem on the equivalence of rela- 
tional algebra and calculus [B].’ This result is a gener- 
alization of Ross’ [17], who worked in a model allowing 
only relation names, not general algebra expressions, 
to be stored in relations. 

2. We illustrate an interesting limitation on the expres- 
sive power of MA, due to its inherently typed nature: 
there are computationally extremely simple queries, 
well-typed at the input and output sides, which are 
nevertheless not definable in MA, intuitively because 

*Generalizations of Codd’s theorem to extensions of the relation 
model have always been a popular research topic (e.g., [12, 14, 1. 10, 

41). 
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their computation requires untyped intermediate re- 
sults (which cannot be represented by an MA compu- 
tation). The equivalence with the calculus allows an 
clcgant mod&theoretic proof of this observation. 

3, We show that MA is a conservative extension of the 
relational algebra, in the sense that as far as queries 
over ordinary relations (not containing stored expres- 
sions) are concerned, MA is no more expressive than 
the relational algebra.’ 

4, We give a rigorous proof of the intuitively clear fact 
that oval is a primitive operator in MA: it cannot 
bo simulated using the other operators. Thii stands in 
contrast to the situation in a complete programming 
language such as Lisp, where eval is clearly definable 
in Lisp without eval and thus not primitive. (Also the 
other operators of MA can be shown to be primitive.) 

Tha paper concludes with a discussion in Section 5. 
The present paper is a follow-up on an earlier paper by 

thrco of u5 [24], There, we studied the expressive power 
of evaluating stored relational algebra programs in a com- 
plctcly untyped setting. Relational algebra programs were 
oncodcd in data relations, and the standard operators of the 
rolntional algebra were used to manipulate these “program 
relations”, This approach resulted in a powerful, but dif- 
ficult to ~90, query language called the reflective relational 
algebra (Rd). Our main result was that by adding eval to 
the relational algebra much more queries on classical rela- 
tionnl databases become definable. Thii stands in contrast 
to the conservative extension property of MA with respect 
to A WC prove hero. In fact, our motivation for the work 
rcportcd in this paper was the desire (i) to understand the 
situation where typing and type safety are mandatory, and 
(‘(foreign a formalism that is more programmer-friendly 

2 Relations, expressions, and meta relations 

2.1 Relational databases and relational algebra 

Aasumo a sufficiently large supply of relation names is given, 
where each relation name has an associated arity (a natural 
number). To denote that relation name R has arity n we 
write R : n. A database schema is a finite set of relation 
names, 

Assume further a universe V of data values is given. A 
relation of arity n is a finite subset of V”. An instance of 
a database schema S is a mapping Z on S which assigns to 
each relation name R : n E S a relation Z(R) of arity n. 

Fix a schema S. We denote the set of relational algebra 
expressions over S by A. Each expression has an arity; as 
for relation names, to denote that expression e has arity n 
WC write e : n. Formally: 

Each R : n E S is in A. 

If cl : n and es : n are in A, then so are (er U e2) : n 
and (cl - es) : n. 

If et : nl and ee : ns are in d, then so is (ei x ee) : 
m-t n2. 

If e : n is in A, then so are 

- a;=j(e) : n, where i,j E (1,. . . ,n); and 

aAnnlogoue coneervativo extension properties are known for com- 
plox object dntnbnacs [lo, 26, 221 and spatial databases [15]. 

- %l,...,i, (e) : p, where ii,. . . , iP E (1,. . . , n}. 

Given an instance Z of S, an d-expression e : la over S 
evaluates to a relation of arity n, which we denote by [e]‘, 
in the well-known manner [23]. 

Example 2.1 Suppose S = {R : 2,s : 2). Consider the 
d-expression e : 2 = nl,4a2=s(R x S) over S. For any in- 
stance Z of S, which assigns concrete binary relations Z(R) 
and Z(S) to R and S, the binary relation [e]’ equals the 
composition of Z(R) and Z(S). 

2.2 Extending the model 

We want to extend the basic relational database model to 
allow not only data values, but also d-expressions to be 
stored in relations. Thereto, the simple type system based 
on &ties has to be extended first: 

Definition 2.2 A type is a tuple T = [ri,. . . , T,,], where 
each Ti is either the symbol 0, or of the form (m), where 
m is a natural number. In the first case, we say that i is 
a data column of r; in the second case, we say that i is an 
ezpression column of 7. 

