
Logical and Algorithmic Properties of

Stable Conditional Independence

Mathias Niepert a Dirk Van Gucht a Marc Gyssens b

aComputer Science Department, Indiana University, Lindley Hall 215,

150 S. Woodlawn Ave., Bloomington, IN 47405-7104, USA.

Email: {mniepert,vgucht}@cs.indiana.edu
bDepartment WNI, Hasselt University & Transnational University of Limburg,

Agoralaan, Bldg. D, B-3590 Diepenbeek, Belgium.

Email: marc.gyssens@uhasselt.be

Abstract

The logical and algorithmic properties of stable conditional independence (CI) as an
alternative structural representation of conditional independence information are in-
vestigated. We utilize recent results concerning a complete axiomatization of stable
conditional independence relative to discrete probability measures to derive perfect
model properties of stable conditional independence structures. We show that stable
CI can be interpreted as a generalization of Markov networks and establish a connec-
tion between sets of stable CI statements and propositional formulas in conjunctive
normal form. Consequently, we derive that the implication problem for stable CI
is coNP-complete. Finally, we show that Boolean satisfiability (SAT) solvers can
be employed to efficiently decide the implication problem and to compute concise,
non-redundant representations of stable CI, even for instances involving hundreds
of random variables.

Key words: conditional independence, graphical models, stable conditional
independence, computational complexity, concise representation

1 Introduction

Conditional independence is an important concept in many calculi for dealing
with knowledge and uncertainty in artificial intelligence. The notion plays a
fundamental role for learning and reasoning in intelligent systems. A condi-
tional independence (CI) statement speaks to the independence of two sets of
random variables relative to a third: given three mutually disjoint sets A, B,
and C of random variables, A and B are conditionally independent relative
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Fig. 1. An undirected graphical model over 4 variables representing the stable CI
structure {I(a, b|cd), I(c, d|ab)}. Please note that we always omit symmetric and
trivial CI statements.

to C if any instantiation of the variables in C renders the variables in A and
B independent. In other words, if we have knowledge about the state of C,
then knowledge about the state of A does not provide additional evidence for
the state of B and vice versa. We use the notation I(A, B|C) to specify this
independence condition.

When novel information becomes available in a probabilistic system, the set of
associated, relevant CI statements changes dynamically. However, some of the
CI statements will continue to hold, i.e., they remain stable under change in the
system. Technically, the notion of stability of a CI statement I(A, B|C), in the
context of a set of random variables S and a set of CI statements C, is defined
by requiring that, for every superset C ′ ⊇ C which is disjoint from A and B,
the CI statement I(A, B|C ′) also holds. In other words, the independence of
A and B relative to C is unaffected by adding random variables to C. Clearly,
this property does not hold in general. Adding variables to the set C may affect
the (in-)dependence of A and B. A special case for which the stability of the
CI statement I(A, B|C) is guaranteed is the situation where A ∪ B ∪ C = S.
(When A ∪ B ∪ C = S, the CI statement I(A, B|C) is said to be saturated.)

Among the most frequently used models for representing conditional inde-
pendence information are graphs, wherein the nodes correspond to random
variables and the edges encode the (in-)dependence information among the
variables. There are three main types of graphical models: undirected graphs,
directed graphs, and chain graphs. In this paper, we focus specifically on undi-
rected graphical models (also called Markov networks) since we will show that
the class of stable CI structures is a strict generalization of the class of CI
structures represented by Markov networks. Let S = {a, b, c, d} be a set of
random variables, and let G be the Markov network shown in Figure 1. Then,
G represents the CI statements I(a, b|cd) and I(c, d|ab). (In this paper, we use
the notation a1 · · ·an for the set {a1, . . . , an}.)

One of the useful properties of the existence of a stable CI statement I(A, B|C)
in a set of CI statements C is that, in a representation of C, it is not necessary
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to further represent CI statements of the form I(A, B|C ′), where C ′ is a strict
superset of C. This can lead to a substantial decrease in the number of CI
statements that need to be maintained in the system. The importance of
stable conditional independence for reducing the complexity of representation
of conditional independence structures has recently been established [1].

In this paper, we approach the paradigm of stable CI as a strict generalization
of Markov networks to represent and reason about conditional independence.
A good understanding of its logical and algorithmic properties will lead to
new theoretical insights and applications in the field of uncertain reasoning.
While several results regarding these properties exist [1,2,3], no study has
investigated these as comprehensively as it was done for unrestricted CI and
graphical models relative to the class of discrete probability measures [4]. In
this paper, we extend this study to stable conditional independence by utilizing
recent results concerning a finite sound and complete axiomatization of the
implication problem for stable CI statements, relative to discrete probability
measures [5]. In particular, we show that (1) every stable CI structure has
a perfect model, i.e., a discrete probability measure that satisfies all the CI
statements in C, but none other, (2) the number of distinct stable CI structures
grows at least double-exponentially with the number of random variables, and
(3) every set of CI statements represented by a Markov network is a set of
stable CI statements. We establish a direct connection between sets of stable
CI statements and propositional formulas in conjunctive normal form and use
this connection to show that the conditional independence implication problem
for stable conditional independence is coNP-complete. In light of these results,
we present experimental results that show how existing SAT solvers can be
employed to (1) decide instances of the stable CI implication problem and (2)
compute concise, non-redundant representations of stable CI structures, even
for instances involving hundreds of random variables.

