
Theory Comput Syst (2009) 44: 590–619
DOI 10.1007/s00224-008-9110-5

Structural Recursion as a Query Language on Lists
and Ordered Trees

Edward L. Robertson · Lawrence V. Saxton ·
Dirk Van Gucht · Stijn Vansummeren

Published online: 15 April 2008
© Springer Science+Business Media, LLC 2008

Abstract XML query languages need to provide some mechanism to inspect and
manipulate nodes at all levels of an input tree. We investigate the expressive power
provided in this regard by structural recursion. In particular, we show that the combi-
nation of vertical recursion down a tree combined with horizontal recursion across a
list of trees gives rise to a robust class of transformations: it captures the class of all
primitive recursive queries. Since queries are expected to be computable in at most
polynomial time for all practical purposes, we next identify a restriction of structural
recursion that captures the polynomial time queries. We also give corresponding re-
sults for list-based complex objects.

Keywords Structural recursion · Primitive recursion · XML · Complex objects ·
Database

S. Vansummeren is a postdoctoral Fellow of the Research Foundation—Flanders (FWO).

E.L. Robertson · D. Van Gucht
Indiana University, Bloomington, IN, USA

E.L. Robertson
e-mail: edrbtsn@cs.indiana.edu

D. Van Gucht
e-mail: vgucht@cs.indiana.edu

L.V. Saxton
University of Regina, Regina, SK, Canada
e-mail: saxton@cs.uregina.ca

S. Vansummeren (!)
Hasselt University and Translational University of Limburg, 3560 Diepenbeek, Belgium
e-mail: stijn.vansummeren@uhasselt.be

mailto:edrbtsn@cs.indiana.edu
mailto:vgucht@cs.indiana.edu
mailto:saxton@cs.uregina.ca
mailto:stijn.vansummeren@uhasselt.be

Theory Comput Syst (2009) 44: 590–619 591

1 Introduction

Over the past few years, the ordered, node-labeled tree data model of XML has
emerged as the standard format for representing and exchanging data on the web. Of-
ten, there is no a priori bound on the width and depth of such trees. As such, an XML
query language needs to provide some mechanism to inspect and manipulate nodes at
all levels. XQuery, the standard XML query language developed by the World Wide
Web Consortium [4, 14], uses recursion for this purpose. For example, to compute
the table of contents of books in which sections can be arbitrarily nested, one would
write:

function toc(t) {
for s in t /section return <section>{ s/title, toc(s) }</section>

};

<toc> toc(book)</toc>

Here, toc is a recursive function returning for each section child s of its input tree
t a new section node containing the title and table of contents of s.

XQuery allows arbitrary recursive function definitions, resulting in a Turing com-
plete language. Turing completeness is an undesirable property for a query lan-
guage however, as it makes optimization difficult and allows non-terminating queries.
Therefore, it is desirable to look for suitable restrictions of arbitrary recursion in
XQuery. Non-termination can be prevented by closely tying recursion to the struc-
ture of the data being operated upon, i.e., by restricting to structural recursion. For
example, a structural recursive function computing on a tree t can only recursively
call itself on the children of t . The function toc defined above is an example of such
structural recursion. Similarly, a structural recursive function computing on a list l

can only recursively call itself on the tail of l. A typical example of such a structural
recursion is the list reversal function rev:

function rev(l) { if empty(l) then l else rev(tl(l)), hd(l) };

Here hd returns the head of a nonempty list, tl returns the tail of a nonempty list, and
the comma operator is concatenation of lists. As in XQuery, we assume in this exam-
ple that the single item returned by hd(l) is the same as the singleton list containing
that item.

In this article, we study the properties of structural recursion as a candidate re-
placement of arbitrary recursion in XQuery. In particular, we study the combina-
tion of vertical structural recursion down trees and horizontal structural recursion
across lists of trees (as trees and lists of trees both naturally occur in the XQuery data
model [4, 14]).

Structural recursion is an important primitive in database theory. It has been used
to query (nested) collections based on sets, or-sets, pomsets, bags, and lists [8, 19,
25, 27]; unordered trees and graphs [7]; and sequences and text documents [5]. Unre-
stricted structural recursion leads to highly expressive query languages. For example,
Buneman et al. have shown [8] that structural recursion on nested relations is equiv-
alent to the powerset algebra of Abiteboul and Beeri [1], which by a result of Hull

592 Theory Comput Syst (2009) 44: 590–619

and Su, captures exactly the class of elementary nested relational queries [24] (i.e.,
the queries with hyper-exponential time data complexity). Furthermore, Immerman et
al. [25] and Suciu and Wong [30] have shown that, in the presence of object invention,
the class of functions F : N × · · · × N → N representable with structural recursion
on sets coincides with the class of primitive recursive functions [6]. The resulting
language is hence strictly more powerful than the elementary queries. This result was
later extended to structural recursion on (nested) bags by Libkin and Wong [27].