We can now define typed tupIes, and relations, contain- 
ing expressions as follows: 

Definition 2.3 Let S be a schema, and let r = [rr, . . . , T,,] 

be a type. A tuple of type 7 over S is a tupIe (~1,. . . ,z,J, 
such that for each i = 1,. . . , n: 

l if pi is 0 then Zi is a data value (i.e., an element of V). 

l if Ti is (m) then xi is an d-expression over S, of arity 
Tn. 

A relation of type T over S is a finite set of tuples of type r 
over S. 

Note that a relation of type [O,. . . ,0] (n zeros) is an 
ordinary relation of arity n. 

In the kind of systems we intend to model, there will 
be two kinds of relations. Fist, we have ordinary relations 
containing only data values; the schema consisting of the 
names of these relations is called the object-level schema. 
Second, we have relations containing both data values and 
d-expressions over the object-level schema; the schema con- 
sisting of the names of these relations is then called the 
meta-leuel schema. Formally: 

Definition 2.4 l A meta-level schema is a finite set of 
relation names, where each relation name has an as- 
sociated type. To denote that a relation name R has 
type T we write R : T. 

l Let M be a meta-level schema, and let S be a schema 
disjoint from M (i.e., having no relation names in com- 
mon). An instance of M over S is a mapping 9 on 
M which assigns to each relation name R : T E M a 
relation of type T over S. The pair (S,M) is called 
a combined schema, in which S is referred to as the 
object-level schema. 

l Finally, an instance of a combined schema (S,M) is 
simply the union of an instance of S and an instance 
of M over S. We refer to such unions as combined 
instances. 
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Example 2,G Let S bc the schema of some database which 
IS quoricd by several users, such as that of a bookstore on the 
Intcrnct, Queries arc represented as d-expressions over S. 
Suppose WC want to monitor the usage made of the database 
by the users. Then we may want to maintain a meta-level 
rolatlon Log of type [Cl, (l)], containing pairs (ZL, q), where u 
is a uscrnamc and 9 is a query u has posed. The expression 
column (1) indicates that we focus on queries of arity 1; such 
qucrics return unary relations (i.e., sets of data values; in an 
Intcrnot bookstore this will be sets of book records). In this 
slmplc example, the object-level schema is S; an instance of 
S gives the concrete contents of the relations named in S. 
The meta-lcvcl schema M contains Log (and possibly other 
mota-lcvcl relation names); an instance of M over S gives 
the concrctc contents of the relation Log (and possibly of 
others), 

3 The relational meta algebra 

The relational algebra is a core language for defining queries 
on ordinary instances. We now want to have a similar for- 
malism for defining queries on combined instances. 

First, note that the five operators of the relational al- 
gebra can be canonically extended to work on meta-level 
relations as well as on ordinary, object-level relations. For 
instance, if R : [(3), (3)) is the name of a relation storing 
pairs of expressions of arity 3, we can write CQ=~(R) to re- 
trievc those pairs from R with identical first and second 
components, However, the relational algebra operators do 
not recognize stored expressions as such; they are treated as 
abstract data values. 

Hcncc, the five relational algebra operators are a good 
start, but additional operators are needed. We propose three 
new operators: extract, to extract subexpressions out of 
stored expressions; rewrite, to rewrite (subexpressions of) 
stored expressions; and eval, to dynamically evaluate stored 
oxprcssions. Adding these three operators to the relational 
algcbrs yields what we believe is the functionality one should 
oxpcct from a core meta query language. 

Syntax. WC now formally define the expressions of the 
relational mcta algebra. Each expression has a type, derived 
from that of its subexpressions; to denote that expression e 
has type T wc write c : T. 

Definition 3.1 Fix a combined schema (S,M). The set 
MA of relational meta algebra expressions ouer (S,M) is 
the smallest set satisfying: 

1. 

2. 

3. 

4, 

G. 

Each relation name S : n E S is in MA, and is of type 
LO , . , , , 0) (72 zeros). 

Each relation name R : T E M is in MA. 