2 Conditional Independence

Throughout this paper, S will be a non-empty finite set of random variables.

Definition 1 The expression I(A, B|C), with A, B, and C pairwise disjoint
subsets of S, is called a conditional independence (CI) statement over S.

The CI statement I(A, B|C) over S is called saturated if A ∪ B ∪ C = S.
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2.1 Markov Networks

Definition 2 A Markov network over a finite set S is an undirected graph
G with nodes corresponding to random variables in S. The conditional inde-
pendence statement I(A, B|C) is represented by G if every path in G between
a node in A and a node in B contains a node in C, or, equivalently, if C
separates A and B.

Each Markov network G over S represents a set of conditional independence
statements through this separation criterion. The set of CI statements rep-
resented by G will be denoted by C(G). Every set of CI statements C(G)
represented by a Markov network G will be called a Markov model.

Markov models can be completely axiomatized using the inference system
in Figure 4 [6]. The Markov network in Example 1 represents the set of CI
statements {I(a, b|cd), I(c, d|ab)}. Please note that we always omit symmetric
and trivial CI statements.

2.2 Satisfaction of a CI statement by a Probability Measure

In this section, we recall the notion of a probability measure satisfying a CI
statement.

Definition 3 A probability model over S = {s1, . . . , sn} is a pair (dom, P ),
where dom is a domain mapping that maps si to a finite non-empty domain
dom(si), 1 ≤ i ≤ n, and P is a probability measure having dom(s1) × · · · ×
dom(sn) as its sample space. We say that P is a binary probability measure
if, for each si, 1 ≤ i ≤ n, dom(si) = {0, 1}.

For A = {a1, . . . , ak} ⊆ S, we will say that a is a domain vector of A if
a ∈ dom(a1) × · · ·× dom(ak).

In what follows, we only refer to probability measures, keeping their underlying
probability models implicit.

Definition 4 Let I(A, B|C) be a CI statement over S and let P be a proba-
bility measure. We say that P satisfies I(A, B|C) if, for all domain vectors a,
b, and c of A, B, and C, respectively, P (c)P (a,b, c) = P (a, c)P (b, c).

Definition 5 Let S be a finite set of random variables. A probability measure
P is Markovian with respect to a Markov network G over S, if I(A, B|C) is
represented by G implies that P satisfies I(A, B|C). A probability measure P is
perfectly Markovian with respect to G if the converse implication holds as well.
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2.3 The Conditional Independence Implication Problem

Relative to the notion of satisfaction, we can now define the conditional inde-
pendence implication problem.

Definition 6 Let C be a set of CI statements over S, let c be a CI statement
over S, and let P be the class of discrete probability measures over S. We say
that C implies c relative to P, and write C |= c, if each probability measure in
P that satisfies the CI statements in C also satisfies the CI statement c. The
set {c | C |= c} will be denoted by C∗.

Definition 7 The conditional independence (CI) implication problem is the
problem of deciding the language

{(S, C, c) | C a set of CI statements over S, c a CI statement over S, C |= c}.

We can now define the notion of perfect models for sets of CI statements and
the notion of a CI structure.

Definition 8 Let C be a set of CI statements over S. C is a CI structure if
and only if C = C∗. Furthermore, we say that a probability measure P is a
perfect model for C if P satisfies all the CI statements in C∗ and none other.

3 Inference Systems for CI Implication Problems

Given the notion of a CI implication problem, it is common place to consider
inference rules and systems that are sound for these problems. An inference
rule (an inference system) is sound relative to the class of discrete probability
measures if it infers, given a set of CI statements C, only CI statements in C∗.
When an inference system can infer all CI statements in C∗, it is said to be
complete.

The best know sound inference system for the CI implication problem rela-
tive to the class of discrete probability measures is the semi-graphoid axiom
system [6]. We denote it by G and its inference rules are depicted in Figure 2.
Note, however, that system G is not complete. In fact, it is known that there
does not exist a finite set of sound inference rules that is sound and com-
plete for the implication problem on unrestricted CI statements [7]. It is also
unknown whether this implication problem is decidable.

For the implication problem for saturated CI statements, the situation is dif-
ferent. In Figure 3, system S is shown, which is a finite set of inference rules
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I(A, ∅|C) Triviality

I(A, B|C) → I(B, A|C) Symmetry

I(A, B ∪ D|C) → I(A, D|C) Decomposition

I(A, B|C ∪ D) & I(A, D|C) → I(A, B ∪ D|C) Contraction

I(A, B ∪ D|C) → I(A, B|C ∪ D) Weak union

Fig. 2. System G, the semi-graphoid axiom system, is sound, but not complete, for
the implication problem for unrestricted CI statements.

