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Abstract

The linear database model, in which semi-linear sets are the only geometric objects, has been
identi!ed as suitable for spatial database applications from both modeling expressiveness as
query e"ciency considerations. For querying linear databases, the language FO+linear has been
proposed. In this paper, we examine the expressiveness of this language. First, we present a list
of general queries expressible in FO + linear. In particular, we mention the dimension query,
which in turn allows us to express several other interesting linear queries. Next, we show the
non-expressibility in FO + linear of a whole class of linear queries that are related to sets not
de!nable by linear formulae, a result which demonstrates the need for more expressive linear
query languages. We present a method to extend FO+linear with operators in a sound way with
respect to the linear queries expressible in FO + poly, and argue its validity by comparing it to
another paradigm for enriching FO+linear. Whether any of the proposed extensions is complete
for the linear queries de!nable in FO + poly remains open. c© 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

A growing number of database applications require the ability to store and manip-
ulate besides alpha-numerical data (e.g., strings, numbers, and dates) also geometric
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data. Typical examples of such applications are geographic information systems (GIS),
geometric modeling systems (CAD), and temporal databases (see, e.g., [38, 43, 39]
for an overview). The traditional relational database model cannot provide a natu-
ral representation of geometric data and an easy way to express geometric computa-
tion in the query language [16, 24, 37]. For that reason, there is an ongoing search
for appropriate database models that can handle both alpha-numerical and geomet-
ric data. These database models are collectively known as spatial database
models.
Existing spatial database models can be divided roughly into two categories: datatype-

based models [3, 17, 25–29, 45] and constraint-based models [32, 33].
Datatype-based models extend the relational database model with a !xed set of

spatial data types, typically points, lines, and polygons. As a consequence, geometric
!gures are not treated as point sets, but as !nite compositions of points, lines, and
polygons. Since the number of spatial data types is !xed, these models are restricted
to geometric data in a Euclidean space of some !xed, generally low, dimension. Query
languages for datatype-based languages are essentially relational algebra extended with
a !xed set of geometric operators. In the implementations of these models, the data
structures to represent the di#erent data types are selected in such a way that the
various geometric operators can be computed as e"cient as possible using techniques
from computational geometry. While this approach guarantees very good performance
for several applications, the major drawback of datatype-based models is that there
is no single set of data types and geometric operators known to serve all purposes
well.
The constraint-based approach was !rst proposed in 1990 in the seminal work of

Kuper et al. [33]. Constraint-based models allow users to de!ne relational databases
which may, besides alpha-numerical values, contain constraints formulated as !rst-order
logic formulae of a certain type (e.g., polynomial constraints, linear constraints, or
dense-order constraints). Such formulae are !nite representations of geometric !gures
consisting of all points (in an appropriate Euclidean space) satisfying the formulae. In
contrast to the data-type-based approach, the constraint-based approach does not neces-
sitate to put an a priori bound on the dimension of the Euclidean space considered. A
natural query language to accompany these database models is the relational calculus
extended with the same class of constraints as used to represent the spatial data. The
validity of this approach follows from the fact that, for several classes of constraints,
!rst-order logic restricted to these constraints is decidable. This property holds, for in-
stance, for polynomial constraints and for linear constraints, because the corresponding
formulae can be replaced by equivalent, e#ectively computable quanti!er-free formu-
lae. In constraint-based models, both the representation and manipulation of the spatial
data is inherently declarative.
From a theoretical point of view, constraint-based models are preferable over datatype-

based models, since the former allow to study spatial databases and their properties
in a less ad-hoc and more uniform way than the latter. A lot of e#ort has gone into
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the study of the expressive power of database query languages based on linear and
polynomial constraints (e.g., [1, 2, 4, 5, 11, 13, 19, 22, 30, 35, 42, 44, 48–50]).
Looking at the constraint-based models from the implementational point of view,

all attention is focused on linear-constraint databases, as general polynomial-constraint
databases are not considered feasible. For linear-constraint databases, various imple-
mentation projects are on-going (e.g., [7–9, 20, 21]).
Since they are both interesting from a theoretical and an implementational point of

view, linear-constraint databases are the focus of this paper. More in particular, we
study the strengths and weaknesses of FO+ linear, !rst-order logic extended with lin-
ear constraints, the basic language of linear-constraint databases. Our contribution is
threefold:
1. We identify a collection of general queries expressible in FO+ linear, among which
several queries of a topological nature. In particular, we show that the dimension
query is expressible in FO+ linear, which in turn yields the expressibility of sev-
eral other important linear queries. To further illustrate the expressive power of
FO+ linear, we express convexity, parallelism, and orthogonality, as well as several
intricate linear queries on one-dimensional spatial databases.

2. We present a general theorem stating that the non-de!nability in FO+ linear of
certain sets of points can be lifted to the non-expressibility of closely related linear
queries. This theorem provides us with a technique to prove the inexpressibility of
linear queries in FO+ linear. Using this technique, we show that several important
concrete linear queries, indispensable in most spatial database applications, cannot
be computed in FO+ linear.

3. To remedy the shortcomings of FO+ linear, we present a technique to extend
FO+ linear with linear geometric operators in a sound way. (This is a non-trivial
matter, as naive extensions of FO+ linear easily yield non-linear languages.) The
new query languages thus obtained can be seen as a bridge between constraint-based
query languages and datatype-based query languages. We discuss the viability of the
paradigm we propose and compare it to another paradigm for enriching FO+ linear.
The paper is organized as follows. In Section 2, we review the polynomial and the

linear database model. In Section 3, we illustrate the expressiveness of FO+ linear by
exhibiting several practical, general-purpose queries which can be stated in FO+ linear.
In Section 4, we argue that FO+ linear is nevertheless not su"ciently expressive to
be regarded as a general-purpose query language for linear databases by establishing a
theorem that lifts the non-de!nability of certain point sets to the non-expressibility of
closely related linear queries. We exhibit several examples of important linear queries
which are proven to be inexpressible in FO+ linear using the above-mentioned theorem.
In Section 5, we remedy the shortcomings of FO+ linear by providing a method to
extend FO+ linear with linear geometric operators in a sound way. We exhibit an
example of such an extended language, and link it with related work on methods
to extend FO+ linear. In Section 6, !nally, we conclude this paper by stating some
problems that remain open.
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2. Constraint-based database models

In this section, we provide the necessary background of the polynomial and linear
database models [33]. In particular, we explain the notion of query in the context of
these database models. We de!ne two natural query languages, called FO+poly and
FO+ linear, for the polynomial and the linear database model, respectively. Since the
linear database model is a submodel of the polynomial database model, we start with
the latter.

2.1. The polynomial database model

First, we de!ne a real formula as a well-formed !rst-order logic formula built from
polynomial equations and inequalities with real algebraic 2 coe"cients over the real
variables x1; x2; x3; : : : , i.e.,
• if p and q are polynomials with real algebraic coe"cients over the variables x1; : : : ;

xn, then p ! q, with ! in {=;¡;¿;6;¿; !=}, is a real formula with free variables
x1; : : : ; xn;

• if ’ and  are real formulae with free variables free(’) and free( ), respectively,
then ’∧  , ’∨  , and ¬’ are real formulae with free variables free(’) ∪ free( );
and

• if x is a real variable and ’ is a real formula with free variables free(’), then (∃x)’
is a real formula with free variables free(’)− {x}.

Every real formula ’(x1; : : : ; xn), with n free variables, x1; : : : ; xn, de!nes a point set

{(u1; : : : ; un)∈Rn |’(u1; : : : ; un)}

in n-dimensional Euclidean space Rn in the standard manner. Point sets de!ned by real
formulae are called semi-algebraic sets.
For convenience, we shall frequently use vector notation in real formulae. Atoms

involving vector notation must be interpreted coordinate-wise. Consequently, ¬(x= 0)
indicates that x is not the origin of the coordinate system, whereas x != 0 denotes
that none of the coordinates of x equals 0. For x=(x1; : : : ; xn) and y=(y1; : : : ; yn), the
product x:y equals x1y1 + · · · + xnyn. As usual, ’⇒  ; ’ ⇔  , and (∀x)’ will be
used as abbreviations for ¬’∨  , (’⇒  )∧ ( ⇒’), and ¬(∃x)¬’, respectively. We
use the customary precedence rules for omitting parentheses.
In the polynomial database model, the only geometric data under consideration

are semi-algebraic sets. By de!nition, semi-algebraic sets are !nitely representable by
means of real formulae. It must be noted that several real formulae can represent the
same semi-algebraic set, as illustrated by the following example.

2 Real formula can also be de!ned by requiring the coe"cients to be integers or rationals, without changing
their de!ning power.
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Example 2.1. The two real formulae
• (∃x3)(∃x4)(x23 + x24 = 100 ∧ (x3 − x1)2 + (x4 − x2)2¡1) and
• x21 + x22¿81 ∧ x21 + x22¡121
de!ne the same area in the plane, namely an open annulus with inner radius 9 and
outer radius 11.

By the quanti!er-elimination theorem of Tarski [46], it is always possible to represent
a semi-algebraic set by a quanti!er-free formula. The same theorem also guarantees
decidability of the equivalence of two real formulae and decidability of membership
of a semi-algebraic set.
In essence, the polynomial database model is an extension of the relational database

model in which a relation, besides columns that store values of non-spatial data types,
can have one extra column of spatial type. In the spatial column, (!nitely representable)
real formulae are stored, which represent (possibly in!nite) point sets, which may be
unbounded. In the next two paragraphs, we give the formal de!nitions.
A polynomial database scheme, S, is a !nite set of relation names. We associate

with each relation name, R, a type which is a pair of natural numbers, [m; n], where m
denotes the number of non-spatial columns and n the dimension of the single spatial
column of R. A database scheme has type [m1; n1; : : : ;mk; nk ] if the scheme consists
of relation names, R1; : : : ; Rk , respectively of type [m1; n1]; : : : ; [mk; nk ]. A syntactic
relation of type [m; n] is a !nite set of tuples of the form

(v1; : : : ; vm;’(x1; : : : ; xn))

with v1; : : : ; vm non-spatial values of some domain, D, and ’(x1; : : : ; xn) a real formula
with n free variables. A syntactic database instance is a mapping, I, assigning to
each relation name, R, of a scheme, S, a syntactic relation I(R) of the same type.
Given a syntactic relation, r, the semantic relation I(r) is de!ned as

⋃

t∈r
({(t:v1; : : : ; t:vm)}× {(u1; : : : ; un)∈Rn | t:’(u1; : : : ; un)}):

This subset of Dm × Rn can be interpreted as a possibly in!nite (m+ n)-ary relation,
called semantic relation, the tuples of which are called semantic tuples. The semantics
of a syntactic database instance, I, over a database scheme, S, is the mapping, I ,
assigning to each relation name, R, in S the semantic relation I(I(R)).
If in the type of the above database scheme S (relation name R) m1; : : : ; mk (m)

equal(s) 0, then the database (relation) concerned is called purely spatial. While in
practical applications, spatial data will almost always be linked to non-spatial data, the
presence of non-spatial does not add anything signi!cant to the theoretical development,
but does make the exposition more complicated. For this reason, we shall often restrict
ourselves to purely spatial databases in the sequel.
In non-spatial database theory, a query is usually de!ned as a mapping from databases

to databases which (i) is computable and (ii) satis!es some regularity condition, usually
referred to as genericity [10, 31].
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In spatial models such as the polynomial database model, the picture is somewhat
more complicated, since queries can be viewed both at the syntactic level and the
semantic level. The rami!cations of this duality were discussed at length by Paredaens
et al. [41]. Therefore, we shall only summarize their main conclusions here:
1. Given an input scheme Sin and a output scheme Sout, a query is a mapping of
the polynomial spatial database instances of Sin to the polynomial spatial database
instances of Sout, both at the syntatic and the semantic level.