If cl : 7 and es : 7 are in MA, then so are (er U e2) : T 
and (er - ~2) : 7. 

Ifer:~andez:warcinMdwith~=[~r,...,~,,]and 
w = [a, 

..,,Wm 1. 
,,.,w,,,], thensois(erxec):[rr ,..., rn,Wrr 

If e : 7 is in MA with 7 = [or ,...,T,,], thenso are 

l ai=j(e) : T, where i, j E (1,. . . ,n} such that 7; = 
~j; and 

l yr,y,,,.,,p(e) : [7il,. . . aTip], where ir,. . . ,i, E (1, 

6. Fodeach d-expression e : n over S, (e) : [(n)] is in 

7. Ife : T is in MA with 7 = [T~,...,T~] and a’is an 
expression column3 of 7, then the following expressions 
are also in MA: 

l extracti,, : [TI,. . . ,T*, (m)], where m is a 
natural number; 

l rewrite-onei:,,s(e) and rewrite-a&,+(e), 
both of type [or ,-eerTnrTi], where CY + ,S is a 
rewrite de ouer S with respect to T (to be de- 
fined shortly); and 

l evali(e) : [TI,. . . ,c, 0,. . . , O] (4 zeros), where e 
is given by Ti = (e). 

Rewrite rules. To finish the above definition we need to 
define the system of rewrite rules on which the rewrite op 
erators are based. Thereto the classical notion of a term 
rewrite rule [ll] must be adapted to our setting. 

Let S be a schema and let T = [rr, . . . , TV] be a type. Let 
c 5 {I,..., n) be the set of expression columns of T, and 
for 3 E C let ej be given by rj = (ej). 

Definition 3.2 A rewrite rule over S with respect to T is a 
rule of the form a + p, where a and ,f!l are d-expressions of 
the same arity, over the augmented schema SU{Oj ] j E C}. 
Here, each Oj is an ezpression uariable of arity 6. 

An expression variable is formally nothing but a specially 
reserved relation name of arity ei; intuitively it should be 
thought of as a placeholder for subexpressions of arity ej. 

Semantics of MA. In the context of a given combined 
instance K: of (S, M), an MA-expression e : T over (S, M) 
evaluates to a relation [elEc of type T. We only define I[elz 
for cases 6 and 7 of Definition 3.1; the first 5 cases are com- 
pletely analogous to the semantics of the standard relational 
algebra. 

0 [(e)]^: := {(e)}, for an d-expression e. 

l [eXttracti,,(e)]K := ((21,. . . ,Zn,Z) ] (21,. . . ,zn) E 
[ejjEc and x is a subexpression of xi that is of arity 

[rewrite-onei,,,B(e)] lc := {(Xl,. 1. ,xn,x) 1 (Xl,. . . , 
z,.,) E [elJK and z is obtained from xi by replacing one 
occurrence of f(a) as a subexpression in 2; bv f(p)}. 
Here f is the mapping on the-expression variables oc- 
curring in the rewrite rule delined by f(Oj) := y. 

[rewxite-dLli,,+i(e)j” . 1s defined similarly, but now 
every occurrence of f(a) in 2; is replaced by f(P). 

[ev&(e)jK :={(21,-..,2n,Yi,...,Yf) 1 (21,...,2~) E 
[elK and (YI g - - - 9 Yf) E [G]*}* 

So, an MA-expression e : T over (S,M) defines a mapping 
[e] from the set of combined instances of (S,M) to the set 
of relations of type T. Such a mapping is called a query over 
(s, Ml of type T. 

3Recall DeRnition 2.2 for the notion of expression column. 
4By subezpression we mean direct and indirect ones. So the 

subexpressions of 7r~,4uz1=3(R~ S) are the expression itself; q,3(Rx 
S); R x S; R; and S. 
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Examples, We next illustrate the meta algebra by means 
of two cxamplcs. Illustrations of the working of individ- 
ual operators, complete with input and output, have been 
placed in an Appendix, 

The first example is an illustration of the kind of syntac- 
tical manipulations on stored expressions that are possible. 
The second illustrates the use of eval to interpret stored 
expressions semantically. 