I(A, ∅|C) Triviality

I(A, B|C) → I(B, A|C) Symmetry

I(A ∪ D, B|C) & I(A, D|B ∪ C) → I(A, B ∪ D|C) Contraction

I(A, B ∪ D|C) → I(A, B|C ∪ D) Weak union

Fig. 3. System S is sound and complete for the CI implication problem for saturated
statements. Note that the inference rule contraction has a slightly different form
to accommodate saturated CI statements [4].

that is sound and complete for this implication problem relative to the class
of discrete probability measures [6].

For sets of CI statements represented by Markov networks, the situation is
yet different. Figure 4 depicts system M, which is a finite set of inference
rules that is sound and complete for the implication problem for sets of CI
statements represented by Markov networks, relative to the class of discrete
probability measures [6].

Let I be an inference system for CI statements. The derivability of a condi-
tional independence statement c from a set of conditional independence state-
ments C under the inference rules of system I is denoted by C )I c.

The closure of C under I, denoted CI+
, is the set {c | C )I c}.
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I(A, ∅|C) Triviality

I(A, B|C) → I(B, A|C) Symmetry

I(A, B ∪ D|C) → I(A, D|C) Decomposition

I(A, B|C) → I(A, B|C ∪ D) Strong union

I(A, B|C ∪ D) & I(A, D|B ∪ C) → I(A, B ∪ D|C) Intersection

I(A, B|C) → I(A, {d}|C) ∨ I({d}, B|C) Transitivity

Fig. 4. System M is sound and complete for the CI implication problem for CI
statements represented by Markov networks.

4 Stable Conditional Independence

When novel information becomes available to a probabilistic system, the set
of associated, relevant CI statements changes dynamically. However, some of
these CI statements will continue to be satisfied, i.e., they remain stable. The
paradigm of stable conditional independence, and some of its the properties,
were first investigated by Matúš [2], who named it ascending conditional in-
dependence, and later by de Waal and van der Gaag [1], who coined the term
stable conditional independence. Every set of CI statements can be partitioned
into its stable and unstable part. In this section, we will recall two different
characterizations of stable CI structures, one using a finite set of inference
rules, and the other using the lattice-inclusion property of CI statements [5].
We will harness these results to prove several important properties about sta-
ble CI. The set of inference rules in Figure 5 will be denoted by A. The
symmetry, decomposition, and contraction rules are part of the semi-graphoid
axioms [6] (see Figure 2). Strong union and strong contraction are additional
inference rules.

Stable independence can be defined relative to a set of CI statements [1,3].
However, we approach the paradigm of stable CI as a mechanism for the
succinct representation of conditional independence information, much like
graphical models are used for this purpose. Instead of assuming that every CI
statement is satisfied by a probability measure which is perfectly Markovian
with respect to a graphical model, we assume that every CI statement is
satisfied by a probability measure which is perfectly Markovian with respect
to a set of stable CI statements. Therefore, in the remainder of the paper, a set
of stable conditional independence statements will be any set of CI statements
that are implicitly known (i.e., assumed) to be stable. Whenever we say that
a set of CI statements is stable, we implicitly assume that C∗ satisfies the
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required condition. Hence, in general, a set of stable CI statements C can
be different from the set C∗. The motivation for this approach is to achieve
a structural representation of conditional independence information which is
broader than Markov networks but which still allows for efficient implication
testing and storage. The next definition formalizes this approach.

Definition 9 Let C be a set of CI statements. We say that C is a set of stable
CI statements, if for all I(A, B|C) ∈ C and for all C ′ ⊇ C we have that
I(A, B|C ′) ∈ C∗. Equivalently, a set of stable CI statements is a set of CI
statements for which the inference rule strong union (see Figure 4) is sound.
A stable CI structure is a set of stable CI statements C such that C = C∗.

The following result follows immediately from this definition.

Proposition 10 Let C be a set of saturated CI statements over S. Then C is
a set of stable CI statements over S.

In analogy to the definition of a (perfectly) Markovian probability measure
with respect to graphical models (Definition 5), we can define the concept of
a (perfectly) Markovian probability measure with respect to stable CI struc-
tures.

Definition 11 Let C be a stable CI structure. A probability measure P is
Markovian with respect to C if I(A, B|C) ∈ C implies that P satisfies I(A, B|C).
A probability measure P is perfectly Markovian with respect to C if the con-
verse implications holds as well. We say that a probability measure is a perfect
model for C if and only if it is perfectly Markovian with respect to C.

