
Typed Query Languages for Databases Containing Queries*
(extended abstract)

Frank Nevent
Limburgs Universitair Centrum

fneven@luc.ac.be

Dirk Van Gucht
Indiana University

vgucht@cs.indiana.edu

Abstract

This paper introduces and studies the relational meta a1ge-
bra, a statically typed extension of the relational algebra to
nllow for m&a programming in databases. In this meta al-
gebra one can manipulate database relations involving not
only stored data values (as in classical relational databases)
but also stored relational algebra expressions. Topics dii-
cussed include modeling of advanced database applications
involving “procedural data”; desirability as well as limita-
tions of a strict typing discipline in this context; equivalence
with a first-order calculus; and global expressive power and
non-redundancy of the proposed formalism.

1 Introduction

Various advanced database systems, such as active and object-
orjcntcd systems, as well as the data dictionaries of &an-
dard relational database systems, provide the functionality
of “stored procedures”, The potential functionality of such
systems was already envisaged by Stonebraker and hi col-
laborators in the ’80s [20, 211. However, little work has
been done on formal models providing logical foundations
for such systems, Indeed, current systems approaches treat
stored procedures simply as string values. Only the special
cast of “schema querying” has received a significant amount
of attention (e.g., [7, 13)).

The purpose of the present paper is to contribute to-
wards these needed logical foundations, *by proposing and
studying an extension of the relational algebra to allow for
m&a programming, The proposed relationa! meta algebra,
dcnotcd by MA, extends the relational algebra with three
new operators for computing with relations in which not
only ordinary data values, but also relational algebra ex-
pressions can be stored. The first new operator is extract,
used to extract subexpressions from stored expressions. The
second is rewrite, used to rewrite subexpressions according

‘Work supported by NATO Collaborative Research Grant 960954.
tbmmrch Asaistant of the Fund for Scientific Research, Flanders.

Jan Van den Bussche
Limburgs Universitair Centrum

vdbuss@luc.ac.be

Gottfried Vossen
University of Miinster

vossen@uni-muenster.de

to certain patterns (as is familiar from algebraic query op-
timization).

The third and most important new operator of MA is
evdl, used to dynamically evaluate stored expressions. A
fundamental property one wants to achieve is type safety of
eval, in the sense that this dynamic evaluation never results
in a run-time error. To guarantee type safety, the operators
extract and rewrite are carefully calibrated so that they
preserve syntactical correctness and so that the type of the
expressions resulting from their manipulations is determined
statically.

The type system we put on MA is an adaptation of
the simple two-level type system discussed by Sheard and
Hook in the context of Meta-ML [19]. We type ordinary
relations by their width, type relational algebra expressions
by the type of their result relations, and type relations con-
taining relational algebra expressions by typing the columns
as containing either ordinary data values or expressions of
a designated type. Expressions of MA, f?nally, are again
typed by the type of their result relations (which may con-
tain expressions).

The contents of this paper are summarized as follows.
We begin by recalling the necessary definitions concerning
relational databases and relational algebra, and introduce
our extension of the relational database model to allow for
stored relational algebra expressions in relations (Section 2).
Then we introduce the operators of MA and give examples
of interesting queries definable in MA (Section 3).

After that, we investigate the expressive power of our for-
malism (Section 4). Specifically, we establish the following
resmts:

1. We present a many-sorted first-order calculus whose
%afe” fragment is equivalent to MA, thus extending
Codd’s classical theorem on the equivalence of rela-
tional algebra and calculus [B].’ This result is a gener-
alization of Ross’ [17], who worked in a model allowing
only relation names, not general algebra expressions,
to be stored in relations.

2. We illustrate an interesting limitation on the expres-
sive power of MA, due to its inherently typed nature:
there are computationally extremely simple queries,
well-typed at the input and output sides, which are
nevertheless not definable in MA, intuitively because

*Generalizations of Codd’s theorem to extensions of the relation
model have always been a popular research topic (e.g., [12, 14, 1. 10,

41).

189

their computation requires untyped intermediate re-
sults (which cannot be represented by an MA compu-
tation). The equivalence with the calculus allows an
clcgant mod&theoretic proof of this observation.

3, We show that MA is a conservative extension of the
relational algebra, in the sense that as far as queries
over ordinary relations (not containing stored expres-
sions) are concerned, MA is no more expressive than
the relational algebra.’