Recall the m&a-level relation Log of type [O,(l)] from 
Example 2,5. We want to compute the query Q of type 
[(l), (4)] defined ss follows: given a combined instance lc, 
g(X) is the set of all pairs (z,l~) such that z is a stored 
expression in K(Log), i.e., x E [rr~(Log)]~, and y is a subex- 
prcssion of a occurring at least twice in x. The naive attempt 

is incorrect; to distinguish different occurrences of the same 
subcxpression we have to mark them in some way. This can 
be done using rewrite-one. Assume we have some dummy 
relation name D E S of arity 0. An occurrence x of a subex- 
prcssion can be marked by rewriting it into x x D. So if 
mnrlc is the following MA-expression: 

thon the wanted query q is defined by the MA-expression 

~r,2crs+s6szsor=4(rnark x mark). 

For the second example, assume for convenience that the 
object-lcvcl schema consists of one single relation name S of 
arity, say, 5. If we want to see for every user u the results 
of all queries posed by u (as recorded in Log) evaluated on 
the current instance, we simply write 

nt,aevalz(Log). 

Now suppose we arc given a meta-level relation U of type 
[(5)] containing d-expressions to be interpreted as possible 
new contents for relation S (the letter ‘U’ stands for ‘up- 
dnte’). So given a combined instance K: each x E K(u) 
stands for a potential update from K(S) to [xl’. Then we 
may want to compute the query q of type [O,O, (5)] defined 
as follows: q(K) is the set of all tuples (u,~,x) such that 
v is in the result of a query posed by u, evaluated not on 
K(S) but on its update as given by x. To do this we use the 
rowrite-all operator as follows: 

ar,s,seval4rewrite-al12:s+n3(Log X V). 

4 Exprcsslve power of MA 

In this section WC investigate the expressive power of our 
formalism, Due to space limitations, proofs of theorems will 
only be sketched. 

4.1 Non-redundancy and conservative extension 

A natural question to ask is whether MA is non-redundant, 
he,, whcthcr each operator provided in MA is primitive (not 
dcfinnblc using the other operators). 

Theorem 4.1 MA is not redundant. 

The most interesting case is that of eval, which is based 
on tho following lemma (proof omitted): 

Lemma 4.2 Assume every meta-level relation is of a type 
hawing only expression columns. Then every MA-expression 
that does not use evti is equivalent, up to reordering of 
columq5 to a union of MA-ezpressions of the form el xez, 
where el is an d-expression and es is an MA-expression of 
a type having only expression columns. 

To see how primitivity of evdl follows from this lemma, 
let S = {S : 1) and M = {R : [(l)]}. Assume, for the sake of 
contradiction, that the MA-expression neeval.1 (R), of type 
[0], is expressible in MA without eval. Since its type has no 
expression columns, by the lemma it then is even equivalent 
to an d-expression, say e. Now take any instance K of S 
such that X(S) # 0, and take the d-expression e’ := S - e. 
Then [e]” # [d]“. Extend K: to a combined instance by 
putting K(R) := ((e’)}. Then 

[7r2evall(R)]” = [e’]” # [en”, 

contradicting our assumption that e is equivalent to 
mevall(R). 

We omit the proofs of primitivity for extract and the 
rewrite operators. Regarding primitivity of the five rela- 
tional algebra operators: it is well known (e.g., [5]) that 
each of them is primitive within A; of course this does not 
automatically imply primitivity within MA. The latter fol- 
lows nevertheless because we have the following conservative 
extension property: 

Theorem 4.3 Let S be a schema and let q be a query over 
(S, 0) of type [0, . . . ,O] (n zeros). If q is definable in MA 
then q is already definable in A. 

To paraphrase, MA provides no power above that of 
A if only classical queries not involving meta-level relations 
are under consideration. The theorem can be proven by 
observing that if there are only object-level relations, the 
set of expressions that can appear in the evaluation of a 
fixed MA-expression e on any instance is finite. Using this 
observation, we can show that if the meta-level schema is 
empty, evdl can be eliminated from MA-expressions. It 
then suffices to apply Lemma 4.2. 

4.2 An equivalent calculus 

Codd’s classical theorem [s] says that the queries expressible 
in the relational algebra are precisely the queries definable 
in first-order logic (in this context referred to as the rela- 
tional calculus). We next indicate how this equivalence can 
be extended to the meta algebra by introducing MC, the 
relational meta calculus. 