4.1 The Implication Problem for Stable Conditional Independence

Here, we recall two characterizations of the implication problem for stable CI
statements (the stable CI implication problem), one in terms of a finite system
of inference rules, and another using the lattice-inclusion property [5]. We will
use these results to show that each stable CI structure has a perfect model
with respect to discrete probability measures, but not with respect to binary
discrete probability measures.

A powerful tool in deriving results about the CI implication problem is the
association of semi-lattices with CI statements [5]. Given subsets A and B of
S we write [A, B] for the lattice {U | A ⊆ U ⊆ B}.

Definition 12 Let I(A, B|C) be a CI statement over S. The semi-lattice as-
sociated with I(A, B|C), and denoted by L(A, B|C) is the set [C, S]− ([A, S]∪
[B, S]).
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I(A, ∅|C) Triviality

I(A, B|C) → I(B, A|C) Symmetry

I(A, B ∪ D|C) → I(A, D|C) Decomposition

I(A, B|C) & I(A, D|B ∪ C) → I(A, B ∪ D|C) Contraction

I(A, B|C) → I(A, B|CD) Strong union

I(A, B|C) & I(D, E|AC) & I(D, E|BC) Strong contraction

→ I(D, E|C)

Fig. 5. The inference rules of system A.

Example 13 Let S = {a, b, c, d} and consider the CI statement I(a, b|c).
Then L(a, b|c) = [c, S] − ([a, S] ∪ [b, S]) = {c, cd}.

We will often write L(c) to denote the semi-lattice associated with a CI state-
ment c and L(C) to denote the union of semi-lattices,

⋃

c′∈C L(c′), associated
with a set of CI statements C. We can now state the two characterizations for
the conditional independence implication problem for stable CI statements
relative to the class of discrete probability measures [5].

Theorem 14 Let C be a set of stable CI statements over S and let c be a CI
statement over S. Then the following statements are equivalent

(a) C |= c;
(b) C )A c; and
(c) L(C) ⊇ L(c).

Example 15 Let S = {a, b, d, e}, let C = {I(a, b|∅), I(d, e|a), I(d, e|b)} be a
set of stable CI statements, and let c = I(d, e|∅). We know, by strong con-
traction, that C )A c and, therefore, C |= c by Theorem 14. Now, L(C) =
{∅, d, e, de} ∪ {a, ab} ∪ {b, ab} = {∅, a, b, d, e, ab, de} ⊇ {∅, a, b, ab} = L(c).

One might expect that, based on the definition of stable CI, it would be suf-
ficient to have the inference rule strong union in system A but not strong
contraction. However, as the following example demonstrates, system A with-
out strong contraction is not complete for the stable CI implication problem.

Example 16 Let S = {a, b, c, d} and consider the set of stable CI statements
C = {I(a, b|∅), I(a, b|c), I(a, b|d), I(a, b|cd), I(c, d|a), I(c, d|b), I(c, d|ab)}. We
know that I(c, d|∅) is implied by C [8]. However, one can verify that I(c, d|∅)
cannot be derived from C under A without the rule strong contraction.
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The next result follows from the existence of discrete perfect models with
respect to CI statements [4], a result which was later strengthened by [9].

Proposition 17 For every stable CI structure C, there exists a discrete prob-
ability measure P such that P is a perfect model for C.

However, the previous result does not hold for the class of binary discrete
probability measures.

Proposition 18 There exists a stable CI structure for which no binary dis-
crete probability measure is a perfect model.

Proof: Let S = {a, b, c} and let C = {I(a, b|∅), I(a, b|c)}. We have that
L(a, b|∅) = {∅, c} and L(a, b|c) = {c}. Now, since L(a, c|∅) = {∅, b} and
L(b, c|∅) = {∅, a}, we have by Theorem 14 (c) that neither I(a, c|∅) nor I(b, c|∅)
are implied by C. Hence, C is a stable CI structure. However, we know that
every binary probability measure that satisfies the CI statements in C also
satisfies either I(a, c|∅) or I(b, c|∅) [4]. Thus, no binary probability measure is
a perfect model for C.

The combination of these result shows that the paradigm of stable CI has the
same perfect model properties as unrestricted CI.

4.2 Markov Networks and Stable Conditional Independence

The primary goal of this section is to relate stable conditional independence
to Markov networks. In particular, we will show that every set of CI state-
ments represented by a Markov network is a stable CI structure. Consequently,
Markov networks are a specialization of the more general notion of stable con-
ditional independence.

Theorem 19 Let G be a Markov network over S. Then the set of CI state-
ments represented by G, i.e., C(G), is a stable CI structure.

Proof: It is well-known that strong union is a sound inference rule for sepa-
ration in undirected graphs [10] (see Figure 4). In addition, it can be verified
that the inference rule strong contraction is sound for separation in undirected
graph. Thus, inference system A is sound for separation in Markov networks
and the statement of the theorem follows.