4, We give a rigorous proof of the intuitively clear fact
that oval is a primitive operator in MA: it cannot
bo simulated using the other operators. Thii stands in
contrast to the situation in a complete programming
language such as Lisp, where eval is clearly definable
in Lisp without eval and thus not primitive. (Also the
other operators of MA can be shown to be primitive.)

Tha paper concludes with a discussion in Section 5.
The present paper is a follow-up on an earlier paper by

thrco of u5 [24], There, we studied the expressive power
of evaluating stored relational algebra programs in a com-
plctcly untyped setting. Relational algebra programs were
oncodcd in data relations, and the standard operators of the
rolntional algebra were used to manipulate these “program
relations”, This approach resulted in a powerful, but dif-
ficult to ~90, query language called the reflective relational
algebra (Rd). Our main result was that by adding eval to
the relational algebra much more queries on classical rela-
tionnl databases become definable. Thii stands in contrast
to the conservative extension property of MA with respect
to A WC prove hero. In fact, our motivation for the work
rcportcd in this paper was the desire (i) to understand the
situation where typing and type safety are mandatory, and
(‘(foreign a formalism that is more programmer-friendly

2 Relations, expressions, and meta relations

2.1 Relational databases and relational algebra

Aasumo a sufficiently large supply of relation names is given,
where each relation name has an associated arity (a natural
number). To denote that relation name R has arity n we
write R : n. A database schema is a finite set of relation
names,

Assume further a universe V of data values is given. A
relation of arity n is a finite subset of V”. An instance of
a database schema S is a mapping Z on S which assigns to
each relation name R : n E S a relation Z(R) of arity n.

Fix a schema S. We denote the set of relational algebra
expressions over S by A. Each expression has an arity; as
for relation names, to denote that expression e has arity n
WC write e : n. Formally:

Each R : n E S is in A.

If cl : n and es : n are in A, then so are (er U e2) : n
and (cl - es) : n.

If et : nl and ee : ns are in d, then so is (ei x ee) :
m-t n2.

If e : n is in A, then so are

- a;=j(e) : n, where i,j E (1,. . . ,n); and

aAnnlogoue coneervativo extension properties are known for com-
plox object dntnbnacs [lo, 26, 221 and spatial databases [15].

- %l,...,i, (e) : p, where ii,. . . , iP E (1,. . . , n}.

Given an instance Z of S, an d-expression e : la over S
evaluates to a relation of arity n, which we denote by [e]‘,
in the well-known manner [23].

Example 2.1 Suppose S = {R : 2,s : 2). Consider the
d-expression e : 2 = nl,4a2=s(R x S) over S. For any in-
stance Z of S, which assigns concrete binary relations Z(R)
and Z(S) to R and S, the binary relation [e]’ equals the
composition of Z(R) and Z(S).

2.2 Extending the model

We want to extend the basic relational database model to
allow not only data values, but also d-expressions to be
stored in relations. Thereto, the simple type system based
on &ties has to be extended first:

Definition 2.2 A type is a tuple T = [ri,. . . , T,,], where
each Ti is either the symbol 0, or of the form (m), where
m is a natural number. In the first case, we say that i is
a data column of r; in the second case, we say that i is an
ezpression column of 7.

We can now define typed tupIes, and relations, contain-
ing expressions as follows:

Definition 2.3 Let S be a schema, and let r = [rr, . . . , T,,]

be a type. A tuple of type 7 over S is a tupIe (~1,. . . ,z,J,
such that for each i = 1,. . . , n:

l if pi is 0 then Zi is a data value (i.e., an element of V).

l if Ti is (m) then xi is an d-expression over S, of arity
Tn.

A relation of type T over S is a finite set of tuples of type r
over S.

Note that a relation of type [O,. . . ,0] (n zeros) is an
ordinary relation of arity n.

In the kind of systems we intend to model, there will
be two kinds of relations. Fist, we have ordinary relations
containing only data values; the schema consisting of the
names of these relations is called the object-level schema.
Second, we have relations containing both data values and
d-expressions over the object-level schema; the schema con-
sisting of the names of these relations is then called the
meta-leuel schema. Formally:

Definition 2.4 l A meta-level schema is a finite set of
relation names, where each relation name has an as-
sociated type. To denote that a relation name R has
type T we write R : T.

l Let M be a meta-level schema, and let S be a schema
disjoint from M (i.e., having no relation names in com-
mon). An instance of M over S is a mapping 9 on
M which assigns to each relation name R : T E M a
relation of type T over S. The pair (S,M) is called
a combined schema, in which S is referred to as the
object-level schema.

l Finally, an instance of a combined schema (S,M) is
simply the union of an instance of S and an instance
of M over S. We refer to such unions as combined
instances.