Since tree construction is a form of object invention, it should come as no surprise
that a similar result also holds for structural recursion in XQuery. We actually obtain
a slightly stronger result than that of Immerman et al.: not only does the class of
functions F : N × · · · × N → N representable in our language coincide with the class
of primitive recursive functions, but the class of expressible queries coincides with
the class of queries that have primitive recursive time data complexity.

From a complexity point of view, structural recursion is hence too powerful a
primitive, as queries are expected to be computable in at most polynomial time for all
practical purposes. A restriction of structural recursion to polynomial time is there-
fore desirable. Nevertheless, this restriction should still enable all polynomial time
queries.

The first such restriction was given by Immerman et al. for structural recursion
on sets, by disallowing all forms of nesting [25]. The resulting language captures
exactly the polynomial time flat relational queries. Their restriction does not transfer
to nested data models or data models with duplicates such as bags or lists, however.
As such, it is not directly applicable to structural recursion in XQuery. A different
restriction technique, known as bounded recursion dates back to Cobham [11], and
was applied to structural recursion on flat lists by Grumbach and Milo [19]. Bounded
recursion is best explained by means of an example. Consider the unbounded function
that computes a list of size exponential in the size of l:

function explist(l) {if empty(l) then [1] else explist(tl(l)),explist(tl(l))};

Here, [1] constructs the singleton list containing the integer 1. Since explist generates
exponential output, it certainly cannot be evaluated in polynomial time. Bounded
recursion prevents the expression of explist by requiring each recursive function de-
finition to halt computation whenever the result becomes larger than some explicitly
given size bound b. That is, with bounded recursion, explist is required to have the
following form:

function explist′(l, b) {
if empty(l) then l else

let r = explist′(tl(l), b),explist′(tl(l), b) in
if sizeof (r) ≤ sizeof (b) then r else explist′(tl(l), b)

};

In particular, the size of explist′(l, b) is always bounded by the size of b. Since the
value for b will ultimately be computed by an expression that does not involve recur-
sion, the size of recursively computed outputs is always polynomial, and this guaran-
tees that all expressible queries can be evaluated in polynomial time (see [11, 19] for
details). This way of bounding recursion has also been applied to query languages
over nested relations and bags based on inflationary fixpoint operators [12, 28, 29].

Theory Comput Syst (2009) 44: 590–619 593

Although bounded recursion is useful for capturing polynomial time, it is unsatis-
factory from a practical point of view, as the programmer is required to give explicit
complexity bounds upon each recursive function invocation. More intrinsic restric-
tions of structural recursion on the bitstrings by means of predicative recursion were
proposed by Bellantoni and Cook [3] and Leivant [26]. Their restrictions were later
generalized to arbitrary recursive functions operating on ranked trees generated by
a free term algebra by Caseiro [9]. Her techniques were later explained by means
of a type system based on linear and modal logic in the context of a higher-order
functional programming language by Hofmann [20, 22].

In this article, we apply Caseiro’s observations and ideas to structural recursion
operating on lists and unranked trees to obtain an intrinsic restriction that captures
exactly the class of polynomial time queries. In particular, we prevent the definition
of explist above by disallowing all forms of doubling like explist(tl(l)),explist(tl(l)).
Although this restriction is semantical in nature, and therefore undecidable, we use it
to derive an effective syntax.

For the formal development of our results we find it convenient to not study struc-
tural recursion directly in XQuery itself, but in the Nested Tree Language N T L.
This language can be viewed both as (1) the natural extension of non-recursive for-
let-where-return XQuery with complex objects (i.e., tuples and nested lists) and (2)
a list-based interpretation of the nested relational language of Buneman et al [8] ex-
tended with ordered trees. Apart from being theoretically interesting in its own right,
we show N T L to be a conservative extension of both original languages, even in
the presence of (restricted) structural recursion. As a consequence, results about (re-
stricted) structural recursion in N T L transfer immediately to the respective sublan-
guages. As an important corollary we obtain that our polynomial time restriction of
structural recursion also allows to capture the polynomial time queries on nested lists.
Hence, suitably restricted structural recursion provides an elegant alternative to the
rather awkward list-trav iteration construct of Colby et al. [13], which also captures
polynomial time on nested lists.