Corollary 20 For every Markov network G there exists a stable CI structure
C, and every discrete probability measure that is (perfectly) Markovian w.r.t.
G satisfies the elements in C (and none other).
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general CI structures 

stable CI structures 

Markov models 

saturated CI structures 

Fig. 6. Inclusion relationships between different representations of conditional in-
dependence. Every Markov model is a stable CI structure (Theorem 19). Every
saturated CI structure is trivially a stable CI structure.

Theorem 19 implies that the notion of stable conditional independence is a
generalization of Markov networks. In what follows, we will investigate how
much broader this notion is compared to such networks. First, we show that
there exists a stable CI structure that cannot be represented by a Markov
network.

Proposition 21 There exists a stable CI structure C over a set S, such that
for each Markov network G over S, C ,= C(G).

Proof: Let S = {a, b, c, d} and let C = {I(a, b|cd), I(a, d|bc)} be a set of
stable CI statements. We have that L(a, b|cd) = {cd} and L(a, d|bc) = {bc}.
Hence, by Theorem 14 (c), no other CI statement is implied by C. Thus, C is
a stable CI structure. However, every Markov network that represents these
two CI statements also represents the CI statement I(a, bd|c) by the inference
rule intersection (see Figure 4) which is sound for separation in undirected
graphs [10]. Thus, the class of all CI structures represented by the class of
Markov networks is a strict subclass of the class of stable CI structures.

Figure 6 depicts some relationships between different structural representa-
tions of conditional independence information. Please note that each saturated
CI structure is trivially a stable CI structure.

4.3 Some Combinatorics about Stable Conditional Independence

In this section, we will show, given a set of random variables S, that the number
of distinct stable conditional independence structures grows at least double-
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exponentially. This shows analytically that stable conditional independence
can represent a much broader class of CI structures compared to undirected
models, since there can only be 2(|S|(|S|−1))/2 different undirected graphical
models over a set of random variables S.

Lemma 22 Let S be a finite set of discrete random variables. Then, the num-
ber of distinct stable CI structures dS over S is at least

dS ≥
|S|−2
∑

i=0

(2(|S|
2 )(|S|−2

i ) − 1).

Proof: Let S be a finite set, let V ⊆ S with |V | = |S| − 2, and let U ⊆ V .
For every lattice [U, V ], there exists a stable CI structure C (for instance,
C = {I(u, v|U ′) | U ′ ⊇ U, {u, v} = S − V }) such that L(C) = [U, V ]. Consider
the set DS

i = {[U, V ] | |V | = |S| − 2, |U | = |S| − 2 − i, U ⊆ V ⊆ S}. There

are
(

|S|
2

)

different subsets of S of size |S| − 2. Each of these subsets V has
(

|S|−2
|S|−2−i

)

=
(

|S|−2
i

)

different subsets of size |S| − 2 − i. Hence, we have that

|DS
i | =

(

|S|
2

)(

|S|−2
i

)

. Now, for every i = 0...(|S| − 2), each non-empty subset

of the set DS
i corresponds to a set of stable CI statements whose union of

semilattices is distinct from the union of semilattices of all other subsets of
DS

i , and, in addition, whose union of semilattices is also distinct from the
union of semilattices of all non-empty subsets of every DS

j with i ,= j. Thus,
by Theorem 14, each of the non-empty subsets of DS

i gives rise to a new stable

CI structure. Hence, from each DS
i we get 2(|S|

2 )(|S|−2
i ) − 1 distinct stable CI

structures. Since i ranges from 0 to |S|−2 the statement of the lemma follows.

Example 23 For |S| = 3 there are 8 Markov networks, 22 unrestricted [7],
and 14 stable CI structures. For |S| = 4 there are 64 Markov networks [7],
18,478 unrestricted [11], and at least 4,221 distinct stable CI structures. For
|S| = 5 there are at least 2,147,485,692 distinct stable CI structures.

Using Lemma 22, we can show that the number of stable CI structures grows
double-exponentially with the size of S.

Theorem 24 The number of stable CI structures over a finite set S grows at
least double-exponentially with the size of S.

Proof: Let S be a finite set and assume without loss of generality that |S|−2

is even. It is known that
(

n
k

)

≥ (n/k)k and, therefore,

|S|−2
∑

i=0

2(|S|
2 )(|S|−2

i ) ≥ 2(|S|
2 )( |S|−2

(|S|−2)/2) ≥ 2(|S|
2 )2(|S|−2)/2

.
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Now, by Lemma 22, we have that the number of stable CI structures is greater

than or equal to 2(
|S|
2 )2(|S|−2)/2

− 1. The proof is analogous when |S|− 2 is odd,
where we use .(|S|− 2)/2/ instead of (|S|− 2)/2.