190

Example 2,G Let S bc the schema of some database which
IS quoricd by several users, such as that of a bookstore on the
Intcrnct, Queries arc represented as d-expressions over S.
Suppose WC want to monitor the usage made of the database
by the users. Then we may want to maintain a meta-level
rolatlon Log of type [Cl, (l)], containing pairs (ZL, q), where u
is a uscrnamc and 9 is a query u has posed. The expression
column (1) indicates that we focus on queries of arity 1; such
qucrics return unary relations (i.e., sets of data values; in an
Intcrnot bookstore this will be sets of book records). In this
slmplc example, the object-level schema is S; an instance of
S gives the concrete contents of the relations named in S.
The meta-lcvcl schema M contains Log (and possibly other
mota-lcvcl relation names); an instance of M over S gives
the concrctc contents of the relation Log (and possibly of
others),

3 The relational meta algebra

The relational algebra is a core language for defining queries
on ordinary instances. We now want to have a similar for-
malism for defining queries on combined instances.

First, note that the five operators of the relational al-
gebra can be canonically extended to work on meta-level
relations as well as on ordinary, object-level relations. For
instance, if R : [(3), (3)) is the name of a relation storing
pairs of expressions of arity 3, we can write CQ=~(R) to re-
trievc those pairs from R with identical first and second
components, However, the relational algebra operators do
not recognize stored expressions as such; they are treated as
abstract data values.

Hcncc, the five relational algebra operators are a good
start, but additional operators are needed. We propose three
new operators: extract, to extract subexpressions out of
stored expressions; rewrite, to rewrite (subexpressions of)
stored expressions; and eval, to dynamically evaluate stored
oxprcssions. Adding these three operators to the relational
algcbrs yields what we believe is the functionality one should
oxpcct from a core meta query language.

Syntax. WC now formally define the expressions of the
relational mcta algebra. Each expression has a type, derived
from that of its subexpressions; to denote that expression e
has type T wc write c : T.

Definition 3.1 Fix a combined schema (S,M). The set
MA of relational meta algebra expressions ouer (S,M) is
the smallest set satisfying:

1.

2.

3.

4,

G.

Each relation name S : n E S is in MA, and is of type
LO , . , , , 0) (72 zeros).

Each relation name R : T E M is in MA.

If cl : 7 and es : 7 are in MA, then so are (er U e2) : T
and (er - ~2) : 7.

Ifer:~andez:warcinMdwith~=[~r,...,~,,]and
w = [a,

..,,Wm 1.
,,.,w,,,], thensois(erxec):[rr ,..., rn,Wrr

If e : 7 is in MA with 7 = [or ,...,T,,], thenso are

l ai=j(e) : T, where i, j E (1,. . . ,n} such that 7; =
~j; and

l yr,y,,,.,,p(e) : [7il,. . . aTip], where ir,. . . ,i, E (1,

6. Fodeach d-expression e : n over S, (e) : [(n)] is in

7. Ife : T is in MA with 7 = [T~,...,T~] and a’is an
expression column3 of 7, then the following expressions
are also in MA:

l extracti,, : [TI,. . . ,T*, (m)], where m is a
natural number;

l rewrite-onei:,,s(e) and rewrite-a&,+(e),
both of type [or ,-eerTnrTi], where CY + ,S is a
rewrite de ouer S with respect to T (to be de-
fined shortly); and

l evali(e) : [TI,. . . ,c, 0,. . . , O] (4 zeros), where e
is given by Ti = (e).

Rewrite rules. To finish the above definition we need to
define the system of rewrite rules on which the rewrite op
erators are based. Thereto the classical notion of a term
rewrite rule [ll] must be adapted to our setting.

Let S be a schema and let T = [rr, . . . , TV] be a type. Let
c 5 {I,..., n) be the set of expression columns of T, and
for 3 E C let ej be given by rj = (ej).

Definition 3.2 A rewrite rule over S with respect to T is a
rule of the form a + p, where a and ,f!l are d-expressions of
the same arity, over the augmented schema SU{Oj] j E C}.
Here, each Oj is an ezpression uariable of arity 6.

An expression variable is formally nothing but a specially
reserved relation name of arity ei; intuitively it should be
thought of as a placeholder for subexpressions of arity ej.