2. At the syntactic level, a query must be partially recursive.
3. At the semantic level, a query must satisfy certain genericity conditions.
We shall not elaborate on the nature of the above-mentioned genericity conditions as
this issue is not within the scope of the present paper.
We associate with every query the type

[m1; n1; : : : ;mk; nk ]→ [m; n];

with [m1; n1; : : : ;mk; nk ] the type of the input database scheme and [m; n] the type of
the output relation.
If m1; : : : ; mk and m all equal 0, the query is called purely spatial. As will be the case

for databases and relations, we shall often restrict ourselves to purely spatial queries
in the sequel.
Queries of type [m1; n1; : : : ;mk; nk ]→ [0; 0] can be interpreted as Boolean queries,

as the only relations of type [0; 0] are the empty relation, which can be interpreted as
false, and the singleton relation containing the 0-ary tuple (), which can be interpreted
as true.
The most natural query language accompanying the polynomial data model is ob-

tained by adding to the language of the real formulae the following:
1. a totally ordered in!nite set of variables, called non-spatial variables, disjoint from
the set of real variables;

2. atomic formulae of the form R(v1; : : : ; vn; x1; : : : ; xm), with R a relation name of type
[n; m], v1; : : : ; vn non-spatial variables, and x1; : : : ; xm real variables; and

3. atomic formulae of the form v1 = v2, with v1 and v2 non-spatial variables;
4. existential (and universal) quanti!cation of non-spatial variables.
In the literature, this query language is commonly known as FO+poly.

Example 2.2. Assume a relation Lives of type [1; 2] that contains tuples of persons
with their home coordinates. A (simple) query on this relation is Give the pairs of
all people that live exactly at a distance of 10 from each other. This query of type
[1; 2]→ [2; 0] can be expressed as

{(p1; p2) | (∃x1)(∃x2)(∃y1)(∃y2)(Lives(p1; x1; y1) ∧ Lives(p2; x2; y2)
∧(x1 − x2)2 + (y1 − y2)2 = 100}

in FO+poly.
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Due to the existence of quanti!er elimination algorithms for real formula, every
FO+poly query is e#ectively computable, and returns a polynomial output upon a
polynomial input [33].

2.2. The linear database model

We next introduce the linear database model, which is a restriction of the polynomial
database model in which only linear polynomial constraints are allowed. Real formulae
only containing linear polynomials, i.e., polynomials of the form a0 +a1x1 + · · ·+anxn,
with a0; a1; : : : ; an real algebraic coe"cients and x1; : : : ; xn real variables, are called
linear formulae. 3 Point sets de!ned by linear formulae are called semi-linear sets.
G$unther [23] introduced polyhedral chains as a representation scheme for geometric

data. A polyhedral chain in a Euclidean space (of arbitrary dimension) is de!ned as
a !nite sum of cells each of which is a !nite intersection of half-spaces. As is well-
known, half-spaces can be described in terms of linear inequalities. Furthermore, the
Boolean operators negation, conjunction, and disjunction occurring in linear formulae
can be interpreted as the set operations complementation, union, and intersection, and
existential quanti!cation can be interpreted as geometric projection. Therefore, it is
easy to see that semi-linear sets and polyhedral chains de!ne the same class of geo-
metric !gures. Bounded semi-linear sets can be characterized as !nite unions of open
polytopes. 4 From this perspective, it follows that semi-linear sets cover all popular
two- and three-dimensional spatial data types in existing models.
The linear database model is de!ned in the same way as the polynomial database

model above using linear formulae instead of real formulae.

Example 2.3. The example in Fig. 1 shows a linear database of type [1; 2; 1; 2; 1; 2]
representing geographic information about Belgium.

Analogous to polynomial queries, linear queries are de!ned as mappings between
linear databases that are well-de!ned both at the syntactic and the semantic level.
Notice that all Boolean queries, when restricted to linear inputs, are linear.
A very straightforward linear query language for the linear spatial database model,

called FO+ linear, is obtained by restricting the real formulae in FO+poly to linear
formulae. Using simple algebraic computational techniques for the elimination of vari-
ables in sets of linear equations and inequalities [36], it follows that every FO+ linear
query does indeed return a linear ouput upon a linear input.

3 Linear formulae can also be de!ned by requiring the coe"cients to be integers or, equivalently, rationals.
Linear formula de!ned in the latter way have stricly less de!ning power, although the di#erence is not of
practical importance. (This issue was discussed at length by Dumortier and the present authors [13].) Here,
we do not elaborate on this issue and make the choice which is most suitable for our purposes.
4 A polytope in a Euclidean space is de!ned as the convex closure of a non-empty set of points in

that space. The convex closure of a set of points of a Euclidean space is its smallest convex superset. An
open polytope is the topological interior of a polytope with respect to the smallest subspace containing the
polytope. In two-dimensional space, for instance, the open polytopes are points, open line segments, and
open convex regions.
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Regions
Name Geometry
Brussels (y613)∧ (x611)∧ (y¿12)∧ (x¿10)
Flanders (y617)∧ (5x − y678)∧ (x − 14y6− 150)∧ (x + y¿45)

∧ (3x − 4y¿− 53)∧ (¬((y613)∧ (x611)∧ (y¿12)∧ (x¿10)))
Walloon Region ((x − 14y¿− 150)∧ (y612)∧ (19x + 7y6375)∧ (x − 2y615)

∧ (5x + 4y¿89)∧ (x¿13))∨ ((−x + 3y¿5)∧ (x + y¿45)
∧ (x − 14y¿−150)∧ (x¿13))

Cities
Name Geometry
Antwerp (x=10)∧ (y=16)
Bastogne (x=19)∧ (y=6)
Bruges (x=5)∧ (y=16)
Brussels (2x=20)∧ (2y=25)
Charleroi (x=10)∧ (y=8)
Hasselt (x=16)∧ (y=14)
Li%ege (x=17)∧ (y=11)

Rivers
Name Geometry
Meuse ((y617)∧ (5x − y678)∧ (y¿12))

∨ ((y612)∧ (x − y=6)∧ (y¿11))
∨ ((y611)∧ (x − 2y=−5)∧ (y¿9))
∨ ((y69)∧ (x=13)∧ (y¿6))

Scheldt ((y617)∧ (x + y=26)∧ (y¿16))
∨ ((y616)∧ (2x − y=4)∧ (y¿14))
∨ ((x69)∧ (x¿7)∧ (y=14))
∨ ((y614)∧ (−3x + 2y=7)∧ (y¿11))
∨ ((y611)∧ (2x + y=21)∧ (y¿9))

Fig. 1. Example of a (linear) spatial database.
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Example 2.4. An example of a (very simple) linear query on the database in Example
2.3 is Find all cities to the north of Brussels that lie on a river, and give their names
and the names of the rivers they lie on. This query of type [1; 2; 1; 2; 1; 2] → [2; 0]
can be expressed as

{(c; r) | (∃x)(∃y)(∃xB)(∃yB)(Cities(c; x; y) ∧ Rivers(r; x; y))
∧Cities(Brussels; xB; yB)∧ x¿xB}

in FO + linear.

3. Expressiveness of FO+linear

In this section, we present a list of fundamental queries of topological or geometric
nature expressible in FO+ linear. To simplify the presentation, we only consider purely
spatial queries. In the queries written out explicitly, below, S is assumed to be a relation
name in the input database, which can be interpreted as representing of semi-linear set
of a Euclidean space Rn.
To start, we observe that set operations such as union, intersection, di#erence, com-

plement, and projection can be expressed straightforwardly in FO+ linear.
Several basic queries of topological nature can also be expressed in FO+ linear:

Proposition 3.1. Let S be a semi-linear set of Rn. The linear queries respectively re-
turning the topological interior; closure; and boundary; can be expressed in FO+ linear.

Proof. The FO+ linear formula

(∃”)(”¿ 0∧ (∀y)(−”;¡y− x¡ ”⇒ S(y)))

expresses the query returning the topological interior of S. Similarly, the FO+ linear
formula

(∀”)(”¿ 0⇒ (∃y)(S(y)∧ − ”¡y− x¡ ”))

expresses the query returning the topological closure of S. The topological boundary
of S can be computed as the di#erence of the topological closure and the topological
interior.

Egenhofer et al. showed in a series of papers [14, 15, 18] that a whole class of
topological relationships in the two-dimensional plane, such as disjoint, in, contained,
overlap, touch, equal, and covered, can be de!ned in terms of intersections between
the boundary, interior, and complement of the geometric objects. Hence all these rela-
tionships are also expressible in FO+ linear.
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Furthermore, the regularization of a semi-linear set, de!ned as the closure of its
interior, 5 can be computed in FO+ linear, which is of importance, since the regularized
set operators turn out to be indispensable in most spatial database applications [24, 34].
Finiteness and boundedness are also decidable in FO+ linear.

Proposition 3.2. Let S be a semi-linear set of Rn. The Boolean query deciding
whether S is !nite can be expressed in FO+ linear.

Proof. The FO+ linear formula

(∀x)(S(x)⇒ (∃”)(”¿ 0∧¬(∃y)(S(y)∧¬(y= x)∧ − ”¡ y− x¡ ”)))

expresses the query deciding whether S consists of isolated points only. For semi-
algebraic sets, whence a fortiori for semi-linear sets, this is equivalent to S being
!nite [6].

Observe that, if in the FO+ linear formula in the proof of Proposition 3.2 the !rst
two quanti!ers are swapped, the resulting FO+ linear formula expresses the query
deciding whether S is discrete in the sense that S has no adherence points. For semi-
algebraic sets, whence for semi-linear sets, this property is also equivalent to S being
!nite, however.

Proposition 3.3. Let S be a semi-linear set of Rn. The Boolean query deciding
whether S is bounded can be expressed in FO+ linear.

Proof. The FO+ linear formula

(∃”)(”¡ 0∧ (∀x)(∀y)(S(x)∧ S(y)⇒ −”¡ y− x¡ ”))

expresses the query deciding whether S is bounded.

An important property of geometric objects which plays a key role in many spatial
database applications is dimension. For instance, Clementini et al. [12] use dimension
to further re!ne the class of topological relationships de!ned by Egenhofer et al.,
discussed above.

De!nition 3.4. The dimension of a non-empty semi-linear set S of Rn is the maximum
value of d for which there exists a d-dimensional open cube fully contained in S. The
dimension of the empty set equals −1.

We show that it can be decided in FO+ linear whether a given semi-linear set has
a given number as its dimension.

5 Intuitively, a regular set has no dangling or isolated boundary points.
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Theorem 3.5. The predicate dimn(S; d); in which S is a semi-linear set of Rn and d
a number; and which evaluates to true if the dimension of S equals d; can be de!ned
in FO+ linear.

Given a Euclidean space Rn, there are only !nitely many values to consider for the
dimension of a semi-linear set in that space, namely −1; 0; : : : ; n. Hence, the dimension
of a semi-linear set in a given space can actually be computed in FO+ linear.
The correctness of Theorem 3.5 follows from !ve lemmas we present next.

Notation 3.6. Let S be a semi-linear set of Rn; n¿1. Then "i(S) denotes the semi-
linear set

{(x1; : : : ; xi−1; xi+1; : : : ; xn) | (∃xi)S(x1; : : : ; xi−1; xi; xi+1; : : : ; xn)}

of Rn−1, i.e., the orthogonal projection of S onto the ith coordinate hyperplane of Rn.

Obviously, the following is true:

Lemma 3.7. Let S be a non-empty d-dimensional semi-linear set of Rn; n¿1. Then;
for 16i6n; "i(S) is a non-empty semi-linear set of Rn−1 of dimension at most
max(d; n− 1).

We now show that, if d¡n, at least one projection of S preserves the dimension.

Lemma 3.8. Let S be a non-empty d-dimensional semi-linear set of Rn; n¿1. If
d¡n; then there exists i; 16i6n; such that the dimension of "i(S) equals d.