Organization This article is further organized as follows. We start with the defin-
ition of N T L in Sect. 2 and study the expressive power of structural recursion in
N T L in Sect. 3. In Sect. 4 we give intrinsic restrictions of structural recursion that
capture polynomial time. Finally, we show how these results transfer to structural re-
cursion in XQuery and languages for nested lists in Sect. 5, and conclude in Sect. 6.

2 The Nested Tree Language

Let us first introduce the nested tree language N T L, our ambient query language
throughout the article. One can view N T L both as (1) the extension of non-recursive
for-let-where-return XQuery with tuples and arbitrary nesting of lists; and (2) a list-
based interpretation of the nested relational language of Buneman et al. [8] extended
with ordered trees. In fact, we will show in Section 5 that N T L is a conservative
extension of these languages, even in the presence of structural recursion. As a con-
sequence, our results on and restrictions of structural recursion in N T L immediately
transfer to the respective sublanguages.

594 Theory Comput Syst (2009) 44: 590–619

Fig. 1 Expressions of N T A

N T L operates on nested combinations of pairs, trees, and lists, whose types are
given by the following grammar:

s, t ::= unit | atom | tree | s × t | [s].

Types denote sets of values. The type unit consists only of the empty tuple (); values
of type atom are atomic data values like the integers, the strings, and so on; values
of type tree are finite trees tree(a, v) with a the tree’s label and v the finite list of its
child trees; values of s × t are pairs (v,w) with v and w of type s and t , respectively;
and values of [s] are finite lists [v, . . . ,w] of values, each of type s. We write v : s

to indicate that v is a value of type s. Furthermore, we feel free to omit parentheses
and write s1 × · · · × sn for s1 × (s2 × (· · · × sn) . . .) and similarly (v1, . . . , vn) for
(v1, (v2, (. . . , (vn−1, vn) . . .))).

The nested tree language N T L consists of two equally expressive components:
the nested tree algebra N T A and the nested tree calculus N T C . We will see that the
N T A component is convenient in proving upper bounds of the language, while the
N T C component is more convenient to program in. The expressions of both com-
ponents are explicitly typed and are formed according to the typing rules of Figs. 1
and 2, respectively. There, we use g and h to range over N T A expressions, and e

to range over N T C expressions. We will often omit the explicit type annotation in
superscript when they are clear from the context.

Theory Comput Syst (2009) 44: 590–619 595

Fig. 2 Expressions of N T C

Semantics of N T A Every expression f : s → t of N T A defines a function from s

to t . The expression Ka is the constant function that always produces the atom a; id
is the identity function; and g ◦ h is function composition, i.e., (g ◦ h)(v) = g(h(v)).
Then follow the pair operators: ! produces () on all inputs; π1 and π2 are re-
spectively the left and right projections; and 〈g,h〉 is pair formation: 〈g,h〉(v) =
(gv,hv). Next come the list operators: sng forms singletons: sng(v) = [v]; flatten
flattens lists of lists: flatten([v, . . . ,w]) = v++ . . .++w; [] is the constant function
that always produces the empty list; ++ is list concatenation; ρ1 and ρ2 are re-
spectively the left and right tensor product: ρ1([u, . . . , v],w) = [(u,w), . . . , (v,w)]
and ρ2(u, [v, . . . ,w]) = [(u, v), . . . , (u,w)]; and map(f) applies f to every object
in its input list: map(f)([v, . . . ,w]) = [f (v), . . . , f (w)]. The functions head and
tail retrieve the head and tail of a list, respectively: head([u,v, . . . ,w]) = u and
tail([u,v, . . . ,w]) = [v, . . . ,w]. For simplicity, we take the head of the empty list
to be an arbitrarily fixed value, and the tail of the empty list to be the empty list itself.
Then come the tree operators: tree constructs a new tree given its label and list of
child trees; lab retrieves the label of a tree: lab(tree(a, v)) = a; and children retrieves
the children of a tree: children(tree(a, v)) = v. Finally, cond is the conditional that,
when applied to a tuple (v, v′,w,w′) returns w if v = v′, and returns w′ otherwise.

Example 1 Here are some simple examples of the functions definable in N T A. The
projections Π1 : [s × t] → [s] and Π2 : [s × t] → [t] on list of pairs are given by
Π1 := map(π1) and Π2 := map(π2), respectively. The function swap : s × t → t × s

that swaps the components of a pair is given by swap := 〈π2,π1〉. The Cartesian

596 Theory Comput Syst (2009) 44: 590–619

product prod : [s] × [t] → [s × t] of two lists is then given by prod := flatten ◦
map(ρ1) ◦ ρ2.