Semantics of MA. In the context of a given combined
instance K: of (S, M), an MA-expression e : T over (S, M)
evaluates to a relation [elEc of type T. We only define I[elz
for cases 6 and 7 of Definition 3.1; the first 5 cases are com-
pletely analogous to the semantics of the standard relational
algebra.

0 [(e)]^: := {(e)}, for an d-expression e.

l [eXttracti,,(e)]K := ((21,. . . ,Zn,Z)] (21,. . . ,zn) E
[ejjEc and x is a subexpression of xi that is of arity

[rewrite-onei,,,B(e)] lc := {(Xl,. 1. ,xn,x) 1 (Xl,. . . ,
z,.,) E [elJK and z is obtained from xi by replacing one
occurrence of f(a) as a subexpression in 2; bv f(p)}.
Here f is the mapping on the-expression variables oc-
curring in the rewrite rule delined by f(Oj) := y.

[rewxite-dLli,,+i(e)j” . 1s defined similarly, but now
every occurrence of f(a) in 2; is replaced by f(P).

[ev&(e)jK :={(21,-..,2n,Yi,...,Yf) 1 (21,...,2~) E
[elK and (YI g - - - 9 Yf) E [G]*}*

So, an MA-expression e : T over (S,M) defines a mapping
[e] from the set of combined instances of (S,M) to the set
of relations of type T. Such a mapping is called a query over
(s, Ml of type T.

3Recall DeRnition 2.2 for the notion of expression column.
4By subezpression we mean direct and indirect ones. So the

subexpressions of 7r~,4uz1=3(R~ S) are the expression itself; q,3(Rx
S); R x S; R; and S.

191

Examples, We next illustrate the meta algebra by means
of two cxamplcs. Illustrations of the working of individ-
ual operators, complete with input and output, have been
placed in an Appendix,

The first example is an illustration of the kind of syntac-
tical manipulations on stored expressions that are possible.
The second illustrates the use of eval to interpret stored
expressions semantically.

Recall the m&a-level relation Log of type [O,(l)] from
Example 2,5. We want to compute the query Q of type
[(l), (4)] defined ss follows: given a combined instance lc,
g(X) is the set of all pairs (z,l~) such that z is a stored
expression in K(Log), i.e., x E [rr~(Log)]~, and y is a subex-
prcssion of a occurring at least twice in x. The naive attempt

is incorrect; to distinguish different occurrences of the same
subcxpression we have to mark them in some way. This can
be done using rewrite-one. Assume we have some dummy
relation name D E S of arity 0. An occurrence x of a subex-
prcssion can be marked by rewriting it into x x D. So if
mnrlc is the following MA-expression:

thon the wanted query q is defined by the MA-expression

~r,2crs+s6szsor=4(rnark x mark).

For the second example, assume for convenience that the
object-lcvcl schema consists of one single relation name S of
arity, say, 5. If we want to see for every user u the results
of all queries posed by u (as recorded in Log) evaluated on
the current instance, we simply write

nt,aevalz(Log).

Now suppose we arc given a meta-level relation U of type
[(5)] containing d-expressions to be interpreted as possible
new contents for relation S (the letter ‘U’ stands for ‘up-
dnte’). So given a combined instance K: each x E K(u)
stands for a potential update from K(S) to [xl’. Then we
may want to compute the query q of type [O,O, (5)] defined
as follows: q(K) is the set of all tuples (u,~,x) such that
v is in the result of a query posed by u, evaluated not on
K(S) but on its update as given by x. To do this we use the
rowrite-all operator as follows:

ar,s,seval4rewrite-al12:s+n3(Log X V).

4 Exprcsslve power of MA

In this section WC investigate the expressive power of our
formalism, Due to space limitations, proofs of theorems will
only be sketched.

4.1 Non-redundancy and conservative extension

A natural question to ask is whether MA is non-redundant,
he,, whcthcr each operator provided in MA is primitive (not
dcfinnblc using the other operators).

Theorem 4.1 MA is not redundant.

The most interesting case is that of eval, which is based
on tho following lemma (proof omitted):

Lemma 4.2 Assume every meta-level relation is of a type
hawing only expression columns. Then every MA-expression
that does not use evti is equivalent, up to reordering of
columq5 to a union of MA-ezpressions of the form el xez,
where el is an d-expression and es is an MA-expression of
a type having only expression columns.