5 Computational Complexity of the Stable CI Implication Problem

Recall that the stable conditional independence implication problem, denoted
here as STABLE-IMPLICATION, is the problem of deciding, given a set of random
variables S, a set of stable CI statements C, and a CI statement c, whether C
implies c relative to the class of discrete probability measures. In this section,
we will show that STABLE-IMPLICATION is coNP-complete. Furthermore, in
Section 6, we will be able to prove that a linear-time reduction exists from
STABLE-IMPLICATION to the unsatisfiablity problem, here denoted as UNSAT,
for propositional logic formulas over variables that correspond to the random
variables in S. This permits the use of SAT solvers to decide instances of
STABLE-IMPLICATION. In Section 7, we present experimental results which
show how such instances, even with hundreds of variables, can be decided
efficiently.

First, we need to introduce the notion of minterms. Minterms are certain
propositional formulas associated with subsets of a set of variables.

Definition 25 Let T be a set of propositional variables. Then, for each X ⊆
T , the minterm associated with X, and denoted by X, is the propositional
formula

∧

a∈X a ∧
∧

b∈T−X ¬b.

Let Φ be a propositional formula over T . The minset of Φ, denoted minset(Φ),
is the set {X | X |=prop Φ}, where |=prop denotes the logical implication relation
for propositional logic. The negative minset of Φ, denoted negminset(Φ), is the
set minset(¬Φ).

We will now isolate a special class of propositional formulas.

Definition 26 Let T be a set of propositional variables. Then 3-CNFV(T ) de-
notes the set of all CNF propositional formulas over the variables in T in which
the clauses are restricted to be of the form x∨ y, ¬x∨ y ∨ z, ¬x∨¬y ∨ z, and
¬x ∨ ¬y ∨ ¬z, where x, y, and z are variables in T .

Proposition 27 Let 3SAT-CNFV denote the satisfiability problem for 3-CNFV(T )
parametrized over sets T of propositional variables. Then, 3SAT-CNFV is an NP-
complete problem.

Proof: Clearly, 3SAT-CNFV is in NP. The hardness of 3SAT-CNFV can be estab-
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lished via a reduction from the standard 3SAT problem. Every clause in 3SAT

of the form x ∨ y ∨ z is mapped to the formula (x ∨ y ∨ ¬w) ∧ (z ∨ w), where
w is a new variable. All other clauses in 3SAT are retained. This reduction is
possible in polynomial time and preserves satisfiability.

Next, we defined a polynomial-time computable reduction from formulas in
3-CNFV to sets of non-trivial CI statements.

Definition 28 Let T be a set of propositional variables and let S = T ∪{r, s}
with r /∈ T and s /∈ T . Let T (S) denote the set of all CI statements over S.
For a formula Φ in 3-CNFV(T ), let clauses(Φ) denote the set of clauses in Φ.
Then f : 3-CNFV(T ) → 2T (S) is defined as follows. For formula Φ,

f(Φ) =
⋃

c∈clauses(Φ)

f(c),

with 1

f(x) = {I(x, v|∅) | v ∈ S − {x}};

f(¬x) = {I(u, w|x) | u, w ∈ S − {x}, u ,= w};

f(x ∨ y) = {I(x, y|∅)};

f(¬x ∨ y) = {I(y, v|x) | v ∈ S − {x, y}};

f(¬x ∨ ¬y) = {I(v, w|xy) | v, w ∈ S − {x, y}, v ,= w}

f(¬x ∨ y ∨ z) = {I(y, z|x)};

f(¬x ∨ ¬y ∨ z) = {I(z, v|xy) | v ∈ S − {x, y, z}};

f(¬x ∨ ¬y ∨ ¬z) = {I(v, w|xyz) | v, w ∈ S − {x, y, z}, v ,= w}.

Notice that the mapping f can be computed in polynomial time and that for
each formula Φ, for each clause c ∈ clauses(Φ), and for each X ⊆ T , we have
that X ∈ L(f(c)) if and only if X |=prop ¬c.

Example 29 Let T = {a, b, c}, let S = T ∪ {d, e} and let Φ = (a∨ c)∧ (¬a∨
¬b ∨ c). Then

1 To simplify the mapping, we assume that every formula in 3-CNFV(T ) is prepro-
cessed to transform clauses with duplicate literals (e.g., !∨! or ¬!∨¬!∨¬!) into their
simplified forms (here: ! and ¬!). Of course, this preprocessing step is computable
in polynomial time.
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f(Φ) = f(a ∨ c) ∪ f(¬a ∨ ¬b ∨ c)

= {I(a, c|∅)} ∪ {I(c, d|ab), I(c, e|ab)}
= {I(a, c|∅), I(c, d|ab), I(c, e|ab)}.

Furthermore,

L(f(Φ))= {∅, b, d, e, bd, be, de, bde, ab, abe, abd} and

negminset(Φ) = {X | X = ∅ ∨ X = {b} ∨ X = ab} = {∅, b, ab}.

We can now state the main result of this section.

Theorem 30 STABLE-IMPLICATION is coNP-complete.