We should note that in principle only one of ρ1 or ρ2 is necessary, as they are
interdefinable. For instance ρ2 = map(swap) ◦ ρ1 ◦ swap. We have chosen to include
them both here for reasons of symmetry.

Semantics of N T C N T C has two sorts of expressions: value expressions and func-
tion expressions. Value expressions e : t denote values of type t , while function ex-
pressions e : s → t denote first-order functions from s to t . In particular, the semantics
of N T C is that of the first-order, simply typed lambda calculus with products, lists,
and trees. As such, expression a denotes the constant atom a; xs is the explicitly typed
variable that can be bound to values of type s; λx.e is standard lambda abstraction;
and e1e2 is function application. Furthermore, expression () denotes the empty tuple;
π1e and π2e are respectively the left and right projection on pairs; and (e1, e2) is pair
construction. The conditional expression if e1 = e2 then et else ef returns et if the
denotations of e1 and e2 are equal and returns ef otherwise. Expression [] denotes
the empty list; [e] is singleton list construction; e1++e2 is list concatenation; head(e)

and tail(e) return the head and tail of a list, respectively; and for x in e1 return e2 is list
comprehension. That is, for x in e1 return e2 = f (v)++ · · ·++f (v′) where f = λx.e2
and e1 denotes [v, . . . , v′]. Finally, the expression tree(e1, e2) is tree construction and
lab(e) and children(e) are label and children extraction, respectively.

Example 2 Here are some simple examples of the functions definable in N T C . The
projection Π1 : [s × t] → [t] is given by λx. for y in x return [π1y]. The projection
Π2 : [s× t] → [t] is defined similarly. The Cartesian product prod : [s]×[t] → [s× t]
of two lists is given by

λx.for y in π1(x) return for z in π2(x) return [(y, z)].

The flattening function flatten : [[s]] → [s] is given by λx. for y in x return y. Finally,
the function fltr : [tree] × atom → [tree] such that fltr(v, a) filters from its input list
v all trees whose root node is labeled a is given by

λx.for y in π1(x) return if lab(y) = π2(x) then [y] else [].

Lambda abstraction and the for loop act as binders in N T C expressions. The
free variables FV(e) of an N T C expression e are hence inductively defined as fol-
lows: FV(x) = {x}; FV(λx.e) = FV(e) − {x}; FV(for x in e1 return e2) = FV(e1) ∪
(FV(e2) − {x}); and FV(e) is the union of the free variables of e’s immediate subex-
pressions, otherwise. As usual, an expression without free variables is called closed.

Definition 3 A query of type s → t is nothing more than a function mapping values
of type s to values of type t . We say that a query is expressible in N T A if there exists
an expression f : s → t that defines it. Similarly, we say that a query is expressible
in N T C if there exists a closed expression e : s → t that defines it.

Theory Comput Syst (2009) 44: 590–619 597

The following proposition shows that N T A and N T C are equally expressive.
Its proof is an easy extension of the proof that the nested relational algebra and the
nested relational calculus of Buneman et al. are equivalent [8, theorem 3.1] and [29,
proposition 2.5].

Proposition 4 N T A ≡ N T C in the sense that every query definable by an expres-
sion f : s → t in N T A is definable by a closed expression e : s → t in N T C , and
vice versa.

Since both languages are equally expressive, we can conceptually view them as a
single language: the nested tree language N T L = N T C + N T A. This also implies
that we can view expressions in both languages as “syntactic sugar” for expressions in
the other language whenever convenient. For instance, we can simply write e2 ◦e1 for
the composition of the closed N T C expressions e1 : r → s and e2 : s → t . Similarly,
we can write f e for the application of N T A expression f : s → t to the value
denoted by N T C expression e : s.

Notational Convention To aid readability we will use a more liberal notation in
lambda abstractions. For instance, we write swap : s × t → t × s as λ(xs, yt).(yt , xs)

instead of the more verbose λzs×t .(π2(z
s×t),π1(z

s×t)). Also, we write πn
i for the

i-th projection of an n-tuple, πn
i : s1 × · · · × sn → si , which is clearly definable in

N T L. For instance, π3
2 = π1 ◦ π2.

3 Structural Recursion and Its Expressiveness

3.1 Structural Recursion Operators

In this section, we begin our study of structural recursion on lists and trees. To this
end, we add the operators srl(f) and srt(f) to N T L:

f : s × t → t

srl(f) : [s] × t → t
,

f : atom × [t] × s → t

srt(f) : tree × s → t
.