To see how primitivity of evdl follows from this lemma,
let S = {S : 1) and M = {R : [(l)]}. Assume, for the sake of
contradiction, that the MA-expression neeval.1 (R), of type
[0], is expressible in MA without eval. Since its type has no
expression columns, by the lemma it then is even equivalent
to an d-expression, say e. Now take any instance K of S
such that X(S) # 0, and take the d-expression e’ := S - e.
Then [e]” # [d]“. Extend K: to a combined instance by
putting K(R) := ((e’)}. Then

[7r2evall(R)]” = [e’]” # [en”,

contradicting our assumption that e is equivalent to
mevall(R).

We omit the proofs of primitivity for extract and the
rewrite operators. Regarding primitivity of the five rela-
tional algebra operators: it is well known (e.g., [5]) that
each of them is primitive within A; of course this does not
automatically imply primitivity within MA. The latter fol-
lows nevertheless because we have the following conservative
extension property:

Theorem 4.3 Let S be a schema and let q be a query over
(S, 0) of type [0, . . . ,O] (n zeros). If q is definable in MA
then q is already definable in A.

To paraphrase, MA provides no power above that of
A if only classical queries not involving meta-level relations
are under consideration. The theorem can be proven by
observing that if there are only object-level relations, the
set of expressions that can appear in the evaluation of a
fixed MA-expression e on any instance is finite. Using this
observation, we can show that if the meta-level schema is
empty, evdl can be eliminated from MA-expressions. It
then suffices to apply Lemma 4.2.

4.2 An equivalent calculus

Codd’s classical theorem [s] says that the queries expressible
in the relational algebra are precisely the queries definable
in first-order logic (in this context referred to as the rela-
tional calculus). We next indicate how this equivalence can
be extended to the meta algebra by introducing MC, the
relational meta calculus.

Fix a combined schema (S,M). Our calculus uses two
kinds of variables: data variables and expression variables.
Data variables will range over V (the universe of data val-
ues). Expression variables were already used in the rewrite
rules of MA; they have an associated arity and range over
the d-expressions of that arity.

A term is either a data variable, in which case it is said
to be of sort 0, or an d-expression over the augmentation of
S with a finite set of expression variables, in which case it is
said to be of sort (n), where n is the arity of the expression.

Atomic formulas can be of one of the following forms:
S(Xl , . . . ,x,,), where S : n E S and each x; is a data vari-
able; R(tr , . . . , t,,), where R : [rl,. . . ,T,,] 6 M and each t,
is a term of sort T<i tr = t2 and tr 2 t2, where tl and te

‘Note that reordering of columns is expressible using projection.

192

arc terms of the same sort; rewrite-one(tl,t2,ts, t4) and
rowrito-oll(ti) t2, t3, td), where tl,, . . , t4 are terms such
that tl and t4 have the same sort, and t2 and t3 have the
same sort; oval(t, zr, , . .) zn), where t is a term of sort (n)
and 21, , , , , z,, are data variables.

P’orvnulas, finally, are built from atomic formulas in the
standnrd manner using Boolean connectives and quantifiers.
Tho set of all formulas is denoted by MC.

Given an MC-formula ‘p, a combined instance K of (S,
M), and a valuation p of the free variables of ‘p, the truth
of ‘p in K under p, denoted by K + cpb], is defined in the
standnrd way given the following semantics for the above
predicates: t$ 5 t2 means that tr is a subexpression of t2;
rowrito-ono(ti, t2, ts, t4), respectively rewrite-all(tl, t2, t3,
td), means that t4 is obtained from tl by replacing one, re-
spectively cvcry, occurrence of t2 in tl by t3; and eval(t, 51,
‘,,I mn) means that (%I,, , . , z~) is in the result of evaluating
tt

An MC-formula ‘p with free variables ~1,. . . , z,, of sorts
~1,~ . , , T,,, respectively, defines the query q of type [or, . . . ,T~]
d&cd by q(K) = {(&I), . . . ,~h)) I K I= cpbll. Of
COUrBC this is only well-defined if q(K) is finite for every K.
Howcvcr, a syntactical restriction called safety can be put
on MC-formulas such that finiteness is guaranteed. Our no-
tion of safety i8 a natural extension of the well-known notion
for the classsical relational calculus (see [23]) to our setting.

