AN INEQUALITY FOR MIXED L^p-NORMS

HARI BERCOVICI AND DIRK VAN GUCHT

Abstract. Consider a nonnegative measurable function f defined on $\Omega_1 \times \Omega_2$, where Ω_j is a probability space with probability measure μ_j . We prove the inequality

provided that $1 \leq p \leq 2$. The inequality fails in general if p > 2. It also fails if one of the measures μ_j has total mass greater than one. Curiously however, the inequality is true for all $p \in [1, \infty)$ if the measures μ_j are counting measures. This last fact follows from a subadditivity result proved by G. A. Raggio for *p*-entropies. Our inequality also has a formulation in terms of *p*-entropies.

Mathematics subject classification (2000): 94A17, 26D17. *Key words and phrases*: entropy, partition, refinement, probability measure.

REFERENCES

- [1] Z. DARÓCZY, Generalized information functions, Information and Control, 16, (1970), 36–51.
- [2] G. A. RAGGIO, *Properties of q-entropies*, Journal of Mathematical Physics, **36**, (1995), 4785–4791.
- C. TSALLIS, Possible generalizations of Bolzmann-Gibbs statistics, Journal of Statistical Physics, 52, (1988), 479–487.