Fix a combined schema (S,M). Our calculus uses two 
kinds of variables: data variables and expression variables. 
Data variables will range over V (the universe of data val- 
ues). Expression variables were already used in the rewrite 
rules of MA; they have an associated arity and range over 
the d-expressions of that arity. 

A term is either a data variable, in which case it is said 
to be of sort 0, or an d-expression over the augmentation of 
S with a finite set of expression variables, in which case it is 
said to be of sort (n), where n is the arity of the expression. 

Atomic formulas can be of one of the following forms: 
S(Xl , . . . ,x,,), where S : n E S and each x; is a data vari- 
able; R(tr , . . . , t,,), where R : [rl,. . . ,T,,] 6 M and each t, 
is a term of sort T<i tr = t2 and tr 2 t2, where tl and te 

‘Note that reordering of columns is expressible using projection. 
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arc terms of the same sort; rewrite-one(tl,t2,ts, t4) and 
rowrito-oll(ti) t2, t3, td), where tl,, . . , t4 are terms such 
that tl and t4 have the same sort, and t2 and t3 have the 
same sort; oval(t, zr, , . . ) zn), where t is a term of sort (n) 
and 21, , , , , z,, are data variables. 

P’orvnulas, finally, are built from atomic formulas in the 
standnrd manner using Boolean connectives and quantifiers. 
Tho set of all formulas is denoted by MC. 

Given an MC-formula ‘p, a combined instance K of (S, 
M), and a valuation p of the free variables of ‘p, the truth 
of ‘p in K under p, denoted by K + cpb], is defined in the 
standnrd way given the following semantics for the above 
predicates: t$ 5 t2 means that tr is a subexpression of t2; 
rowrito-ono(ti, t2, ts, t4), respectively rewrite-all(tl, t2, t3, 
td), means that t4 is obtained from tl by replacing one, re- 
spectively cvcry, occurrence of t2 in tl by t3; and eval(t, 51, 
‘,,I mn) means that (%I,, , . , z~) is in the result of evaluating 
tt 

An MC-formula ‘p with free variables ~1,. . . , z,, of sorts 
~1,~ . , , T,,, respectively, defines the query q of type [or, . . . ,T~] 
d&cd by q(K) = {(&I), . . . ,~h)) I K I= cpbll. Of 
COUrBC this is only well-defined if q(K) is finite for every K. 
Howcvcr, a syntactical restriction called safety can be put 
on MC-formulas such that finiteness is guaranteed. Our no- 
tion of safety i8 a natural extension of the well-known notion 
for the classsical relational calculus (see [23]) to our setting. 

Specifically, we call an MC-formula safe if it does not 
contain V; every variable is quantified only once; any sub- 
formula of the form ‘p V 4 is such that y, and $ have the 
same frco variables; and in any maximal conjunctive subfor- 
mula, all free variables are limited. Here a variable is said to 
be limited if it occurs in a conjunct of one of the following 
forms: 

R(. , ,), with R a relation name; 

t1 = tz, where either all variables occurring in tl or all 
in t2 are limited; 

tl ,< t2, where all variables occurring in t2 are limited; 

raurito-one(tr, t2, t3, t4) or rewrite-all(tr, t2, t3, t4), 
where all variables occurring in tl, t2 and t3 are lim- 
ited; 

ovol(t, ~1,. , , , z,,), where all variables occurring in t 
arc limited, 

Example 4.4 Let R : [(l)] E M. Let 4 be the query of 
type [(l)] defined as follows: given an instance Kc, q(K) is 
the set of expressions in X(R) having a subexpression of 
the form e U 8r@2=s(e X e’), where e is any expression of 
arity 2 and c’ is any expression of arity 3. Such a ‘pattern 
matching query” can be naturally defined by the following 
safe MC-formula: 

R(m) A (h)@‘+l u rl,4’-‘2,3(21 X z2) < z, 

whore 2 is of sort (l), 2~~1 of sort (2), and 22 of sort (3). w 

WC cstnblish: 

Theorem 4.6 The class of queries definable in MA coin- 
cides with the class of queries definable by safe MC-formulas. 