Specifically, we call an MC-formula safe if it does not
contain V; every variable is quantified only once; any sub-
formula of the form ‘p V 4 is such that y, and $ have the
same frco variables; and in any maximal conjunctive subfor-
mula, all free variables are limited. Here a variable is said to
be limited if it occurs in a conjunct of one of the following
forms:

R(. , ,), with R a relation name;

t1 = tz, where either all variables occurring in tl or all
in t2 are limited;

tl ,< t2, where all variables occurring in t2 are limited;

raurito-one(tr, t2, t3, t4) or rewrite-all(tr, t2, t3, t4),
where all variables occurring in tl, t2 and t3 are lim-
ited;

ovol(t, ~1,. , , , z,,), where all variables occurring in t
arc limited,

Example 4.4 Let R : [(l)] E M. Let 4 be the query of
type [(l)] defined as follows: given an instance Kc, q(K) is
the set of expressions in X(R) having a subexpression of
the form e U 8r@2=s(e X e’), where e is any expression of
arity 2 and c’ is any expression of arity 3. Such a ‘pattern
matching query” can be naturally defined by the following
safe MC-formula:

R(m) A (h)@‘+l u rl,4’-‘2,3(21 X z2) < z,

whore 2 is of sort (l), 2~~1 of sort (2), and 22 of sort (3). w

WC cstnblish:

Theorem 4.6 The class of queries definable in MA coin-
cides with the class of queries definable by safe MC-formulas.

To illustrate how this Theorem can be proven, we show
how the MC-formula from Example 4.4 can be translated
in MA, WC begin by “flattening” the formula a bit:

R(a) A @j/)(1/ < Z A (h)@$y = 21 u rl,4g2,3(21 X Z2)).

Note that x is limited by R(z); y is limited by y 5 2; and
~1 and x2 are limited by y = 21 u ~1,4~2,3(xl x X2). An
equivalent MA-expression is

Note how the order in which variables can be proven to
be limited determines the order in which the operators are
applied. Starting from R, which produces values for variable
x, we extract values for y, and from there we extract values
for x1 and x2. Then we rewrite the column for x1 into
xi U ,+,~2=s(x1 X x2). Finally, we compare the result of
the rewriting to the column for y and project on the result
variable x.

4.3 Limitations of the typed approach

MA and MC are strictly typed formalisms. It is impossi-
ble to define relations with columns containing expressions
of different arities. However, we can give an example of a
natural and simple query that seems to have the property
that computing it really requires such untyped intermediate
results:

Theorem 4.6 Let R : I(l)] E M. Let q be the query of type
WI defined f 11 as 0 0~3: given an instance K, q(K) is the set
of expressions in K(R) that are of the form nl(. ..). This
query is not definable in MA.

The equivalence of MA with MC allonrs an elegant modei-
theoretic proof of this theorem, which we sketch next. The
A-expressions over a schema S form a structure (in the sense
of mathematical logic [9]) consisting of the relation names
in S as constants, the operators as functions, and the re-
lations 5 (subexpression), rewrite-one, and rewrite-all.
This structure is many-sorted: for example, we do not have
one singIe function x but rather have a separate one xn,,,,
of sort ((n), (m)) + (n f m) for all arities n and m.

Now suppose, for the sake of contradiction, that there
is an MC-formula ‘p defining the query Q from the theo-
rem. Since the query is independent of the object-level in-
stance we can as well assume that all object-level relations
are empty. Hence, we may assume without loss of general-
ity that y, neither uses data variables, object-level relation
names, nor eval.

So cp is essentially a first-order logic formula, evaluated
over the above-described structure of A-expressions, call it
E, expanded with a relation R of sort (1). Let la be strictly
larger than the arity of any term occurring in cp. Then cp
looks only at &]cn, the restriction of E to sorts (m) with
m < n.

Define the following function f on A-expressions e: f(e)
is obtained from e by replacing each occurrence of a subex-
pression of the form Al, where e’ is n-ary, by x2(e’)r and
conversely, replacing each occurrence of a subexpression of
the form x2($), where e’ is n-ary, by nr (e’). This function
is an automorphiim of El<,. It maps al(P) to 7r2(Sn) and
back, where S” stands for S x - - - x S (n times).

Hence, on an instance in which R consists of the two ex-
pressions ?rl(S”) and x2(S), the query defined by ‘p will ei-
ther contain both expressions in the result, or none of them,
since first-order logic formulas cannot distinguish between
automorphic elements. This yields the desired contradic-
tion, since 7r2(S”) is not of the form a~(. . .).

6 Discussion

We have presented typed query languages for databases that
contain, besides ordinary data values, also queries. The-
orem 46 offers the most challenging direction for further
research, How can our formalism (in particular its type sys-
tem) be generalized so that queries of the kind mentioned
in the theorem become expressible, at the same time not
giving up on type-safety of eval?