(Here, f is required to be closed if it is a calculus expression.) The expression srl(f)

stands for structural recursion on lists and defines the function g : [s] × t → t such
that

g([],w) = w and g([u]++v,w) = f (u,g(v,w)).

In other words, g([v1, . . . , vn],w) = f (v1, f (v2, . . . f (vn,w) . . .)).

Example 5 For instance, if f = λ(x, y).y++[x] then srl(f)(l,[]) reverses the list l.
Also, if we represent a directed graph G as a pair (V ,E) with V : [s] the nodes in G

and E : [s × s] the edges in G, then srl(f)(V,E) computes the transitive closure of
G when f is

598 Theory Comput Syst (2009) 44: 590–619

λ(x, closure).closure++
for y in closure return

for z in closure return
if x = π2(y) and x = π1(z) then [(π1(y),π2(z))] else []

The expression srt(f) stands for structural recursion on trees. It defines the func-
tion g′ : tree × s → t such that

g′(tree(a, v),w) = f (a,map(g′) ◦ ρ1(v,w),w).

Observe in particular that g′(tree(a,[]),w) = f (a,[],w). The extra parameter w

in g′ can be used, for instance, to search for a particular pattern in the input tree, as
the following example shows.

Example 6 With f : atom × [[unit]] × atom → [unit] defined as follows, the expres-
sion srt(f) : tree × atom → [unit] returns an empty list on input (t, a) if and only if
a does not occur in t as a label.

f := λ(lbl, res,param). if lbl = param then [()] else flatten(res).

Example 7 To express toc from the Introduction by means of srt we face a problem:
in a computation of srt(f) on a tree t the expression f must compute the output based
solely on the label of t and the recursive result on the children of t . To express toc,
it is clear that f also needs to inspect the children of v themselves. This problem is
solved by letting f return a pair where the first component contains the actual table of
contents (a list of trees) and the second component is t itself. Then toc is expressed in
N T C(srt) by λt.π1(srt(f)(t, ())) where f : atom× [[tree]× tree×unit] → ([tree]×
tree) is λ(lbl, res,param).(e1, e2). Here, e1 is:

for x in res return
if name(π2(x)) = section then

[tree(section,fltr(children(π2(x)),title)++π1(x))]
else []

with fltr : [tree] × atom → [tree] as in Example 2, and

e2 := tree(lbl, for x in res return [π2(x)]).

Let N T A(V) and N T C(V) be the languages we obtain by adding operators in
V ⊆ {srl, srt} to N T A and N T C , respectively. From Proposition 4 it readily follows:

Proposition 8 N T A(V) ≡ N T C(V) in the sense that every function definable by
an expression f : s → t in N T A(V) is definable by a closed expression e : s → t in
N T C(V), and vice versa.

Hence, we can continue to conceptually view N T A(V) and N T C(V) as two
components of a single language, which we denote by N T L(V).

Theory Comput Syst (2009) 44: 590–619 599

Remark 9 We should note that in the presence of srl and srt, some of the ba-
sic operations of N T L become definable by other basic operations. For instance,
map(f) = λx.srl(λ(y, z).[f (y)]++z)(x,[]). We will nevertheless continue to use
all of N T L in what follows because this situation changes when we come to restrict
the allowed forms of recursion in Sect. 4 in order to tame expressiveness.

3.2 Expressiveness

As in the classical setting of Chandra and Harel [10], it is clear that all queries
in N T L(srl, srt) are generic in the sense that they interpret only the atomic data
values that appear as constants in the query [2]. It is also clear that all queries in
N T L(srl, srt) are computable. Less clear, however, is their computational complex-
ity, which forms the subject of this section.

As our model of computation, we will use the domain Turing machine of Hull and
Su [24]. Domain Turing machines (DTMs for short) are augmented Turing machines
that are specifically designed to express generic computations; in particular, they can
work directly with an infinite alphabet on their tape. In contrast to normal Turing
machines, there is hence no need to (rather clumsily) encode atoms as strings over
finite alphabets. Nevertheless, DTMs can be simulated by ordinary Turing machines
while respecting the complexity classes considered in this article [24].

Intuitively, a DTM M is a Turing machine with a two-way infinite tape and a
register, which can be used to store a single atomic data value. Also, a finite set A

of constant atomic data values is explicitly specified in M — these correspond to the
constants used in a query, and the computation of M will be generic. The transition
function of M explicitly uses the members of A to refer to tape symbols, and it also
uses the distinguished variables µ and ν, to refer to atoms not in A. The formal
definition of a domain Turing machine is as follows. For simplicity, we first fix the
alphabet Σ of work symbols to consist of the parentheses ‘(’ and ‘)’ and the brackets
‘[’ and ‘]’ in addition to the standard bit symbols ‘0’ and ‘1’ and the blank symbol
‘⊥’. We assume that the work symbols are disjoint with the atoms.