To illustrate how this Theorem can be proven, we show 
how the MC-formula from Example 4.4 can be translated 
in MA, WC begin by “flattening” the formula a bit: 

R(a) A @j/)(1/ < Z A (h)@$y = 21 u rl,4g2,3(21 X Z2)). 

Note that x is limited by R(z); y is limited by y 5 2; and 
~1 and x2 are limited by y = 21 u ~1,4~2,3(xl x X2). An 
equivalent MA-expression is 

Note how the order in which variables can be proven to 
be limited determines the order in which the operators are 
applied. Starting from R, which produces values for variable 
x, we extract values for y, and from there we extract values 
for x1 and x2. Then we rewrite the column for x1 into 
xi U ,+,~2=s(x1 X x2). Finally, we compare the result of 
the rewriting to the column for y and project on the result 
variable x. 

4.3 Limitations of the typed approach 

MA and MC are strictly typed formalisms. It is impossi- 
ble to define relations with columns containing expressions 
of different arities. However, we can give an example of a 
natural and simple query that seems to have the property 
that computing it really requires such untyped intermediate 
results: 

Theorem 4.6 Let R : I(l)] E M. Let q be the query of type 
WI defined f 11 as 0 0~3: given an instance K, q(K) is the set 
of expressions in K(R) that are of the form nl(. ..). This 
query is not definable in MA. 

The equivalence of MA with MC allonrs an elegant modei- 
theoretic proof of this theorem, which we sketch next. The 
A-expressions over a schema S form a structure (in the sense 
of mathematical logic [9]) consisting of the relation names 
in S as constants, the operators as functions, and the re- 
lations 5 (subexpression), rewrite-one, and rewrite-all. 
This structure is many-sorted: for example, we do not have 
one singIe function x but rather have a separate one xn,,,, 
of sort ((n), (m)) + (n f m) for all arities n and m. 

Now suppose, for the sake of contradiction, that there 
is an MC-formula ‘p defining the query Q from the theo- 
rem. Since the query is independent of the object-level in- 
stance we can as well assume that all object-level relations 
are empty. Hence, we may assume without loss of general- 
ity that y, neither uses data variables, object-level relation 
names, nor eval. 

So cp is essentially a first-order logic formula, evaluated 
over the above-described structure of A-expressions, call it 
E, expanded with a relation R of sort (1). Let la be strictly 
larger than the arity of any term occurring in cp. Then cp 
looks only at &]cn, the restriction of E to sorts (m) with 
m < n. 

Define the following function f on A-expressions e: f(e) 
is obtained from e by replacing each occurrence of a subex- 
pression of the form Al, where e’ is n-ary, by x2(e’)r and 
conversely, replacing each occurrence of a subexpression of 
the form x2($), where e’ is n-ary, by nr (e’). This function 
is an automorphiim of El<,. It maps al(P) to 7r2(Sn) and 
back, where S” stands for S x - - - x S (n times). 

Hence, on an instance in which R consists of the two ex- 
pressions ?rl(S”) and x2(S), the query defined by ‘p will ei- 
ther contain both expressions in the result, or none of them, 
since first-order logic formulas cannot distinguish between 
automorphic elements. This yields the desired contradic- 
tion, since 7r2(S”) is not of the form a~(. . .). 



6 Discussion 

We have presented typed query languages for databases that 
contain, besides ordinary data values, also queries. The- 
orem 46 offers the most challenging direction for further 
research, How can our formalism (in particular its type sys- 
tem) be generalized so that queries of the kind mentioned 
in the theorem become expressible, at the same time not 
giving up on type-safety of eval? 

Note that Theorem 4.6 may be compared to a similar sit- 
uation in the design of computationally complete query lan- 
guages, The language QL, proposed and studied by Chandra 
and Hare1 [5], is an adaptation of the relational algebra de- 
signed to work with “untyped” relations of variable width, to 
which a while-loop construct is added. QL is computation- 
ally complete. If, however, the ordinary “typed” relational 
algebra is extended with while-loops, one gets a language 
whose expressiveness remains within PSPACE [6, 21. 