Proof. Since S has dimension d, there exists a d-dimensional open cube C fully con-
tained in S. Let p; r1; : : : ; rd be points in C such that the vectors 6 pr1; : : : ; prd are
linearly independent. Let e1; : : : ; en be the unit coordinate vectors of Rn. Since d¡n,
there exists i; 16i6n, such that ei is not a linear combination of pr1; : : : ; prd.
Clearly, "i(C) is convex and open within Rn−1, because C is convex and open

within Rn. Let q; s1; : : : ; sd be the orthogonal projections on the ith coordinate hyper-
plane of p; r1; : : : ; rd, respectively.
We next show that qs1; : : : ; qsd are linearly independent. Let #1; : : : ; #d be real num-

bers for which #1qs1 + · · · + #dqsd= 0. Let u be the unique point of Rn for which
pu= #1pr1 + · · · + #dprd. By the linearity of projection, "i(pu)= 0, whence pu is a
multiple of ei. By choice of i, this multiple cannot be non-zero. Hence pu= 0. From
the linear independence of pr1; : : : ; prd, it then follows that #1 = · · · = #d=0. Thus,
qs1; : : : ; qsd are linearly independent.
Clearly, "i(C), an open convex subset of Rn−1 containing d+1 points, q; s1; : : : ; sd,

such that qs1; : : : ; qsd are linearly independent, contains a d-dimensional open cube.

6 For a and b in Rn; ab is de!ned as b− a.
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Since "i(S), which contains "i(C), cannot contain an open cube of a strictly larger
dimension, we have e#ectively shown that "i(S) is d-dimensional.

Lemma 3.9. The predicate empty(S); in which S is a semi-linear set of Rn; and which
evaluates to true if S is the empty relation, can be de!ned in FO+ linear.

Proof. The FO+ linear formula ¬(∃x)S(x) de!nes the predicate empty(S).

Lemma 3.10. The predicate maxdim(S); in which S is a semi-linear set of Rn; and
which evaluates to true if the dimension of S equals n; can be de!ned in FO+ linear.

Proof. The FO+ linear formula (∃x)(∃”)(” ¿ 0 ∧ (∀y)(−”¡y−x¡ ” ⇒ S(y))) ex-
presses that S contains an open cube of maximal dimension.

Lemma 3.11. The predicate max(d; d1; : : : ; dn); n¿1; which evaluates to true if d is
the maximum value of d1; : : : ; dn; can be de!ned in FO+ linear.

Proof. The FO+ linear formula (d=d1 ∨ · · · ∨d=dn)∧d¿d1 ∧ · · · ∧d¿dn

expresses that d is the maximum value of d1; : : : ; dn.

We are now ready to give the proof of Theorem 3.5.

Proof of Theorem 3.5. The FO+ linear formulae de!ning the predicates dimn(S; d)
are obtained inductively.
By Lemmas 3.7, 3.9, and 3.10, the FO+ linear formula

(d= − 1 ∧ empty(S)) ∨ (d=0 ∧ ¬empty(S))

clearly expresses dim0(S; d) in R0, the zero-dimensional Euclidean space, which con-
sists of a single point.
Assume now that, for 06k¡n, an FO+ linear formula expressing dimk(S; d) in

Rk has been obtained. Then, by the induction hypothesis and Lemmas 3.7–3.11, the
FO+ linear formula

(d= n ∧maxdim(S)) ∨ (¬maxdim(S)
∧ dimn−1("1(S); d1) ∧ · · · ∧ dimn−1("n(S); dn) ∧max(d; d1; : : : ; dn))

expresses dimn(S; d) in Rn.

In many real-world situations, semi-linear sets contain parts of which the “local”
dimension is strictly lower than the overall dimension.

De!nition 3.12. Let S be a semi-linear set of Rn, and let 06k6n. If p is a point
of S, then S has local dimension k at p if k is the smallest number such that, for
each neighborhood V of p in Rn; S ∩V has dimension at least k. The k-dimensional
component of S is the set of all points of S in which S has local dimension k.
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Fig. 2. A semi-linear set with non-empty zero-, one-, and three-dimensional components.

Example 3.13. Consider the three-dimensional semi-linear set displayed in Fig. 2, con-
sisting of a closed, !lled cube, to which a closed line segment is attached, and an
isolated point. Its three-dimensional component is the closed, !lled cube; the two-
dimensional component is empty; its one-dimensional component is the attached line
segment, open at the point (3; 1; 0) and closed at the point (5; 1; 0); and its 0-dimensional
component is the singleton set consisting of the point (5; 5; 0).

Theorem 3.5 now immediately yields the following corollary:

Corollary 3.14. Let S be a semi-linear set of Rn; let p be a point of Rn; and let
06k6n.
1: The predicate dimn(S; p; k); which evaluates to true if p is in S and the local
dimension of S at p equals k; can be de!ned in FO+ linear.

2: The query returning the k-dimensional component of S can be expressed in
FO+ linear.

From Corollary 3.14, it further follows that the k-dimensional component of a semi-
linear set is in turn semi-linear.
In many of the ensuing problems, the expressibility of the dimension and local-

dimension predicates will be used to construct an FO+ linear formula computing the
corresponding linear query.
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Clearly, the non-empty k-dimensional components of a semi-linear set S of Rn; 06k
6n, form a partition of S. In other work [13], Dumortier and the present authors
proposed a slightly di#erent decomposition of a semi-linear set in layers of di#erent
dimensions, based on the notion of regular point. Using this decomposition method, it
is possible to compute in FO+ linear the corner points and the wire-frame of a polygon
in three-dimensional space, both important queries in 3D computer graphics.
We now turn to queries of a geometric nature.
First, we observe that any a"ne transformation (which includes translations, scalings,

rotations, re&ections, and compositions thereof) of semi-linear sets can be expressed in
FO+ linear.
We next show that the Boolean query deciding whether a semi-linear set is convex

can be de!ned in FO+ linear.

Theorem 3.15. The predicate convex(S); in which S is a semi-linear set of Rn; and
which evaluates to true if S is convex; can be de!ned in FO+ linear.

Proof. We prove that the FO+ linear formula

(∀x)(∀y)(S(x)∧ S(y)⇒ (∃z)(2z= x+ y∧ S(z)))

de!nes the predicate convex(S).
In words, the above formula states that, for each pair of points in S, the mid-point

is also in S. Clearly, if S is convex, then S satis!es the above FO+ linear formula.
Thus suppose, conversely, that S satis!es the above FO+ linear formula. To prove
that S is convex, we must show that, for arbitrary points p and q in S, the (open) line
segment I connecting p and q is contained in S. Because of the property expressed
by the above FO+ linear formula, all points kp+ (1− k)q, with k a dyadic number 7

between 0 and 1, are in S. Hence, S ∩ I is dense in I . Consequently, I − S, which
is also a semi-linear whence a semi-algebraic set, is zero-dimensional, and, therefore,
!nite [6]. A point in I − S, however, would necessarily be the mid-point of (in!nitely
many) pairs of points of S ∩ I , a contradiction. Thus, I − S is empty, or I is contained
in S.

Thus, we have shown that a semi-linear set is convex if it is closed under taking
mid-points. A property of the same kind as the latter one is point symmetry. Clearly,
the property that a semi-linear set S of Rn is symmetric with respect to the point p of
Rn can also be expressed in FO+ linear, more speci!cally by the sentence

(∀x)(S(x)⇒ (∃y)(y=2p− x∧ S(y))):

The expressibility of point symmetry in FO+ linear can be used to prove the following
result.

7 A dyadic number is a !nite sum of (positive and negative) integer powers of 2.
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Proposition 3.16. Let S be a semi-linear set of Rn. The Boolean query deciding
whether S is an a"ne subspace 8 of Rn can be expressed in FO+ linear.

Proof. We show that S is an a"ne subspace of Rn if and only if S is symmetric with
respect to each of its points; since point symmetry is expressible in FO+ linear, the
result then immediately follows.
Clearly, each a"ne subspace of Rn is symmetric with respect to each of its points.
Thus suppose, conversely, that S is symmetric with respect to each of its points. If S

consists of a single point, then, clearly, S is an a"ne subspace of Rn. Otherwise, let
p and q be arbitrary but di#erent points of S, and let L be the line through p and q.
To show that S is an a"ne subspace of Rn, we must prove that L is fully contained
in S.
Consider S ∩L, and assume that S ∩L !=L. Since a semi-algebraic set, whence a

fortiori a semi-linear set, can only contain a !nite number of connected components [6],
S ∩L must be the disjoint union of a !nite number of isolated points, non-degenerated
intervals, and half-lines. Since S (whence S ∩L) is symmetric with respect to each of
its points, non-degenerated intervals and half-lines cannot occur in this disjoint union,
whence S ∩L is a !nite set of (at least two) isolated points. Clearly, S ∩L is not point-
symmetric with respect to any of its two “outermost” points (which, more formally,
are the end points of the interval obtained by taking the convex closure of S ∩L), a
contradiction with our initial assumption. Thus, S ∩L=L, whence L is fully contained
in S.

By combining Proposition 3.16 with the expressibility of the dimension predicate
(Theorem 3.5), we immediately obtain that the Boolean query deciding whether a semi-
linear set is a k-dimensional a"ne subspace, 06k6n, is expressible in FO+ linear.
From the proof of Proposition 3.16, we conclude that requiring a semi-linear set to

be globally symmetric with respect to each of its points is a very strong condition.
It is, however, also possible to require a semi-linear set to be locally symmetric (i.e.,
within some neighborhood) with respect to each of its points, which leads to the next
result.

Proposition 3.17. Let S be a semi-linear set of Rn. The Boolean query deciding
whether S is a !nite union of a"ne subspaces of Rn can be expressed in FO+ linear.

Proof. We show that S is a !nite union of a"ne subspaces of Rn if and only if S is
topologically closed (Proposition 3.1) and locally symmetric with respect to each of its

8 An a"ne subspace of Rn is a translation of a linear subspace of Rn. A linear subspace of Rn is a
subset of Rn that is closed under vector addition and scalings. For example, the linear subspaces of R3 are
the origin 0 of the canonical coordinate system, all lines of R3 through 0, all planes of R3 through 0, and
R3 itself. Hence, the a"ne subspaces of R3 are all points of R3; all lines of R3; all planes of R3; and R3
itself.
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points; i.e.; satis!es the FO+ linear sentence

(∀p)(S(p)⇒ (∃”)($¿ 0∧ (∀x)(S(x)
∧ − ”¡ x− p¡ ”⇒ (∃y) (y=2p− x∧ S(y))))):

From this, the result then immediately follows.
Clearly, each !nite union of a"ne subspaces of Rn is topologically closed and locally

symmetric with respect to each of its points.
Thus suppose, conversely, that S is topologically closed and locally symmetric with

respect to each of its points. From results by Dumortier and the present authors [13],
it follows that S is a !nite disjoint union of semi-linear sets, called the regular strata,
each of which is topologically open within its a"ne support. 9 Clearly, the set S is a
!nite union of a"ne subspaces if, for each regular stratum of S, the a"ne support of
that stratum is fully contained in S.
For the zero-dimensional regular strata of S, the above property is trivially satis!ed.

To see that the property also holds for higher-dimensional strata, let p and q be arbitrary
but di#erent points in such a regular stratum, and let L be the line through p and q.
We prove that L is fully contained in S.
Consider S ∩L, and assume that S ∩L !=L. Since S and L are both topologically

closed, so is S ∩L. Thus, S ∩L is the disjoint union of a !nite number of isolated
points, non-degenerated closed intervals, and closed half-lines. Moreover, S ∩L must
contain non-degenerated closed intervals and=or closed half-lines, since the stratum
under consideration is non-zero-dimensional and open within its a"ne support. How-
ever, S cannot be locally symmetric with respect to the boundary points of these
intervals and=or half lines, a contradiction with our initial assumption. Thus, S ∩L=L,
whence L is fully contained in S.
Now, for any set which is topologically open within its a"ne support, that a"ne

support is generated by the lines connecting di#erent points of the set. Thus, we have
indeed shown that the a"ne support of each regular stratum of S is fully contained
in S.

Notice that the topological-closedness condition in Proposition 3.17 is essential, as
local point symmetry alone is a much weaker property: for instance, each set which is
topologically open within its a"ne support is locally symmetric with respect to each
of its points. In the proof, the topological-closedness condition is used to ensure that
boundary points with respect to which S would not be locally point-symmetric have
to belong to S.
As for Proposition 3.16, combining Proposition 3.17 with the expressibility of the

dimension predicate (Theorem 3.5) or the local dimension predicate (Corollary 3.14)
yields the expressibility in FO+ linear of several other Boolean queries.
We now turn to the issues of parallelism and orthogonality.