Definition 10 A (deterministic) domain Turing machine (DTM) is a tuple M =
(Q,A, δ, qs, qh) consisting of:

• a finite set of states Q;
• a finite set of atoms A;
• a distinguished start state qs ∈ Q;
• a distinguished halting state qh ∈ Q;
• a transition function δ from (Q × (Σ ∪ A ∪ {µ}) × (Σ ∪ A ∪ {µ,ν}) to Q ×

(Σ ∪ A ∪ {µ,ν})2 × {←,→}. In a transition definition δ(state, reg, tape) =
(state′, reg′, tape′,dir), we require that tape = ν only if reg = µ; µ ∈ {reg′, tape′}
only if µ ∈ {reg, tape}; and ν ∈ {reg′, tape′} only if ν ∈ {reg, tape}.

The DTM M is viewed as having a register in addition to the normal two-way
infinite tape. Let the set (of tape symbols consist of the work symbols in Σ plus all
atoms. A configuration of M is then a five-tuple (q, a, l, b, r) where q is the current
state; a ∈ (is the register contents; l, r ∈ (∗ are the tape contents to the left and right

600 Theory Comput Syst (2009) 44: 590–619

of the head respectively; and b ∈ (is the tape symbol under the head. A transition
value δ(state, reg, tape) = (state′, reg′, tape′,dir) is generic if µ ∈ {reg, tape}. Intu-
itively, a generic transition value is used as a template for an infinite set of transition
values which are formed by letting µ (and ν if it occurs) range over (distinct) atoms
not in A. To illustrate, the transition value δ(q, a,µ) = (q ′,µ,1,→) is applicable to
all configurations (q, a, l, b, r) in which the register contents is a ∈ Σ ∪ A and the
atom under the head is an arbitrary b /∈ A. It specifies that M should move to state q ′,
with new register contents the atom not in A under the head, writing a 1 on the current
tape cell, and moving to the right. In other words, from configuration (q, a, l, b, cr),
M moves to the new configuration (q ′, b, l1, c, r). In a similar manner, the transition
value δ(q,µ,µ) = (q ′, a,1,→) is applicable to all configurations (q, b, l, b, r) in
which the register contents is the same as the atom b /∈ A under the head. In this case,
M should move to state q ′, with new register contents the constant atom a ∈ A, writ-
ing a 1 on the current tape cell, and moving to the right. Hence, from configuration
(q, b, l, b, cr), M moves to the new configuration (q ′, a, l1, c, r). Finally, the transi-
tion value δ(q,µ,ν) = (q ′,µ,1,→) is applicable to all configurations (q, a, l, b, r)

with distinct register and tape head contents, both not in A. Under these provisions,
the move relation on configurations is defined in the usual fashion. The restriction
that tape = ν only if reg = µ ensures that M is deterministic; without this restriction,
the possibly different transition values δ(q, a,µ) and δ(q, a,ν) with a ∈ A would
be both applicable to the configuration (q, a, l, b, r) with b an atom not in A. At the
beginning of the computation the register holds the blank symbol ⊥. A computation
of M is then defined as a (possibly infinite) sequence of configurations, where each
pair of subsequent configurations respects the transition function.

Note that every value v is naturally represented as a string str(v) over (: the atom
a is represented by itself; a tree tree(a, v) is represented by the string (str(a)str(v));
a pair (v,w) is represented by the string (str(v)str(w)); and a list [v, . . . ,w] is rep-
resented by the string [str(v) . . . str(w)]. This leads us to the following definition of
a computable query.

Definition 11 (Computable Query) A query q : s → t is computable if there exists
a DTM M that, starting with tape contents str(v), halts with tape contents str(q(v)),
for every value v : s.

We are particularly interested in characterizing the computational complexity of
the queries expressible in N T C(srl, srt). If q is computable by a DTM that halts after
at most T (n) steps on every input v with n the size of v and T : N → N a function
in some class of functions C , then we say that q is a ‘C query’ or is ‘computable in C
time’. Here, the size size(v) of a value is the length of str(v).

Theorem 12 The class of queries expressible in N T L(srl, srt) coincides with the
class of queries that are computable in primitive recursive time.