Proof: We first show that the co-problem of STABLE-IMPLICATION is in NP.
Let C be a set of stable CI statements over S and let c be a CI statement over
S. Since, by Theorem 14, C ,|= c if and only if L(C) ! L(c), it is sufficient
to guess X ∈ L(c) − L(C) and then verify in polynomial time that, for all
I(A, B|C) ∈ C, one has that (X ⊇ A) ∨ (X ⊇ B) ∨ (X ! C).

To show the hardness of STABLE-IMPLICATION we use a reduction from 3SAT-CNFV.
Let T be a set of propositional variables, let S = T ∪{r, s} with r /∈ T , s /∈ T ,
let f be the function from Definition 28, and let Φ ∈ 3SAT-CNFV(T ). Then we
have the following:

(1) negminset(Φ) ⊆ L(f(Φ)); and

(2) Φ is a contradiction if and only if L(I(r, s|∅)) ⊆ L(f(Φ)).

To show (1), let X ∈ negminset(Φ). Then, there exists a clause c in clauses(Φ)
such that X |=prop ¬c. But then, there exists I(x, y|U) ∈ f(c) such that
X ⊇ U , x /∈ X and y /∈ X because otherwise X |=prop c. It follows that
X ∈ L(f(c)) and, therefore, X ∈ L(f(Φ)). To show (2), let Φ be a contra-
diction. Notice that Φ is a contradiction if and only if negminset(Φ) = 2T .
Now, L(I(r, s|∅)) = 2T = negminset(Φ) ⊆ L(f(Φ)), where the last inclusion
follows from (1). But then, by Theorem 14, Φ is a contradiction if and only if
f(Φ) |= I(r, s|∅). Since f is computable in polynomial time, the result follows.

The logical and algorithmic properties of unrestricted CI, stable CI, saturated
CI, and Markov models are summarized in Figure 7.
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Property of CI Un- Stable Saturated Markov

restricted models

Finite, complete No [12] Yes Yes [4] Yes [10]

axiomatization

Implication problem ? coNP-com. P [4] ?

Perfect models Yes [10] Yes Yes [4] Yes [10]

Perfect binary models No [4] No ? ?

Fig. 7. Summary of properties of conditional independence.

6 Implication Testing Using Satisfiability Solvers

In this section, we show that every set of CI statements can be reduced to
a propositional formula in linear time. This, together with the results from the
previous section, allows us to employ SAT solvers to decide STABLE-IMPLICATION.
Furthermore, we will show experimentally that numerous instances of the sta-
ble CI implication problem can be decided efficiently, even if several hundreds
of random variables are involved.

Definition 31 Let C be a set of CI statements over S, and let PROP(S) be
the set of propositional formulas over variables in S. Let T (S) denotes the set
of all CI statements over S. The mapping g : 2T (S) → PROP(S) is defined by
g(C) =

∧

c∈C g(c), and g(I(A, B|C)) =
∧

a∈A a ∨
∧

b∈B b ∨
∨

c∈C ¬c, for each CI
statement I(A, B|C) in C.

The mapping g can be computed in linear time in the size of C. Now, using
this mapping we can state the following theorem.

Theorem 32 Let C be a set of stable CI statements over S and let c be a CI
statement over S. Then C |= c if and only if g(C) |=prop g(c).

Proof: We will again use the concepts minset and negminset introduced in
Definition 25. Let C be a set of CI statements and let c be a CI statement.
One can verify that L(C) = negminset(g(C)) and L(c) = negminset(g(c)).
By Theorem 14, we have that C |= c if and only if L(C) ⊇ L(c). Now, the
statement of the theorem follows.

Example 33 Let S = {a, b, d, e}, let C = {I(a, b|∅), I(d, e|a), I(d, e|b)}, and
let c = I(d, e|∅). We have g(C) = (a ∨ b) ∧ (d ∨ e ∨ ¬a) ∧ (d ∨ e ∨ ¬b) and
g(c) = d ∨ e. We also have g(C) |=prop g(c) if and only if g(C) ∧ ¬g(c) is not
satisfiable. Now, g(C)∧¬g(c) = (a∨ b)∧ (d∨ e∨¬a)∧ (d∨ e∨¬b)∧¬d∧¬e.
This formula is a contradiction. Hence, C |= c by Theorem 32.
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6.1 Concise Representation of Stable CI Structures

In this section, we study the notion of an irredundant equivalent subset of a
set of stable CI statements. We will use this notion to represent a stable CI
structure more concisely. For this purpose, we will adopt terminology which
was recently introduced in the context of redundancy of propositional formulas
in conjunctive normal form [13].

Definition 34 A set of CI statements C over S is irredundant if C−{c} " c,
for all c ∈ C. Otherwise, it is redundant.

A related definition is that of an irredundant equivalent subset. Note that a
set of stable CI statements may have several different irredundant equivalent
subsets and that the cardinality of these sets can differ.