9 The a"ne support of a set of points in a Euclidean space is the smallest a"ne subspace containing that
set.
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Proposition 3.18. Let S be a k-dimensional a"ne subspace of Rn; 06k6n; and let
p be a point of Rn. The linear query returning the k-dimensional a"ne subspace of
Rn through p parallel 10 to S can be expressed in FO+ linear.

Proof. The FO+ linear formula

(∃y1)(∃y2)(S(y1)∧ S(y2)∧ x= p+ y1 − y2)

computes the query under consideration.

In order to prove a similar proposition for orthogonality, we need the following
technical lemma.

Lemma 3.19. Let S be a k-dimensional linear subspace of Rn; 26k6n.
1. The linear subspace S is spanned by its intersections with those (n−1)-dimensional
coordinate hyperplanes10 in which S is not contained.

2. The linear subspace S is spanned by the lines that are intersections of S with one
of the (n− k + 1)-dimensional coordinate subspaces. 11

Proof.
1. The proof of the !rst statement of Lemma 3.19 goes by induction on n. If n=2, then

k =2, and S equals the entire plane. The coordinate hyperplanes are the coordinate
axes, and they equal their intersections with S. Obviously, the coordinate axes span
the plane. For higher values of n, there are two cases to consider. If S is contained
in one of the coordinate hyperplanes, say H , then the !rst statement of Lemma 3.19
follows from applying the induction hypothesis to S within H , which is of dimension
n−1. (Notice that the (n−2)-dimensional coordinate hyperplanes of H are obtained
by intersecting H with each of the other coordinate hyperplanes of Rn.) If S is
contained in none of the coordinate hyperplanes, let H1; : : : ; Hn be the coordinate
hyperplanes. Obviously, S ∩H1; : : : ; S ∩Hn are all of dimension k−1. Now suppose
that S ∩H1 = · · · = S ∩Hn. Then

⋂n
i=1 S ∩Hi, which is (k − 1)-dimensional, would

equal S ∩
⋂n

i=1 Hi= {0}, which is zero-dimensional, a contradiction, since k¿2.
Thus, S ∩H1; : : : ; S ∩Hn are not all equal. Consequently, the dimension of the linear
subspace of Rn spanned by S ∩H1; : : : ; S ∩Hn is strictly greater than k− 1, whence
it must be k, whence that linear subspace must equal S.

2. The proof of the second statement of Lemma 3.19 goes by induction on n. If
k =2, then the second statement of Lemma 3.19 reduces to the !rst statement of
Lemma 3.19. For higher values of k, we !rst consider the coordinate hyperplanes
with which S has an intersection of dimension k − 1 (these intersections span S,

10 Two a"ne subspaces of Rn are parallel if there is a translation mapping one to a subset of the other.
11 Let e1; : : : ; en be the canonical basis of Rn (i.e.; the vector ei , 16i6n, has ith coordinate 1 and all
other coordinates 0). A d-dimensional coordinate subspace of Rn, 06d6n, is any linear subspace of Rn

generated by exactly d of the canonical basis vectors e1; : : : ; en. A coordinate hyperplane of Rn is an
(n − 1)-dimensional coordinate subspace of Rn.
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by the !rst statement of Lemma 3.19), and then apply the induction hypothesis to
each of these intersections within their respective (n− 1)-dimensional hyperplanes,
yielding the desired result.

We are now ready to prove the following result.

Proposition 3.20. Let S be a k-dimensional a"ne subspace of Rn; 06k6n; and let p
be a point of Rn. The linear query returning the (n− k)-dimensional a"ne subspace
through p orthogonal 12 to S can be expressed in FO+ linear.

Proof. By Proposition 3.18, we may assume without loss of generality that S goes
through 0, the origin of the canonical coordinate system of Rn. By the same token,
it su"ces to prove that the query returning the (n − k)-dimensional a"ne subspace
through 0 orthogonal to S can be expressed in FO+ linear. In other words, we have
to show that, if S is a k-dimensional linear subspace of Rn, the linear query returning
the (n − k)-dimensional linear subspace S⊥ of Rn orthogonal to S can be expressed
in FO+ linear.
By the expressibility of the dimension predicate (Theorem 3.5), we may divide the

problem in cases according to the dimension of S.
If S is zero-dimensional (i.e., equals {0}), then S⊥ equals Rn, which is the evaluation

of {x | true}.
If S is one-dimensional, i.e., a line through the origin 0 of the canonical coordinate

system, we propose an FO+ linear formula of the form

’1(x)∨ · · ·∨’n(x):

We !rst explain how ’1(x) is obtained.
We start by checking whether S is contained in the !rst coordinate hyperplane, i.e.,

whether the !rst coordinate of all points of S equals 0, which can easily be done in
FO+ linear. If this is the case, we return the empty set as partial output corresponding
to ’1(x). Otherwise, we compute the unique point p=(1; p2; : : : ; pn) of S with 1st
coordinate 1, which, again, can easily be done in FO+ linear. The real formula

x1 + p2x2 + · · ·+ pnxn=0

de!nes the set of all vectors x=(x1; : : : ; xn) orthogonal to p, which constitute S⊥.
Unfortunately, the above formula is not linear. We can demonstrate, however, that
it is possible to compute the above products in FO+ linear. Let, for j=2; : : : ; n, the

12 Two a"ne subspaces of Rn are called orthogonal if their corresponding linear subspaces (obtained by
translating the a"ne subspaces to the origin of the coordinate system) are orthogonal. Two linear subspaces
of Rn are orthogonal if each vector x of the !rst subspace is orthogonal to each vector y of the second
subspace, i.e., if x:y=0. If S is a linear subspace of Rn of dimension k, then the set S⊥ of all vectors of
Rn orthogonal to all vectors of S is a linear subspace of Rn of dimension n − k.
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predicate S1j(x; y) be an abbreviation for the FO+ linear formula

(∃x)(S(x)∧ x1 = x∧ xj =y):

Hence, S1j represents the projection of S on the (1; j)th coordinate plane. Hence, S1j is
the line through the origin (0; 0) and the point (1; pj) in R2, and, therefore, S1j(x; y)
is true if and only if y=pjx. The real formula x1 +p2x2 + · · ·+pnxn=0 is therefore
equivalent to the FO+ linear formula

(∃y2) : : : (∃yn)(S12(x2; y2)∧ · · ·∧ S1n(xn; yn)∧ x1 + y2 + · · ·+ yn=0):

Hence, in the case considered, it is possible to return S⊥ as partial output corresponding
to ’1(x).
The construction of ’i(x), 26i6n, is analogous, with the role of the 1st coordinate

hyperplane taken over by the ith coordinate hyperplane.
Since S is not parallel to at least one of the coordinate hyperplanes, at least one

of the partial outputs corresponding to ’1(x); : : : ; ’n(x), respectively, is non-empty,
whence the union of all the partial outputs is always S⊥, which concludes the case
that S is one-dimensional.
If S is of higher dimension, we !rst compute the intersections of S with the (n −

k + 1)-dimensional coordinate subspaces. Let E be such a subspace. If S ∩E is one-
dimensional (i.e., a line), which can be checked in FO+ linear, then we return (S ∩E)⊥

as partial output, computed as in the previous case. Otherwise, we return Rn as partial
output. By Lemma 3.19, the intersection of all these partial outputs yields S⊥.

In the two-dimensional plane R2, Proposition 3.20 says that it is possible to compute
in FO+ linear the line through a given point orthogonal to a given line, i.e., making
a right angle with it. It is possible to generalize this result to other angles:

Corollary 3.21. Let S; T1 and T2 be lines in the plane R2; and let p be a point of
R2. The linear query returning the line through p making the same angle with S as
T2 with T1 can be expressed in FO+ linear.

Proof. As explained at the beginning of the proof of Proposition 3.20, we may assume
without loss of generality that all lines concerned go through 0, the origin of the canon-
ical coordinate system, and that p= 0. The geometric construction of the required line
shown in Fig. 3 demonstrates that Corollary 3.21 is indeed an immediate consequence
of Proposition 3.20.

It can be seen that Corollary 3.21 still holds if S, T1, T2, and p are contained in a
plane of a space Rn of arbitrary dimension. Indeed, if T1 and T2 are parallel (i.e., are
equal or have no point in common), then the output of the query in Corollary 3.21 is the
line through p parallel to S, which can be computed in FO+ linear by Proposition 3.18.
If T1 and T2 are not parallel, then q is in the plane supported by T1 and T2 if and only
if q is the mid-point of two points in T1 ∪T2. Hence, this plane can be computed in
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Fig. 3. Geometric construction of the line through 0 making the same angle with S as T2 with T1. First,
the thin lines S⊥ and T1⊥, orthogonal to S and T1, respectively, are drawn. The construction starts with an
arbitrary point of T2 and yields a point of the result. Each point of the result can be reached in this way.

FO+ linear. Using this additional information and Proposition 3.20, it is not di"cult
anymore to see that the construction in the proof of Corollary 3.21 can still be carried
out in FO+ linear.
To close this section, we restrict ourselves to one-dimensional semi-linear sets, and

ascertain the expressibility in FO+ linear of several linear queries pertaining to such
sets.
We !rst summarize what we can determine in FO+ linear about the composition of

such sets.

Proposition 3.22. Let S be a semi-linear set of Rn. The Boolean queries deciding the
following properties can be expressed in FO+ linear:
1. S consists of a !nite number of lines; half-lines; and (non-degenerated) line seg-
ments only;

2. S consists of a !nite number of lines only;
3. S is a single line;
4. S is a single (open=closed) half-line;
5. S is a single (non-degenerated) (open=half-open-half-closed=closed) line segment.

Proof. For the !rst query, it su"ces to check that S has dimension 1 (Theorem 3.5).
Degenerated line segments (i.e., isolated points) can easily be checked for (Proposi-
tion 3.2); alternatively, one might check that S equals its one-dimensional component.
For the second query, it su"ces to check that, in addition to being one-dimensional, S

is a !nite union of a"ne subspaces of Rn (Proposition 3.17).
For the third query, it su"ces to check that, in addition to being one-dimensional, S

is an a"ne subspace of Rn (Proposition 3.16).
For the fourth and !fth queries, we !rst check that S consists of lines, half-lines,

and (non-degenerated) line segments only (Query 1). If, in addition, S is convex
(Theorem 3.15), then S is either a single line, or a single half-line, or a single (non-
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degenerated) line segment. Thus, if S is not bounded (Proposition 3.3) and S is not a
line (Query 3), S is a half-line; if S is bounded, S is a (non-degenerated) interval. The
interval is non-degenerated if S is !nite (Proposition 3.2). To decide which type of
half-line or non-degenerated interval S is, we can in addition compute the set of points
of S with respect to which S is not locally symmetric. These points are precisely the
boundary points of S contained in S. The type of half-line or interval then depends on
whether there are 0, 1, or 2 of them.

We now focus on the case where S consists of a !nite number of lines of Rn.

Proposition 3.23. Let S consist of a !nite number of lines of Rn; n¿1. The query
returning the set of all intersection points between two or more lines in S can be
expressed in FO+ linear.

Proof. The intersection points of two or more lines in S are precisely those points p
of S in which S is not locally convex, i.e., those points p of S such that for no convex
neighborhood V of p in Rn, S ∩V is convex. Since the neighborhoods used in the
topological queries earlier in this section are convex and su"ce to express the above
property, Proposition 3.23 now follows from Theorem 3.15.

Proposition 3.24. Let S be a semi-linear set of Rn. The Boolean query deciding
whether S consists of a !nite number of parallel lines can be expressed in FO+ linear.