Recall that the primitive recursive functions are those functions F : N × · · · ×
N → N built by composition and primitive recursion from the constant function zero,
the successor function, and the projection functions [6]. Here, F is built by primitive

Theory Comput Syst (2009) 44: 590–619 601

recursion from G and H if

F(0,m, . . . ,m′) = G(m, . . . ,m′) and

F(n + 1,m, . . . ,m) = H(n,m, . . . ,m′,F (n,m, . . . ,m′)).

Before proving Theorem 12, let us argue that it is not unexpected. Indeed, Immer-
man et al. [25]; Suciu and Wong [30]; and Libkin and Wong [27] have already shown
that, in the presence of object invention, the class of functions F : N × · · · × N → N
representable with structural recursion on (nested) sets and bags, coincides with the
class of primitive recursive functions on natural numbers [6]. Combined with the
fact that the primitive recursive functions are exactly those functions on the natural
numbers that can be computed in primitive recursive time, this actually shows that
the class of functions F : N × · · · × N → N representable by structural recursion on
(nested) sets and bags coincides with the class of functions that are computable in
primitive recursive time. In this light, Theorem 12 is not surprising as N T C(srl, srt)
has an innate ability for object creation in the form of tree and list construction. Note
that Theorem 12 is slightly more general, however, as it captures the class of all
N T C(srt, srl) expressible queries, not just those queries that represent functions on
the natural numbers under some fixed encoding of the natural numbers as values.

To prove Theorem 12, we first prove the following upper bound.

Proposition 13 Every N T L(srl, srt) expressible query is computable in primitive
recursive time.

Proof The proof proceeds by a straightforward induction on N T A(srl, srt) expres-
sions. We only illustrate the following interesting cases.

• Case g 0 h. Immediately follows from the induction hypothesis since the class of
primitive recursive functions is closed under composition.

• Case srl(f). By the induction hypothesis, f is computable in primitive recursive
time T : N → N, where we may assume w.l.o.g. that T is monotone increasing.
Computing srl(f)(u) for a given value u = ([v1, . . . , vm],w) of size n is equivalent
to computing f (v1, f (v2, . . . f (vm,w) . . .)). Now observe that f (vm,w) has size
at most T (n) since the size of (vm,w) is at most n. Similarly, f (wm−1;f (wm,w))

then has size at most T (n + T (n)). Continuing this reasoning, we see that the
maximum size of an input to f is bounded by S(m,n) with S : N×N → N defined
by primitive recursion:

S(0, n) = 0,

S(m + 1, n) = T (n + S(m,n)).

Since we need to evaluate f at most m ≤ n times, the total time needed to compute
srl(f)(u) is hence bounded by O(n × T (S(n,n))), which is primitive recursive.

• Case srt(f). By the induction hypothesis, f is computable in primitive recursive
time T : N → N, where we may assume without loss of generality that T is strict
monotone increasing. It is straightforward to prove by induction on a tree v that

602 Theory Comput Syst (2009) 44: 590–619

size(srt(f)(v,w)) ≤ S(size(v), size(w)) with S : N×N → N defined by primitive
recursion:

S(0, l) = l,

S(k, l) = T (k + k × S(k, l)).

To compute srt(f)(u) for a given value u = (tree(a, [v1, . . . , vm]),w) of size n

we must compute f (a, [srt(f)(v1,w), . . . , srt(f)(vm,w)]). Hence, we first need
to compute srt(f)(vi,w) for every i. This involves calling f again multiple times.
Note, however, that the total number of times that f gets called is bounded by n.
Furthermore, at each such call, the size of the input to f is bounded by S(n,n). The
total time needed to compute srt(f)(u) is hence bounded by O(n × T (S(n,n))),
which is primitive recursive. !

To conclude the proof of Theorem 12, we require the following technical lemma.
It is reminiscent of the results of Immerman et al. [25]; Suciu and Wong [30]; and
Libkin and Wong [27].

Lemma 14 For every primitive recursive function T : N × · · · × N → N and every
type s there exists φT : [s] × · · · × [s] → [s] in N T L(srl) such that φT (v, . . . ,w) is
a list of length T (n, . . . ,m) when v, . . . ,w are lists of length n, . . . ,m respectively.

Proof Although the primitive recursive functions are traditionally viewed as the class
of functions built by composition and primitive recursion from the constant func-
tion zero, the successor function, and the projection functions, they are equally ob-
tained from these initial functions by composition and pure iteration with one pa-
rameter [17]. Here, T (n,m) : N × N → N is built from S : N → N by pure itera-
tion with one parameter if T (n,m) = S(n)(m), i.e., T (0,m) = m and T (n + 1,m) =
S(T (n,m)).