Note that Theorem 4.6 may be compared to a similar sit-
uation in the design of computationally complete query lan-
guages, The language QL, proposed and studied by Chandra
and Hare1 [5], is an adaptation of the relational algebra de-
signed to work with “untyped” relations of variable width, to
which a while-loop construct is added. QL is computation-
ally complete. If, however, the ordinary “typed” relational
algebra is extended with while-loops, one gets a language
whose expressiveness remains within PSPACE [6, 21.

Another situation to which Theorem 4.6 may be com-
pnrcd to is that of the lambda calculus. Functions on the
natural numbers, encoded as functions on Church numerals,
arc typed, But again the computation of many such func-
tions requires intermediate results that are untyped: in the
untyped lambda calculus all partial recursive functions are
dcfinablc, while in the simply-typed lambda calculus only a
restricted class of functions, the so-called extended polyno-
mials, are definable [3, 181.

Two other obvious directions for further research left
open by our work is (i) to experiment with how our model
for typed meta database programming can be applied in
practice; and (ii) to better understand the precise expres-
sive power of MA. Concerning (i), it could be interesting to
try to integrate our model into the SQL3 or OQL context.
Concerning (ii), a concrete open problem is whether or not
the query “give all expressions of maximal length stored in
relation R” is expressible in MA.

A natural direction for extending MA would be to al-
low for data to be moved between the data columns and
the expression columns of a relation. Such a functionality
could be achieved by considering constant relations as ex-
pressions, The. algebra could then be extended with a wrap
operation for turning relations (or subrelations obtained by
a group-by-like operation) into constant relations, and an
Lnvcrso unwrap operation for extracting the contents of con-
stant relations. The potential of this functionality has yet
to be investigated.

Rcfcrenccs

PI

PI

PI

PI

S, Abiteboul and C. Beeri. On the power of languages
for the manipulation of complex objects. The VLDB
Journal, 4(4):727-794, 1995. Originally INRIA Re-
search Report 846, 1988.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Datatasea. Addison-Wesley, 1995.

HP. Barcndrcgt. The Lambda Calculus. North-Holland,
1984,

C, Beeri and T. Mile. On the power of algebras with re-
cursion. In Proceedings of the 1993 ACM SIGMOD In-
&nation Conference on Management of Data, volume
22:2 of SIGMOD Record, pages 377-386. ACM Press,
1993.

[51

[61

VI

PI

PI

PO1

WI

WI

[I31

P4

1151

P31

P71

P31

A. Chandra and D. Harel. Computable queries for re-
lational data bases. Journal of Computer and System
Sciences, 21(2):156-178, 1980.

A. Chandra and D. Harel. Structure and complexity
of relational queries. Journal of Computer and System
Sciences, 25:99-128, 1982.

W. Chen, M. Kifer, and D.S. Warren. HiLog: A foun-
dation for higher-order logic programming. Joum4l of
Logic Programming, 15(3):187-230, 1993.

E. Codd. Relational completeness of data base sublan-
guages. In R Rustin, editor, Data Base Systems, pages
65-98. Prentice-Hall, 1972.

H.B. Enderton. A Mathematical Introduction to Logic.
Academic Press, 1972.

M. Gyssens, J. Paredaens, and D. Van Gucht. A
grammar-based approach towards unifying hierarchical
data models. SIAM Journal on Computing, 23(6):1093-
1137,1994.

J.-W. Klop. Term rewriting systems: A tutorial. Bul-
letin of the EATCS, 32:143-183, 1987.

A. Klug. Equivalence of relational algebra and rela-
tional calculus query languages having aggregate func-
tions. Journal of the ACM, 29(3):699-717, 1982.

L.V.S. Lakshmanan, F. Sadri, and I.N. Subrama-
nian. On the logical foundations of schema integration
and evolution in heterogeneous database systems. In
S. Ceri, K. Tanaka, and S. Tsur, editors, Deductive and
Object-Oriented Databases, volume 760 of Lecture Notes
in Computer Science, pages 81-100. Springer-Verlag,
1993.

G. Ozsoyoglu, Z.M. Ozsoyoglu, and V. Matos. Extend-
ing reIationaI aIgebra and reIational calculus with set-
valued attributes and aggregate functions. ACM nana-
actions on Database Systems, 12(4):566-592, 1987.

J. Paredaens, J. Van den Bussche, and D. Van Gucht.
Towards a theory of spatial database queries. In Pro-
ceedings 13th ACM Symposium on Principles of Data-
base Systems, pages 279-288. ACM Press, 1994.