Proof. By Proposition 3.22 and 3.23, we can decide whether S consists of a !nite
number of lines without intersection points. If this is the case, then every point of S
is on a unique line in S.
Now, consider an arbitrary point x of S. Consider a neighborhood V of x in Rn such

that S ∩V is convex. (Such a neighborhood exists, and its existence can be asserted in
FO+ linear using the techniques employed to express topological queries and Theorem
3.15.) Necessarily, S ∩ V is a line segment. Let y be an arbitrary point of S ∩ V
di#erent from x. Let z be an arbitrary point of S. If S consists of parallel lines only,
then z + y − x is on the same line as z, whence also in S. Conversely, if S does not
consist of parallel lines only, then the above property fails if x and z are chosen on
two non-parallel lines.

For the following result, we need a technical lemma.

Lemma 3.25. Let S consist of a !nite number of parallel lines of Rn. There exists
a linear query expressible in FO+ linear that selects a single line from these.

Proof. First, assume that S is not parallel to the ith coordinate hyperplane (i.e., the
set of ith coordinates of S is not a singleton), 16i6n, and let, for j=1; : : : ; n, j != i,



444 L. Vandeurzen et al. / Theoretical Computer Science 254 (2001) 423–463

minij(S) be the semi-linear set de!ned by the FO+ linear formula

S(x)∧ (∀y)(S(y)∧yi= xi⇒ xj6yj):

Then minij(S) consists of those lines of S that are “leftmost” with respect to the jth
coordinate axis. Thus,

min
i
(S)= min

in

(

min
i(n−1)

(

: : :min
i1
(S) · · ·

)
)

consists of single line.
We next modify the de!nition of mini such that mini(S)= S if S is parallel to the

ith coordinate plane, a condition which can easily be checked in FO+ linear.
Then, in all cases,

min(S)= min
n

(

min
n−1

(

: : :min
1
(S) · · ·

)
)

consists of a single line, since S is not parallel to at least one of the coordinate
hyperplanes.

Proposition 3.26. Let S consist of a !nite number of lines of Rn; and let p be a
point of S. The linear query returning the semi-linear set consisting of all lines of S
through p can be expressed in FO+ linear.

Proof. First, assume that p is not an intersection point of two or more lines of S (cf.
Proposition 3.23). Then, precisely one line of S goes through p. Consider a neigh-
borhood V of p in Rn such that S ∩V is convex. (Such a neighborhood exists, and
its existence can be asserted in FO+ linear using the techniques employed to ex-
press topological queries and Theorem 3.15.) Necessarily, S ∩V is a line segment. Let
Sp be the set of all points x of S which have a neighborhood W in Rn for which
%xp(S ∩W )⊆ S ∩V , where %xp is the translation over vector xp= p− x. Clearly, there
exists an FO+ linear formula de!ning Sp. Since translations preserve parallelism, Sp
consists of the lines of S parallel to the line of S through p, from which the intersec-
tion points with other lines have been omitted. Hence, the topological closure of Sp,
'Sp, which can be computed in FO+ linear (Proposition 3.1), consists of all lines of
S parallel to the line of S through p. From this set, a single line can be selected in
FO+ linear, by Lemma 3.25. The output of the query is the line through p parallel to
this single line, which can be computed in FO+ linear, by Proposition 3.18.
Next, assume that p is an intersection point of two or more lines of S. Consider

a neighborhood V of p in Rn such that S ∩V is point-symmetric with respect to p.
(Such a neighborhood exists, and its existence can be asserted in FO+ linear, as was
shown earlier in the proof of Proposition 3.17.) For every point q in S ∩V − {p}, q
is not an intersection point of lines of S, whence the semi-linear set consisting of all
lines of S through q can be computed in FO+ linear, as shown in the !rst part of the
proof. The output of the query is the union of all these sets.
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Proposition 3.26 has some remarkable corollaries.

Corollary 3.27. Let S consist of a !nite number of lines of Rn; and let p and q be
points on some line of S. The linear queries respectively returning the line through p
and q and the closed line segment between p and q can be expressed in FO+ linear.

Proof. The expressibility in FO+ linear of the !rst query is an immediate consequence
of Proposition 3.26. To see that the second query is expressible in FO+ linear, let r
be the mid-point of p and q. The points common to the line through p and q and all
convex neighborhoods of r containing both p and q constitute the closed line segment
between p and q.

Corollary 3.28. Let S consist of a !nite number of lines of Rn. The query returning
all pairs of parallel lines of S (which can be seen as a query of type [0; n]→ [0; 2n])
can be expressed in FO+ linear.

Proof. Let p and q be points of S which are not intersection points of two or more
lines of S. (This can be decided in FO+ linear, by Proposition 3.23). By Proposition
3.26, it is possible to compute in FO+ linear the unique lines of S going through p
and q, respectively. This pair of lines is retained in the output of the query if they are
parallel (i.e., are equal or have no point in common).

The above results give some idea of the expressive power of FO+ linear. We are still
far away from a precise insight into the nature of the queries expressible in FO+ linear,
however.

4. Limitations of FO + linear

Section 3 may have convinced the reader that FO+ linear is a rich query language,
suitable to accompany the linear database model. In this section, we intend to moderate
this positive perception of the query language FO+ linear.
First, we must point out that Afrati et al. [2] have shown that FO+ linear is not

complete for the linear queries de!nable in FO+poly. More concretely, Afrati et al.
proved the following result:

Proposition 4.1 (Afrati et al. [2]). The Boolean query on semi-linear sets S of R
which decides whether there exist u and v in S with u2 + v2 = 1; is not de!nable
in FO+ linear.

Even though the query in Proposition 4.1 involves a non-linear computation in or-
der to evaluate it, it is a linear query because it is a Boolean query, and therefore
Proposition 4.1 su"ces to establish the incompleteness of FO+ linear for the linear
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queries de!nable in FO+poly. We shall denote the class of linear queries de!nable in
FO+poly by FO+polylin.
Nevertheless, Proposition 4.1, by the somewhat arti!cial character of the query ex-

hibited, does not provide us insight into the adequacy of FO+ linear as a linear query
language. Since the FO+polylin queries play an important role in practical spatial
databases, the most straightforward way to obtain insight in the adequacy of FO+ linear
as a linear query language is to discover an algorithm to decide whether an FO+poly
formula de!ning an FO+polylin query is expressible in FO+ linear.
However, we must point out that we can prove the following theorem, which can

be viewed as an analog of Rice’s Theorem for FO+poly-expressible queries:

Theorem 4.2. Let C1 and C2 be subclasses of spatial database relations such that C1
contains all semantically !nite spatial database relations. Let FO+polyC1→C2 be the
sublanguage of FO+poly consisting of those formulae that return outputs in C2 upon
inputs in C1. Let E be a semantic property of FO+polyC1→C2 formulae satisfying
the following conditions:
1: If ’(R1; : : : ; Rk ; v1; : : : ; vm; x1; : : : ; xn) is an FO+polyC1→C2 formula satisfying prop-
erty E and de!ning a query of type; say; [m1; n1; : : : ;mk; nk ]→ [m; n]; and if #(v1;
: : : ; vm1 ; x1; : : : ; xn1 ) is a real formula de!ning a semantically !nite spatial database
relation of type [m1; n1]; then the FO+polyC1→C2 formula

’′(R2; : : : ; Rk ; v1; : : : ; vm; x1; : : : ; xn);

obtained from ’ by substituting each occurrence of R1 by #; and de!ning a query
of type [m2; n2; : : : ;mk; nk ]→ [m; n]; satis!es property E.

2: If ’(R2; : : : ; Rk ; v1; : : : ; vm; x1; : : : ; xn) is an FO+polyC1→C2 formula satisfying prop-
erty E and de!ning a query of type; say; [m2; n2; : : : ;mk; nk ]→ [m; n]; then; for
each relation type [m1; n1]; and for each relation name R1 of type [m1; n1]; the
FO+polyC1→C2 formula

’′(R1; : : : ; Rk ; v1; : : : ; vm; x1; : : : ; xn)≡’(R2; : : : ; Rk ; v1; : : : ; vm; x1; : : : ; xn)

de!ning a query of type [m1; n1; : : : ;mk; nk ]→ [m; n] satis!es property E.
3: For some query type [m1; n1; : : : ;mk; nk ]→ [m; n], there exist FO+polyC1→C2 for-
mulae

’+(R1; : : : ; Rk ; v1; : : : ; vm; x1; : : : ; xn) and ’−(R1; : : : ; Rk ; v1; : : : ; vm; x1; : : : ; xn)

both de!ning a query of type [m1; n1; : : : ;mk; nk ]→ [m; n] such that ’+ has property
E and ’− does not have property E.

Then it is undecidable whether an FO+polyC1→C2 formula has property E.

Proof. The proof is a variation of a proof of Paredaens et al. [41] concerning unde-
cidability of genericity in FO+poly (Theorem 1, p. 285).
The ∀∗-fragment of number theory is undecidable since Hilbert’s 10th problem can

be reduced to it. We encode a natural number n by the !nite set enc(n) := {0; : : : ; n},
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and we encode a vector of natural numbers (n1; : : : ; nk) by enc(n1)∪ (enc(n2) + n1 +
2)∪ · · · ∪ (enc(nk) + n1 + 2 + · · ·+ nk−1 + 2). 13 The corresponding decoding is !rst-
order-expressible. Let ’+(R1; : : : ; Rk ; v1; : : : ; vm; x1; : : : ; xn) and ’−(R1; : : : ; Rk ; v1; : : : ; vm;
x1; : : : ; xn) be FO+polyC1→C2 formulae de!ning queries of some common type, say,
[m1; n1; : : : ;mk; nk ]→ [m; n], such that ’+ has property E and ’− does not have prop-
erty E. We then reduce a ∀∗-sentence (∀x) (x) of number theory to the following
query of signature [0; 1;m1; n1; : : : ;mk; nk ] → [m; n] (S of type [0; 1] and R1; : : : ; Rk of
types [m1; n1]; : : : ; [mk; nk ], respectively, are the input relation names of this query):

if S encodes a vector x
then
if  (x)
then
return({(v1; : : : ; vm; x1; : : : ; xn) |’+(R1; : : : ; Rk ; v1; : : : ; vm; x1; : : : ; xn)})

else
return({(v1; : : : ; vm; x1; : : : ; xn) |’−(R1; : : : ; Rk ; v1; : : : ; vm; x1; : : : ; xn)})

else
return({(v1; : : : ; vm; x1; : : : ; xn) |’+(R1; : : : ; Rk ; v1; : : : ; vm; x1; : : : ; xn)}).

By de!nition, the above query is FO+polyC1→C2 -expressible. Moreover, an FO+
polyC1→C2 formula computing this query can e#ectively be constructed. Let

’(S; R1; : : : ; Rk ; v1; : : : ; vm; x1; : : : ; xn)

be such a formula. When the ∀∗-sentence (∀x) (x) is valid, then ’(S; R1; : : : ; Rk ; v1; : : : ;
vm; x1; : : : ; xn)≡’+(R1; : : : ; Rk ; v1; : : : ; vm; x1; : : : ; xn) has property E, by conditions 2 and
3 above. When the ∀∗ sentence (∀x) (x) is not valid, then ’(S; R1; : : : ; Rk ; v1; : : : ; vm;
x1; : : : ; xn) does not have property E. To see this, let n be a vector of natural numbers
for which  (n) is false, and let #(x) be a real formula de!ning enc(n). Let

’′(R1; : : : ; Rk ; v1; : : : ; vm; x1; : : : ; xn)

be the FO+polyC1→C2 formula obtained from ’(S; R1; : : : ; Rk ; v1; : : : ; vm; x1; : : : ; xn) by
substituting each occurrence of S by # and de!ning a query of type [m1; n1; : : : ;
mk; nk ]→ [m; n]. Now, if ’(S; R1; : : : ; Rk ; v1; : : : ; vm; x1; : : : ; xn) would have property E,
then ’′(R1; : : : ; Rk ; v1; : : : ; vm; x1; : : : ; xn) would have property E, by condition 1, a con-
tradiction with condition 3, since ’′(R1; : : : ; Rk ; v1; : : : ; vm; x1; : : : ; xn)≡’−(R1; : : : ; Rk ;
v1; : : : ; vm; x1; : : : ; xn). Thus, ’(S; R1; : : : ; Rk ; v1; : : : ; vm; x1; : : : ; xn) does not satisfy prop-
erty E. In summary, ’(S; R1; : : : ; Rk ; v1; : : : ; vm; x1; : : : ; xn) has property E if and only if
the ∀∗-sentence (∀x)’(x) is valid.