Another situation to which Theorem 4.6 may be com- 
pnrcd to is that of the lambda calculus. Functions on the 
natural numbers, encoded as functions on Church numerals, 
arc typed, But again the computation of many such func- 
tions requires intermediate results that are untyped: in the 
untyped lambda calculus all partial recursive functions are 
dcfinablc, while in the simply-typed lambda calculus only a 
restricted class of functions, the so-called extended polyno- 
mials, are definable [3, 181. 

Two other obvious directions for further research left 
open by our work is (i) to experiment with how our model 
for typed meta database programming can be applied in 
practice; and (ii) to better understand the precise expres- 
sive power of MA. Concerning (i), it could be interesting to 
try to integrate our model into the SQL3 or OQL context. 
Concerning (ii), a concrete open problem is whether or not 
the query “give all expressions of maximal length stored in 
relation R” is expressible in MA. 

A natural direction for extending MA would be to al- 
low for data to be moved between the data columns and 
the expression columns of a relation. Such a functionality 
could be achieved by considering constant relations as ex- 
pressions, The. algebra could then be extended with a wrap 
operation for turning relations (or subrelations obtained by 
a group-by-like operation) into constant relations, and an 
Lnvcrso unwrap operation for extracting the contents of con- 
stant relations. The potential of this functionality has yet 
to be investigated. 
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Appendix 

We give simple illustrations of the semantic8 of the new 
operators of Md using the following example: Suppose 
S = {S : 2,T : 2,U : 2) and M = {R : [O, (4),0,(2)]}. 
Figure 1 shows an instance of R, followed by the results of 

1, extrocts,e(R), obtained by extracting from column 2 
all subcxpressions of arity 4; 

2. rewrite-ones,o,,s(R), obtained by rewriting every 
one occurrence of an expression from column 4 in col- 
umn 2 by S, 

3, reurito-allz,o,-ts(R), obtained by rewriting all oc- 
currences of an expression from column 4 in column 2 
simultaneously by S; and 

4. oval:!(R), obtained by evaluating the expressions in 
column 2 of R on the following instances of relation8 
S and T. 

*q-t? --q-F 

(Wr the purpose of this example there is no need to 
give an instance of U, since U does not occur in the 
second column of our example relation R.) 
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Instance of R 

oxtractz,r(R): 

a 

i 

i 

b 
C 

a cb2(S) x a1=2[T) 

I 1 
b al=.@ x 2’) U (S x S) 
C Tl,2,3,4u22=6n44=5(s x T x s x T) 

T 
u 
u 

Tu 

d T 

;Tu 

cn,s(S) x a1=2(T) 

cTl,4(S x T) u (S x S) 
c71=4(S x T) 
sxs 

rewrite-onez:o.,+s(R): 

a 01=2(S) x Ul=?(T) d T u4S) x u1,2(S) 
C 81,2,2,462=6u4=5(S X T x S x T) f T 70,2,3,4u2=6u4=5(s x s x s x T) 
C T~,2,3,@,2=6u4=5(S X T X S x T) f T Xl,2,3,4fl2=6u4=5(s x T x s x s) 

rewrite-allz;o,+s(R): 

a u1,2(S) x al=:!(T) d T ~14s) xu1=2(S) 
C n1,2,3,4&6u44=5(S X T x S x T) f T 7Q2,3,4u2=6’Y4=5@ x s x s x s) 

evalz(R): 

u~,n(S) x u1=2(T) 
u1=4(S x T) U (S x S) 
ul=c(S x T) U (S x S) 
ulx,(S x T) U (S x S) 
u1=4(~ x Tj u (s x sj 
u1=4(S x T) U (S x S) 
ul=4(S x T) U (S x S) 
Tl,2,3,4U22=6u4=5@ x T 
nl,2,3,4U22=6u44=5(s x T 

xSxT) 
xSxT) 

a 

e 
e 
e 
e 
e 
e 

T 
vu u u 
E 
T 
T 

T 
2 

2 

2 

2 

X 

X 

2 

2 

T 
Y 
X 

Y 
Y 
X 

2 

Y 
X 

U 

U 

U 

X 

1 
2 

2 

2 

u 

U 

F 
2 

X 

Y 
X 

Y 
2 

2 

2 

Figure 1: Examples of the novel MA operators. 
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