J. Paredaens and D. Van Gucht. Converting nested
algebra expressions into flat algebra expressions. ACM
‘Ikansactions on Database Systems, 17(1):65-93,1992.

K. Ross. Relations with relation names as arguments:
Algebra and calculus. In Proceedings 11 th ACM Sympo-
sium on Principles of Database Systems, pages 346-353,
1992.

H. Schwichtenberg. Definierbare Funktionen im X-
Kalkiil mit Typen. Arch. Math. Logik Grundlagen- _ - ~~- .
forsch., 17(3-4):113-114, 1975.

[19] T. Sheard and J. Hook. Type safe meta-programming.
Manuscript, Oregon Graduate Institute, 1994.

[20] M. Stonebraker et al. QUELL as a data type. In B. Yor-
mark, editor, Proceedings of SIGMOD 84 Annual Meet-
ing, volume 14:2 of SIGMOD Record, pages 208-214.
ACM Press, 1984.

194

PI

P21

WI

PI

PI

M, Stoncbrakcr et al. Extending a database system with
proccdurcs, ACM Transactions on Database Systems,
12(3):350-370, 1987.

D, Suciu, Bounded fixpoints for complex objects. The-
oretical Computer Science, 176(1-2):283-328, 1997.

J, Ullman, Principles of Database and Knowledge-Base
Systems, volume I. Computer Science Press, 1988.

J, Van den Bussche, D. Van Gucht, and G. Vossen. Re-
flcctivc programming in the relational algebra. Journal
of Computer and System Sciences, 52(3):537-549, June
1996,

L. Wong. Normal forms and conservative extension
propcrtics for query language8 over collection types.
Journal of Computer and System Sciences, 52(3):495-
GOG, 1996,

Appendix

We give simple illustrations of the semantic8 of the new
operators of Md using the following example: Suppose
S = {S : 2,T : 2,U : 2) and M = {R : [O, (4),0,(2)]}.
Figure 1 shows an instance of R, followed by the results of

1, extrocts,e(R), obtained by extracting from column 2
all subcxpressions of arity 4;

2. rewrite-ones,o,,s(R), obtained by rewriting every
one occurrence of an expression from column 4 in col-
umn 2 by S,

3, reurito-allz,o,-ts(R), obtained by rewriting all oc-
currences of an expression from column 4 in column 2
simultaneously by S; and

4. oval:!(R), obtained by evaluating the expressions in
column 2 of R on the following instances of relation8
S and T.

*q-t? --q-F

(Wr the purpose of this example there is no need to
give an instance of U, since U does not occur in the
second column of our example relation R.)

195

Instance of R

oxtractz,r(R):

a

i

i

b
C

a cb2(S) x a1=2[T)

I 1
b al=.@ x 2’) U (S x S)
C Tl,2,3,4u22=6n44=5(s x T x s x T)

T
u
u

Tu

d T

;Tu

cn,s(S) x a1=2(T)

cTl,4(S x T) u (S x S)
c71=4(S x T)
sxs

rewrite-onez:o.,+s(R):

a 01=2(S) x Ul=?(T) d T u4S) x u1,2(S)
C 81,2,2,462=6u4=5(S X T x S x T) f T 70,2,3,4u2=6u4=5(s x s x s x T)
C T~,2,3,@,2=6u4=5(S X T X S x T) f T Xl,2,3,4fl2=6u4=5(s x T x s x s)

rewrite-allz;o,+s(R):

a u1,2(S) x al=:!(T) d T ~14s) xu1=2(S)
C n1,2,3,4&6u44=5(S X T x S x T) f T 7Q2,3,4u2=6’Y4=5@ x s x s x s)

evalz(R):

u~,n(S) x u1=2(T)
u1=4(S x T) U (S x S)
ul=c(S x T) U (S x S)
ulx,(S x T) U (S x S)
u1=4(~ x Tj u (s x sj
u1=4(S x T) U (S x S)
ul=4(S x T) U (S x S)
Tl,2,3,4U22=6u4=5@ x T
nl,2,3,4U22=6u44=5(s x T

xSxT)
xSxT)

a

e
e
e
e
e
e

T
vu u u
E
T
T

T
2

2

2

2

X

X

2

2

T
Y
X

Y
Y
X

2

Y
X

U

U

U

X

1
2

2

2

u

U

F
2

X

Y
X

Y
2

2

2

Figure 1: Examples of the novel MA operators.

196