13 For N a set of natural numbers and n a natural number, N + n denotes the set {x + n | x∈N}.
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If, in Theorem 4.2, we let C1 =C2 be the class of linear spatial database relations,
and E be FO+ linear-expressibility of the corresponding FO+polylin query, then we
immediately obtain the following corollary:

Corollary 4.3. It is undecidable whether an FO+polylin query induced by an FO+poly
formula can be expressed in FO+ linear.

Hence, an algorithm to decide whether an FO+poly expression de!ning an FO+
polylin query is expressible in FO+ linear cannot be provided, and we must look for
other means to assess the adequacy of FO+ linear as linear query language.
In the literature (e.g. [2, 48]), researchers have been concerned with the non-de!na-

bility of certain geometric sets by linear !rst-order formulae (i.e., with the
non-semi-linearity of these sets). In this paper, however, we are concerned with the non-
expressibility of queries in FO+ linear, as opposed to the non-de!nability of sets by lin-
ear formulae. The principal contribution of the remainder of this section is the develop-
ment of a general tool to lift the non-de!nability of certain semi-algebraic sets by linear
formulae to the non-expressibility in FO+ linear of closely related FO+poly queries.
Application of this tool allows us to establish the non-expressibility in FO+ linear of a
wide range of queries in FO+polylin, which in turn improves our insight in the nature
of the FO+polylin queries not expressible in FO+ linear.
To develop this tool, we !rst establish a link between certain semi-algebraic sets

and certain FO+poly queries.

De!nition 4.4. Let P be a semi-algebraic subset of (Rn)m, m; n¿1. Let k be such that
06k6m. Furthermore, assume that P and k are such that, for each sequences u1; : : : ; uk
in Rn, and for each sequences i1; : : : ; ik , 16i1; : : : ; ik6k, such that {ui1 ; : : : ; uik}=
{u1; : : : ; uk}, the following permutation invariance property holds, for all uk+1; : : : ; um
in Rn:

(u1; : : : ; uk ; uk+1; : : : ; um)∈P ⇔ (ui1 ; : : : ; uik ; uk+1; : : : ; um)∈P:

The query QP;k of signature [0; n] → [0; n(m − k)] is now de!ned as follows. If S is
non-empty and consists of at most k points of Rn, say S = {u1; : : : ; uk} (u1; : : : ; uk not
necessarily all distinct), then

QP;k(S)= {(uk+1; : : : ; um) | (u1; : : : ; uk ; uk+1; : : : ; um)∈P};

otherwise QP;k(S) is empty.

Observe that the invariance property assumed for P and k guarantees that QP;k is a
well-de!ned query expressible in FO+poly.

Example 4.5. We give some examples of sets P and corresponding queries QP;k which
will be used later in this section.
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1. Let P1 be the set

{(u1; : : : ; um)∈ (Rn)m | u1; : : : ; um are collinear};

for appropriately chosen values of n and m. The set P1 is obviously semi-algebraic;
e.g., for m=3, it is expressed by the real formula

x2 = x3 ∨ (∃#1)(∃#2)(#1 + #2 = 1∧ x1 = #1x2 + #2x3):

Moreover, it satis!es De!nition 4.4 for k =m. The associated query QP1 ; m can be
interpreted as the Boolean query which decides whether a semi-linear set S consists
of at most m collinear points.

2. Let P2 be the set

{(u1; : : : ; um)∈ (Rn)m | um−1 and um belong to a common closed Voronoi cell
with respect to u1; : : : ; um−2}:

The points um−1 and um belongs to a common closed Voronoi cell with respect to
u1; : : : ; um−2 if the condition

(∃u)((u = u1 ∨ : : : ∨ u = um−2)∧

∧m−2
i=1 (d(um−1; u)6d(um−1; ui) ∧ d(um; u)6d(um; ui)))

is satis!ed, where d(r; s) denotes the Euclidean distance between r and s. Hence, P2
is semi-algebraic. Moreover, it satis!es De!nition 4.4 for k =m− 2. The associated
query QP2 ; m−2 of type [0; n] → [0; 2n] can be interpreted as the linear query that
associates, with each non-empty semi-linear set S consisting of at most m−2 points,
pairs of points which belong to a common closed Voronoi cell with respect to the
points of S, and, with every other semi-linear set S, the empty set.

3. Let S be a semi-algebraic set of Rn. We de!ne the diameter of S, denoted ((S),
as the supremum of the (Euclidean) distances between two points of S. Let

P3 = {(u1; : : : ; um−1; (d; 0; : : : ; 0
︸ ︷︷ ︸

n−1

)) |(({u1; : : : ; um−1})=d}:

It is easily seen that P3 is a semi-algebraic set; e.g., for m=3, it computes the
distance between two points. Moreover, it satis!es De!nition 4.4 for k =m − 1.
The associated query QP3 ; m−1 can be interpreted as the aggregate query of type
[0; n]→ [0; n] which associates with each non-empty semi-linear set S consisting of
at most m− 1 points the singleton

(((S); 0; : : : ; 0
︸ ︷︷ ︸

n−1

);

and, with every other semi-linear set S, the empty set.

We now establish that the query QP;k is not expressible in FO+ linear as soon as
the set P is not de!nable by a linear formula.
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Theorem 4.6. Let P be a semi-algebraic subset of (Rn)m; m; n¿1; let k be such that
06k6m; and let P and k satisfy the conditions of De!nition 4:4. If P is not de!nable
by a linear formula (which is decidable [13]); then the following holds:
1: the query QP;k is not expressible in FO+ linear;
2: if Q is a linear query of type [0; n]→ [0; n(m−k)] such that; for every semi-linear
set S of Rn; Q(S)=QP;k(S) if QP;k(S) is not empty; then Q is not expressible in
FO+ linear.

Proof.
1. Assume, on the contrary, that the query QP;k is expressible in FO+ linear. Then
there exists an FO+ linear formula ’P; k(R; xk+1; : : : ; xm), with R an appropriate
predicate name, such that, for each semi-linear set S of Rn, QP;k(S)= {(uk+1; : : : ;
um) |’P; k(S; uk+1; : : : ; um)}. We now argue that the predicate name R must e#ec-
tively occur in ’P; k . If this were not the case, then the query associated with ’P; k

would be independent of the input, i.e., a constant function. This constant function
must return the empty set, since QP;k by de!nition returns the empty set on all
inputs containing more than k points. However, QP;k cannot return the empty set
on every input unless P is the empty set, which is obviously de!nable by a linear
formula, contrary the hypothesis of the theorem. Thus R must occur in ’P; k .
Given the formula ’P; k , we construct a new formula ’̂P; k , as follows. Let x1; : : : ;

xk be variables that do not occur in ’P; k . Now replace every literal of the form

R(z)

in ’P; k by the formula

z= x1 ∨ · · · ∨ z= xk :

Observe that the formula ’̂P; k is a linear formula with free variables x1; : : : ; xm. Our
claim is that the formula ’̂P; k de!nes the set P, a contradiction with the hypothesis
of the theorem. To substantiate our claim, we consider an m-tuple (u1; : : : ; um)∈
(Rn)m. From the de!nition of QP;k and ’P; k , we have

(u1; : : : ; um)∈P ⇔ (uk+1; : : : ; um)∈QP;k({u1; : : : ; uk});

whence

(u1; : : : ; um)∈P ⇔ ’P; k({u1; : : : ; uk}; uk+1; : : : ; um):

It follows from the construction of ’̂P; k from ’P; k that

(u1; : : : ; um)∈P ⇔ ’̂P; k(u1; : : : ; um):

2. Assume that Q is expressible in FO+ linear. Then there exists a formula

’Q(R; xk+1; : : : ; xm)
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Fig. 4. Geometric construction of the product.

that de!nes Q, where R stands for the input predicate. Given ’Q, we can construct
the formula ’̂Q:

’̂Q(R; xk+1; : : : ; xm) ⇔ (|R|6k ∧’Q(R; xk+1; : : : ; xm)) ∨ (|R|¿k ∧ false):

It is obvious that this expression for ’̂Q can be translated into proper FO+ linear
syntax. It now follows from the properties of Q that the FO+ linear-formula ’̂Q
expresses the query QP;k , which is impossible by the !rst part of the theorem.

To allow ourselves to apply Theorem 4.6, we !rst establish that the semi-algebraic
sets in Example 4.5 are not de!nable by linear formulae for most values of m and n.

Proposition 4.7. The sets P1 and P3 are not de!nable by linear formulae if n¿2 and
m¿3. The set P2 is not de!nable by a linear formula if n¿2 and m¿4.

Proof.
1. We !rst show that P1 is not de!nable by a linear formula. Assume to the con-
trary that P1 is de!nable by a linear formula for some n¿2 and some m¿3.
Then, clearly, P1 is also de!nable by a linear formula for n=2 and m=3. Let
collinear(x1; x2; y1; y2; z1; z2) denote this formula. We now show that there exists
a linear formula product(x; y; z), with x; y; z real variables, equivalent to the real
formula z= xy, an obvious contradiction. From the geometric construction of the
product shown in Fig. 4, it follows that

(x=0∧ z=0) ∨ (y=0∧ z=0) ∨ (y=1∧ z= x)

∨¬(∃v)(∃w)(collinear(x; 0; 0; 1; v; w)∧ collinear(z; 0; 0; y; v; w))

is the desired linear formula.
2. The semi-algebraic set P2 is not de!nable by a linear formula since P1 is not:
indeed, for m=3, respetively, m = 4, we have that

(p1; p2; p3)∈P1⇔ (∃p)(∃q)(p; q; q; p1)∈P2 ∧ (p; q; q; p2)∈P2 ∧ (p; q; q; p3)∈
P2∧ (q; p; p; p1)∈P2 ∧ (q; p; p; p2)∈P2 ∧ (q; p; p; p3)∈P2:
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3. The semi-algebraic set P3 is not de!nable by a linear formula, because, for m¿3,
it is possible to obtain a disk by applying appropriate FO+ linear-expressible oper-
ations to P3.

Theorem 4.6 and Proposition 4.7 yield the following corollary, the proof of which
is immediate from the former:

Theorem 4.8. (1) The Boolean query of type [0; n]→ [0; 0] deciding whether a semi-
linear set of Rn is contained in a line is not expressible in FO+ linear.
(2) The linear query of type [0; n]→ [0; 2n] returning all pairs of points of Rn that

belong to a common closed Voronoi cell with respect to a semi-linear set of Rn if that
set is !nite and non-empty; and returning the empty set otherwise; is not expressible
in FO+ linear.
(3) The linear aggregate query of type [0; n]→ [0; n] returning; upon a semi-linear

set S of Rn as input; the singleton

{(((S); 0; : : : ; 0
︸ ︷︷ ︸

n−1

)}

if S is bounded and non-empty; and returning the empty set otherwise; is not ex-
pressible in FO+ linear (whence the corresponding diameter query of type [0; n]→
[0; 1] is not expressible either).