Definition 35 Let C be a set of stable CI statements over S. A set of stable
CI statements C′ is an irredundant equivalent subset of C if and only if

(1) C′ ⊆ C;
(2) C′ |= c for all c ∈ C; and
(3) C′ is irredundant.

Example 36 Let S = {a, b, c} and let C = {I(a, b|∅), I(a, b|c)}. Then, C′ =
{I(a, b|∅)} is an irredundant equivalent subset of C.

We now have the following property.

Proposition 37 Let C be a set of CI statements over S. Then C is irredundant
if and only if for all c in C we have that g(C−{c})∧¬g(c) is satisfiable, where
g is the mapping defined in Definition 31.

7 Experimental Results

In a first experiment, we randomly generated instances of the stable CI impli-
cation problem with up to 400 variables. We then used the mapping g from
Definition 31 to transform instances of the implication problem for stable CI
into instances of the unsatisfiability problem of propositional logic (UNSAT),
to which we applied a SAT solver. We used MiniSat 2 by Niklas Eén and
Niklas Sörensson on a Pentium4 dual-core Linux system for the experiments.
The performance of the SAT solver is quite remarkable. Figure 8 shows the

2 http://minisat.se
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variables 50 100 200 300 400

time [ms] 740 1523 3362 5627 7076

Fig. 8. Average time (in milliseconds) needed to decide the implication problem for
different numbers of variables and 100,000 antecedents.

irredundant-subset (C : set) C′ : set

C′ := C

for each c ∈ C′

begin

if g(C′ − {c}) ∧ ¬g(c) not satisfiable

then C′ := C′ − {c}

end

return C′

Fig. 9. A function to compute an irredundant equivalent subset.

average time (out of 10 tests) needed to decide the implication problem C |= c
for |C| = 100, 000 and different numbers of variables.

The goal of the second experiment was to determine the average size of irredun-
dant equivalent subsets of a randomly generated set of stable CI statements.
The algorithm in Figure 9 is based on Corollary 37. It takes as input a set
of stable CI statements C and returns an irredundant equivalent subset of C
based on several satisfiability tests. For each number of variables from 5 to
25 we randomly created sets of 500 CI statements and determined the size of
the irredundant equivalent subsets using the algorithm. Figure 10 shows the
average size of 1000 different runs. As one can expect, the fewer variables there
are, the smaller is the irredundant equivalent subset. For the 500 satisfiability
tests made to compute an irredundant equivalent subset, the algorithm took
at most 1100 ms, where the majority of the time was spent on unsatisfiable
instances of the problem. This amounts on average to 2ms per satisfiability
test for sets of 500 CI statements.
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Fig. 10. Size of irredundant equivalent subset of a set of initially 500 stable CI
statements for different numbers of attributes.

8 Discussion and Future Work

We used a finite complete axiomatization of stable conditional independence to
show that the class of stable conditional independence structures has the same
perfect model properties as the class of unrestricted conditional independence
structures. In addition, we proved that stable conditional independence can
be interpreted as a generalization of Markov models in that the class of stable
CI structures is a strict superset of the class of CI structures represented by
Markov networks.

Many procedures that learn graphical models are based on the data faith-
fulness assumption (see for example [7]). The data faithfulness assumption
states that data are “generated” by a probability measure which is perfectly
Markovian with respect to an instance of the class of Markov networks un-
der consideration. Now, learning methods based on these procedures are only
safely applicable if the data faithfulness assumption is guaranteed. While the
data faithfulness assumption is not guaranteed for the class of stable CI struc-
tures, we have, by Theorem 24, that the number of stable CI structures grows
double-exponentially with the size of S. Therefore, more probability measures
(as compared to Markov models) are perfectly Markovian with respect to
some stable CI structure. On one hand, this implies that a reasonable graph-
ical representation of stable CI is unlikely, using arguments similar to those
made in [7] (page 63). On the other hand, it shows that the class of stable
CI structures is the broadest and only double-exponentially growing class of
CI structures for which a complete finite axiomatization using inference rules
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and an implication algorithm are known. We also know that this class of CI
structures includes the class of all CI structures represented by Markov net-
works and that there exists an interesting, direct connection to propositional
logic. Furthermore, we have demonstrated that SAT solvers can be used to
efficiently decide the implication problem for stable conditional independence,
even for instances involving large numbers of random variables. These results
allow for a non-redundant, concise representation of conditional independence
information using irredundant equivalent subsets of stable CI structures.

In addition to the aforementioned possible applications, stable CI can also be
used as part of a probabilistic system that keeps track of both the stable and
non-stable part as in [1]. Our results can be leveraged to store information
about conditional independencies more efficiently, using irredundant equiva-
lent subsets computed by the algorithm in Figure 9.

Future research should be concerned with the development of algorithms that
can learn stable CI structures from data. We believe that methods similar to
those used to learn the structure of Markov networks, harnessing independence
tests and inference rules[14], can be applied to this problem. An additional
interesting research challenge would be probabilistic inference in the context
of stable conditional independence.
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