Obviously, Theorem 4.6 can be used to show the non-expressibility of many more
linear queries. For instance, it can be used to prove Proposition 4.1 as well as the
non-expressibility in FO+ linear of several other Boolean queries.
As a !nal example, we discuss the non-expressibility in FO+ linear of the queries

with type [0; n]→ [0; n] which compute the convex closure and the a"ne support of a
semi-linear set. We can show that, for n¿2 and m¿3, the semi-algebraic sets

{(u1; : : : ; um)∈ (Rn)m | um is in the convex closure of {u1; : : : ; um−1}}

and

{(u1; : : : ; um)∈ (Rn)m | um is in the a"ne support of {u1; : : : ; um−1}}

cannot be expressed by linear formulae as the product of two real numbers would
become expressible (in the same way as the de!nability of the set P1 led to the
expressibility of the product of two real numbers). Then, according to Theorem 4.6,
we can lift the non-de!nability of these sets by linear formulae to the non-expressibility
in FO+ linear of the queries computing the convex closure and the a"ne support of
a semi-linear set. For these last two queries however, the non-expressibility can also
be established more directly by reduction to the non-expressibility of the collinearity
query.
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5. Extending FO + linear

Although a wide range of useful, complex linear queries is expressible in FO+ linear,
as shown in Section 3, there are several other, practically relevant linear queries not
expressible in FO+ linear, as shown in Section 4. Therefore, it is important to search
for linear query languages that capture these queries. Without such languages, we would
indeed be hard-pressed to substantiate the claim that the linear model is to be adopted
as the fundamental model for applications involving linear geometric objects.
A !rst approach towards the problem raised above is searching for a language that

is sound and complete for the FO+polylin queries, i.e., that can express precisely the
linear queries expressible in FO+poly. The most straightforward way to obtain such
a query language is to discover an algorithm to decide whether an FO+poly formula
induces a linear query. Unfortunately, such an algorithm does not exist, because we
can again invoke Theorem 4.2, this time with C1 =C2 the class of all spatial database
relations and E the property of inducing a linear query, yielding

Theorem 5.1. It is undecidable whether an FO+poly formula induces a linear query.

Observe that Theorem 5.1 does not rule out that one can isolate a subset of the
FO+poly formulae which expresses precisely the FO+polylin queries, in the same
way that the undecidability of domain independence in the relational calculus is not in
contradiction with the existence of a sublanguage of the relational calculus which pre-
cisely expresses the domain-independent relational calculus queries [47]. As a matter of
fact, Dumortier and the present authors [13] established the existence of a syntactically
de!nable query language which expresses precisely the FO+polylin queries. The result
is based on the decidability of semi-linearity for semi-algebraic sets which is shown
in the same paper. Syntactically, the query language concerned is just FO+poly. Se-
mantically, the standard output of an FO+poly query is replaced by the empty set if
it is not a semi-linear set. The language thus obtained is sound (queries return linear
outputs on linear inputs) and complete (the standard output of a linear FO+poly query
is not modi!ed). Of course, this language is not particularly elegant nor has it prac-
tical value, but, at least, its existence justi!es the search for more natural sound and
complete languages for the FO+polylin queries. Nevertheless, a top-down approach
towards discovering useful linear query languages remains di"cult.
In the remainder of this section, we therefore take a bottom-up approach to discover

restrictions of FO+polylin that are strictly more expressive than FO+ linear. The basic
idea is to extend FO+ linear with certain linear operators, such as the linear queries
listed in Theorem 4.8 or the collinearity or the convex-closure query.
However, we cannot achieve our goal by adding the corresponding predicates to

FO+ linear. Indeed, from the proof of Proposition 4.7, it follows that, e.g., adding a
predicate collinear(x; y; z), which evaluates to true if its arguments are collinear points,
would yield a language equivalent to FO+poly, as the product of real numbers would
become de!nable. Obviously, we need a less liberal syntax to ensure that the extensions
of FO+ linear envisaged remain sound with respect to the FO+polylin queries.
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We now proceed with showing how FO+ linear can e#ectively be extended with
linear operators in a sound way. The subtle point in the de!nition of our extensions is
that we disallow free real variables in set terms.
An operator is de!ned to be an FO+polylin query. The signature of an operator is

the signature of that query.
Let O be a set of operator names O typed with a signature, each of which represents

an operator op(O) of the same signature. 14

The query language FO+ linear+O is then de!ned as an extension of FO+ linear,
as follows. First, we extend the terms of FO+ linear with set terms:
• If ’ is an FO+ linear+O formula with n free real variables x1; : : : ; xn and m free
non-spatial variables v1; : : : ; vm, and if k6m, then

{(v1; : : : ; vk ; x1; : : : ; xn) |’(v1; : : : ; vm; x1; : : : ; xn)}

is a set term of type [k; n]. Observe that, of the non-spatial variables, vk+1; : : : ; vm
occur free, while all real variables, x1; : : : ; xn, occur bounded in the set term. 15

• If O is an operator name in O of type [m1; n1; : : : ;mk; nk ] → [m; n], and S1; : : : ; Sk

are set terms of types [m1; n1]; : : : ; [mk; nk ], respectively, then

O(S1; : : : ; Sk)

is a set term of type [m; n] with free variables the free (non-spatial) variables in S1
through Sk .

Finally, we extend the atomic formulae of FO+ linear:
• Let S be a set term of type [m; n], v1; : : : ; vm non-spatial variables, and x1; : : : ; xn real
variables. Then S(v1; : : : ; vm; x1; : : : ; xn) is an atomic formula with free non-spatial
variables v1; : : : ; vm, and the free (non-spatial) variables of S; and with free real
variables x1; : : : ; xn.
Semantically, when actual values are substituted for the free variables, a set term of

type [m; n] represents a subset of Dm × Rn. Now consider an atomic formula of the
form S(v1; : : : ; vm; x1; : : : ; xn). When actual values are substituted for the free variables,
this atomic formula evaluates to true if the evaluation of (v1; : : : ; vm; x1; : : : ; xn) belongs
to the set represented by the set term S. The full semantics of FO+ linear+O is now
straightforward to de!ne.
The following soundness property is easily shown by structural induction:

Theorem 5.2. The query language FO+ linear+O only expresses FO+polylin-
expressible queries.

The syntactic restriction that set terms do not contain free real variables is essential
for Theorem 5.2 to hold.

14 To be practically relevant, the set O must be recursively enumerable.
15 Observe that this de!nition allows us to interpret a predicate name R of type [k; n] as a set term of type
[k; n].
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Without going into details, we mention that it is possible to de!ne an algebraic query
language equivalent to FO+ linear+O by extending the linear algebra [48] with the
operators represented by O. This equivalence result forms a theoretical justi!cation for
the approach G$uting et al. have taken with the development of the ROSE-algebra [25–
29], which is extending the relational algebra with a class of spatial operators.
Before we discuss the expressive power of FO+ linear extended with operators,

we give an example of an FO+ linear+O query language in which we can express
the collinearity and convex-closure queries described in Section 3, and shown to be
non-expressible in FO+ linear.

Example 5.3. Let O be an in!nite set of operator names segmentn of signature [0; n]→
[0; n], n¿0, and associate with each operator name segmentn the operator op(segmentn)
de!ned by

op(segmentn)(S)= {x∈Rn | (∃y)(∃z)(S(y)∧ S(z)∧ x∈ [y; z]});

for each semi-linear set S of Rn. Thus, op(segmentn)(S) is the union of all closed line
segments with both endpoints in S. The FO+ linear+O formula

segmentn(segmentn(: : : segmentn
︸ ︷︷ ︸

n times

(S) · · ·))(x)

computes the convex closure of S. Using the convex-closure query as a macro, the
FO+ linear+O formula

(∃d)(dimn({x | convex-closure (S)(x)}; d)∧d61)

expresses the collinearity query.

To illustrate the potential of the above paradigm for extending FO+ linear, we show
that an existing powerful extension of FO+ linear can alternatively be captured by
extending FO+ linear with operators.
The language concerned is PFOL, recently introduced by the present authors [50].

The language PFOL was obtained by augmenting FO+ linear with a limited amount
of multiplicative power. As a result, this language allows, for instance, to compute
convex closure, Voronoi diagrams, and distances, queries which are not expressible in
FO+ linear. On !nite databases, i.e., databases which describe !nite point sets, PFOL
captures all the “ruler-and-compass” queries expressible in SafeEuQl [40]. The language
PFOL is a powerful linear query language, yet still feasible for implementation.
First, we de!ne the language PFOL. 16

We assume three sorts of variables, called non-spatial variables, real variables,
and product variables. We shall use v, possibly subscripted, to denote a non-spatial
variable, x; y; z; : : :, possibly subscripted, to denote real variables, and p; q; r; : : :, possibly

16 The de!nition given here is more general than the one in [50], as the latter was stated in a purely spatial
context, and, consequently, did not take into account the possible presence of non-spatial data.
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subscripted, to denote product variables. Finally, we shall use the symbol t, possibly
subscripted, to denote a variable that can either be a real variable or a product variable.

De!nition 5.4. (i) Let D1; : : : ; Dk , k¿0, be symbols we shall refer to as domain sym-
bols. An FO+ linear+PD1; : : : ; Dk formula is built using the connectives ¬ and ∧
and the quanti!ers (∃v), with v a non-spatial variable, (∃x), with x a real variable,
and (∃p∈Di), with p a product variable and 16i6k, from the following atomic
formulae:
– R(v1; : : : ; vm; t1; : : : ; tn), with R a relation name of type [m; n], v1; : : : ; vm non-spatial
variables, and t1; : : : ; tn real variables or product variables;

– v1 = v2, with v1 and v2 non-spatial variables;
–
∑n

i= 1 aiti ! a with a1; : : : ; an; and a real algebraic numbers, t1; : : : ; tn real variables or
product variables, and !∈ {= ; !=;¡;6;¿;¿};

– t1 =pt2, with t1 and t2 real variables or product variables and p a product variable;
and

– t=
√

|p| with t a real variable or a product variable and p a product variable.
In addition, each product variable must be bound by an appropriate quanti!er.
In the context of sets of real numbers as interpretations for D1; : : : ; Dk and an appro-

priate linear spatial database, the semantics of an FO+ linear+PD1; : : : ; Dk formula is
the obvious one.
(ii) A PFOL program is of the form

D1←’1(x); : : : ;Dk ← ’k(x); {(v1; : : : ; vm; x1; : : : ; xn) |’(v1; : : : ; vm; x1; : : : ; xn)};

with D1; : : : ; Dk domain symbols, for i=1; : : : ; k, ’i an FO+ linear+P(D1; : : : ; Di−1)
formula, and ’(v1; : : : ; vm; x1; : : : ; xn) an FO+ linear+PD1; : : : ; Dk formula with free
non-spatial variables v1; : : : ; vm and free real variables x1; : : : ; xn.
The semantics of a PFOL program is as follows. First, D1; : : : ; Dk are consecutively

interpreted as !nite sets of real algebraic numbers. In this process, Di is interpreted
as the set {x |’i(x)} if this set is !nite, and as the empty set otherwise. 17 Then,
{(v1; : : : ; vm; x1; : : : ; xn) |’(v1; : : : ; vm; x1; : : : ; xn)} is interpreted in the obvious way.

In [50], it has been shown that PFOL is a proper extension of FO+ linear which
remains sound with respect to the FO+polylin queries.
We now propose an extension of FO+ linear with operators of which we will prove

that it has the same expressive power as PFOL.

De!nition 5.5. (1) The linear operator “line” 18 of type [0; 2]→ [0; 2] is de!ned by the
FO+poly formula (∃ u)(∃v)(R(u; v)∧ uy = vx). In words, the operator “line” returns
the union of all lines through some point of the input and the origin (0; 0). 19

17 Remember that !niteness of a semi-linear set is decidable (Proposition 3.2).
18 From their de!nitions, it is not obvious that “line” and “sqrt” are linear operators. However, since PFOL
can only express linear queries [50], the proof of Lemma 5.8 also entails a proof of the linearity of these
operators.
19 Notice that, if R(0; 0) is true, then the operator “line” returns the entire plane.
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(2) The linear operator “sqrt”17 of type [0; 1] → [0; 1] is de!ned by the FO+poly
formula (∃u)(R(u)∧ x2 = |u|∧ x¿ 0). In words, the operator “sqrt” returns those real
numbers that are the square root of a nonnegative real number in the input.

We now prove that FO+ linear+ {line, sqrt} has the same expressive power as
PFOL.
For this purpose, we need the following lemmas.

Lemma 5.6. Let R be of type [0; 1]. The predicate product(R;p; x; y) which evaluates
to true if R is !nite; p is in R; and y=px can be expressed in FO+ linear+ {line}
(whence in FO+ linear+ {line, sqrt}).

Proof. By Proposition 3.2, we can check in FO+ linear, whence in FO+ linear+ {line},
whether R is !nite. If R is !nite, p=0, and p is in R, then product(R;p; x; y) evaluates
to true if and only if y=0. We can thus su"ce by explaining what to do if R is !nite,
p !=0, and p is in R.
Let L= line({(x; y) | x=1∧R(y)∧y !=0}). Since the operand is !nite and does not

contain the origin of the plane, L is a !nite union of lines. By Proposition 3.18, we
can select in FO+ linear, whence in FO+ linear+ {line}, the line Lp going through
the point (1; p). Since this line also goes through the point (0; 0), it readily follows
that product(R;p; x; y) is true if and only if the point (x; y) is on Lp.

Lemma 5.7. Every PFOL-expressible query can be expressed in FO + linear + {line;
sqrt}.

Proof. Consider the PFOL program

D1←’1(x); : : : ;Dk←’k(x); {(v1; : : : ; vm; x1; : : : ; xn) |’(v1; : : : ; vm; x1; : : : ; xn)};

with D1; : : : ; Dk domain symbols, for i=1; : : : ; k, ’i an FO+ linear+P(D1; : : : ; Di−1)
formula, and ’ an FO+ linear+P(D1; : : : ; Dk) formula.
First, we show how to obtain FO+ linear+ {line, sqrt} expressions which compute

the domains D1; : : : ; Dk according to the semantics of PFOL. The FO+ linear+ {line,
sqrt} expressions are obtained by inductively translating the expressions ’1; : : : ; ’k to
FO+ linear+ {line, sqrt} expressions ’̃1; : : : ; ’̃k .
For the basis of this induction, we observe that ’1 is an FO+ linear expression,

whence also an FO+ linear+ {line, sqrt} expression. Let ’̃1 be the formula
!nite({(x) |’1(x)})∧’1, with “!nite” the FO+ linear query which decides whether
a semi-linear set is !nite. Clearly, ’̃1, evaluated in the standard manner, yields the
correct interpretation of D1, independent of whether {(x) |’1(x)} is !nite or not.
Now, assume that, for 16 i¡ k, there are FO+ linear+ {line, sqrt} expressions

’̃1; : : : ; ’̃i computing the domains D1; : : : ; Di according to the semantics of PFOL. Con-
sider the FO+ linear+P(D1; : : : ; Di) expression ’i+1. In ’i+1, we substitute every sub-
formula of the form (∃p∈Dj) , 16j6i, by (∃p)(’̃j(p)∧  ̃ ), where  ̃ is the formula
obtained from  as follows:
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• every occurrence of an atomic formula of the form pt1 = t2 is replaced by the FO+
linear + {line; sqrt} formula simulating product({(x) | ’̃j(x)};p; t1; t2)(Lemma 5.6);
and

• every occurrence of an atomic formula of the form t=
√

|p| is replaced by the
FO+ linear+ {line, sqrt} formula simulating (p¿ 0∧ product ({(x) | sqrt({(x)|
’̃j (x)})(x)}; t; t; p))∨ (p¡ 0∧ product({(x)|sqrt({(x)|’̃j(x)})(x)}; t; t;−p)):
We abbreviate the FO+ linear+ {line, sqrt} formula obtained in this way as ’̂i+1.

By Lemma 5.6, ’̂i+1 and ’i+1 are equivalent when evaluated in the standard man-
ner. Therefore, the FO+ linear+ {line, sqrt} expression ’̃i+1 = !nite({(x) | ’̂i+1(x)})∧
’̂i+1(x), evaluated in the standard manner, yields the correct interpretation of Di+1,
independent of whether {(x) |’i+1(x)} is !nite or not.
Thus, all domains can be computed in FO+ linear+ {line, sqrt}.
The only thing that remains is to show that the FO+ linear+P(D1; : : : ; Dk) ex-

pression ’ can be translated into an FO+ linear+ {line, sqrt} expression, for which, of
course, the same technique applies: every subformula (∃p∈Dj) , 16j6k, is replaced
by an FO+ linear+ {line, sqrt} formula (∃p)(’̃j(p)∧  ̃ ) in the way explained above.
The resulting FO+ linear+ {line, sqrt} formula clearly expresses the same query as the
original PFOL program.

Lemma 5.8. Every FO+ linear+ {line, sqrt}-expressible query can be expressed in
PFOL.

Proof. It su"ces to show that both “line” and “sqrt” can be simulated by a PFOL
program to establish the result. The main di"culty in doing so is that, in FO+ linear+
{line sqrt} both “line” and “sqrt” can take an in!nite input. However, it turns out to be
always possible to select a !nite number of points from the input such that the output
can be constructed from the result of the operator applied to this !nite set of points
and the general structure of the input.
Since the operator “line” takes a two-dimensional set as input, whereas the operator

“sqrt” takes a one-dimensional set as input, we start with the latter, simpler, case.
Thus, let R be of type [0; 1]. As observed above, the naive “solution” of using the

PFOL program D1 ← R(x); {(x) | (∃p∈D1)(x=
√

|p|)} fails, since R may be in!nite.
Since sqrt(R)(x) is equivalent to sqrt ({(x)|R(x)∧ x¿ 0})(x)∨ sqrt({(x)|R(−x)∧ x¿
0})(x), we assume in the following that R contains only nonnegative real numbers.
A semi-algebraic set, in particular also a semi-linear set, has only a !nite number of
connected components, whence R is either empty or a !nite union of isolated points,
intervals, and half-lines. If we apply the “sqrt” to the isolated points and the end points
of intervals and half lines in R, the output can be obtained from these by “!lling in”
the intervals and half lines appropriately. Thus, let D1 be the boundary of R, which
consists of all isolated points and end points of line segments and half lines of R.
Clearly, D1 is a !nite set which can be computed in FO+ linear (Proposition 3.1).
The following FO+ linear+P(D1) expression then yields sqrt(R):

{(x)|(∃p∈D1)(R(p)∧ x=
√

|p|)
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∨ (∃p1 ∈D1)(∃p2 ∈ D1)(∃y1)(∃y2)((∀z)(p1 ¡ z ¡ p2⇒R(z))

∧y1 =
√

|p1|∧y2 =
√

|p2|∧y1 ¡ x ¡ y2)

∨ (∃p∈D1)(∃y)((∀z)(p ¡ z⇒R(z))∧y=
√

|p|∧y ¡ x)

∨ (∃p∈D1)(∃y)((∀z)(p ¿ z⇒R(z))∧y=
√

|p|∧y ¿ x)}:

We now turn to the operator “line”, which takes a (possibly in!nite) two-dimensional
semi-linear set as input. Let R, of type [0; 2], be the input predicate. Rather than
providing the PFOL program, we explain how to construct it.
Since line(R) yields the entire plane if R contains the origin (0; 0), we can deal with

this case separately and assume for the remainder of the proof that R does not contain
the origin. We furthermore assume that R is bounded and explain afterwards which
changes must be made to the reasoning below if R is not necessarily bound.
Again since a semi-linear set has only a !nite number of connected components, R is

a !nite union of isolated points, intervals, and polygons. It is possible to compute these
isolated points, the end points of the intervals, and the corner points of the polygons,
which together are often called the special points of R, in [13]. Let S be the !nite set
of special points of R, augmented with the points (1; 0) and (0; 1) 20 . If present, we
remove the origin (0,0) from S. 21 Let D1 be the !nite set consisting of the coordinates
of points of S. Let L be the union of all the lines through the origin and a point of
S. Obviously, L can be computed by the PFOL expression

{(x; y) | (∃p∈D1)(∃q∈D1)(S(p; q) ∧ py = qx)}:

The lines of L induce a partition of the plane, consisting of the origin (which always
belongs to the output of line(R), except when R is empty), the open half-lines in
which the origin divides the lines of L, and the open convex angular sectors between
successive half-lines. The output of line(R) consists of the union of all the one- and
two-dimensional classes of this partition which have a non-empty intersection with R
and their mirror images with respect to the origin, augmented with the origin if R is
not empty.
The union of the open half-lines which have a non-empty intersection with R can

be computed by the PFOL expression

{(x; y) | (∃p∈D1)(∃q∈D2)(∃#)(∃&)(∃z1)(∃z2)(S(p; q)

∧ #¿0 ∧ &¿0 ∧ R(z1; z2) ∧ z1 = #p ∧ z2 = #q ∧ x= &p ∧ y= &q}:

The open convex angular sector de!ned by two non-collinear open half-lines consists
of all mid-points of a point of the !rst and a point of the second half-line. 22 Such

20 The reason for the addition of these two points will be explained a little later.
21 Notice that S may contain the origin (0; 0), even though R does not.
22 Notice that if we would have worked with lines rather than half-lines, this part of the proof would have
failed; the same construction applied to full lines does not yield the union of the relevant angular sector and
its mirror image with respect to the origin, but the entire plane.



460 L. Vandeurzen et al. / Theoretical Computer Science 254 (2001) 423–463

an angular sector is a class of the partition if the de!ning half-lines are classes of
the partition, and if no other half-line which is a class of the partition has a point in
common with the angular sector. Notice that, by the addition of the points (1; 0) and
(0; 1) to S, the partition is guaranteed not to contain angular sectors of 180◦, whence
the above observations can be used to construct a PFOL expression computing the
union of the open convex angular sectors which have a non-empty intersection with R.
Finally, to conclude the case where R is bounded, let U be the union of all one-

and two-dimensional classes of the partition which have a non-empty intersection with
R. Then the output of line(R) is computed by the PFOL expression

{(x; y) | (x=0 ∧ y=0 ∧ (∃u)(∃v)R(u; v)) ∨ U (x; y)

∨(∃z1)(∃z2)(U (z1; z2) ∧ x + z1 = 0 ∧ y + z2 = 0)}:

In recent work [50], the present authors showed that the above reasoning can be gener-
alized to unbounded semi-linear sets by considering “special points at in!nity”, which
are represented by pairs of directional numbers. (Conceptually, all semi-linear sets can
then be treated as if they were bounded.) It was shown that all the required construc-
tions can be simulated in PFOL. This completes the proof.

Lemmas 5.7 and 5.8 together yield the following conclusion.

Theorem 5.9. The linear spatial query languages PFOL and FO+linear+{line; sqrt}
have the same expressive power.

By examining the proofs of the previous lemmas, it also follows that the restriction
of PFOL in which square-root terms are disallowed is equivalent to FO+linear+{line}.
Alternatively, one may extend PFOL by adding cube-root terms, etc. One can easily
see that the above proofs generalize provided FO+linear+{line; sqrt} is extended by
operators corresponding to the added terms.
Of course, the above result does not settle the expressiveness of extensions of

FO+linear with operators in general. In particular, the question whether there exists an
extension of FO+linear with operators which captures precisely the FO+polylin queries
remains open.

6. Conclusions

In this paper, we studied languages that de!ne FO+polylin queries. Amongst these
languages, the most natural one is FO+linear.
For this language, we showed that, on the one hand, a wide range of useful complex

linear queries can be expressed in it, but, on the other, that equally important linear
queries, such as deciding collinearity or computing the convex closure, are not express-
ible. We also provided a powerful tool to prove the inexpressibility of linear queries
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in FO+ linear by reducing the inexpressibility of the query to the unde!nability of an
associated semi-algebraic set by linear constraints.
To overcome the limitations of FO+ linear, we considered extensions of FO+ linear

with FO+polylin-de!nable operators. De!ning such extensions is non-trivial, however,
as some naive extensions have the same expressive power as FO+poly. The crux
in de!ning sound extensions was requiring that the added operators can only be ap-
plied to set terms without free real variables. The possibilities of sound extensions of
FO+ linear were discussed, and the viability of the paradigm was illustrated by show-
ing that another linear language recently introduced by the authors using a completely
di#erent paradigm can be captured in FO+ linear extended with operators.
One of the quests in extending FO+ linear is !nding a syntactic query language

precisely capturing all FO+polylin queries. Dumortier and the present authors [13]
showed that such a language exists, but the language they presented is of no practical
value. One might wonder whether there exists a suitable set of operators O such that
FO+ linear+O precisely captures all FO+polylin queries, as such a language could
be more practical. This question, however, remains open.
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