Using this view of the primitive recursive functions, we construct φT by induc-
tion on T . If T is the constant function zero, i.e., T (n) = 0, then φT := λx.[].
If T is the successor function, i.e., T (n) = n + 1, then φT := λx.[e]++x where
e : s is an arbitrary but fixed closed expression. If T is a projection function, i.e.,
T (n1, . . . , nk) = ni , then φT := λ(x1, . . . , xk).xi . If T is defined by composition from
the primitive recursive functions U,S1, . . . , Sl , i.e.,

T (n1, . . . , nk) = U(S1(n1, . . . , nk), . . . , Sl(n1, . . . , nk)),

then φT := λ(x1, . . . , xk).φU(φS1(x1, . . . , xk), . . . ,φSl (x1, . . . , xk)). Finally, if
T (n,m) is defined by iteration from S(m), i.e, T (n,m) = S(n)(m), then φT :=
λ(x, y).srl(φS ◦ π2) (x, y). !

We conclude the proof of Theorem 12 by providing the following lower bound:

Proposition 15 Every primitive recursive query is expressible in N T L(srl, srt).

Theory Comput Syst (2009) 44: 590–619 603

Proof Let q : s → t be a query computable by a DTM M in primitive recursive time
T : N → N. Intuitively, we express q : s → t by simulating M : first, we encode the in-
put v : s to q as a DTM tape using an expression encods ; next, we simulate T (size(v))
steps of M on this tape; and finally, we decode the resulting DTM tape str(q(v)) into
q(v) using an expression decodt . The detailed simulation is as follows.

The Encoding Function Recall that the tape symbols (consist of the work symbols
in Σ plus the atoms. We represent σ ∈ (by a pair rep(σ) of type [unit] × atom:
rep(σ) := ([],σ) if σ is an atom, and rep(σ) := ([()], aσ) if σ is a work symbol
in Σ . Here, aσ is an arbitrary but fixed atom such that aσ /= aσ ′ for distinct work
symbols σ and σ ′. Note in particular that rep(σ) /= rep(σ ′) when σ and σ ′ are distinct
tape symbols. We can then represent the tape contents σ . . .σ ′ of M at any given time
by the value [rep(σ), . . . , rep(σ ′)]. Let symb abbreviate the type [unit] × atom. The
encoding function encods : s → [symb] such that encods(v) is the list representation
of str(v) is then readily expressed by induction on s:

• encodatom := λx.([], x);
• encods×s′ := λ(x, y).[rep(()]++encods(x)++encods′

(y)++[rep())];
• encod[s] := λx.[rep([)]++(for y in x return encods(y))++[rep(])]; and
• encodtree := λx.srt(f)(x,[]) with

f := λ(lbl, rec,param).[rep(()]++[([], lbl)]++[rep([)]
++

(
for x in rec return x

)
++[rep(])]++[rep())].

The Step Function Next, we represent a configuration (q, a, l, b, r) of M as the
value (q, rep(a), l′, rep(b), r ′), where we assume without loss of generality that the
states of M are atoms; r ′ is the list representation of r ; and l′ is the reverse of the list
representation of l. The function step such that step(c) represents the configuration
after executing one step of M on c is then expressed as follows. Let {q1, . . . , qm} be
the set of M’s states, let A be the atoms interpreted by M , let δ be M’s transition
function, and let {σ1, . . . ,σk} = Σ ∪ A. Then step is the nested conditional

λ(state, reg, left,hd, right).

if state = q1 then eq1 else . . . else if state = qm−1 then eqm−1 else eqm,

with eqi the expression

if hd = rep(σ1) then
if reg = rep(σ1) then eqi ,σ1,σ1 else ... else if reg = rep(σk) then eqi ,σk,σ1

else eqi ,µ,σ1

else if hd = rep(σ2) then
if reg = rep(σ1) then eqi ,σ1,σ2 else ... else if reg = rep(σk) then eqi ,σk,σ2

else eqi ,µ,σ2

else . . .
else if hd = rep(σk) then

if reg = rep(σ1) then eqi ,σ1,σk else ... else if reg = rep(σk) then eqi ,σk,σk

else eqi ,µ,σk

else if hd = reg then eqi ,µ,µ else eqi ,µ,ν .

604 Theory Comput Syst (2009) 44: 590–619

Here, the expression eqi ,o,p with o,p ∈ Σ ∪ A ∪ {µ,ν} is responsible for simulat-
ing the actual step of M taken when the transition δ(qi, o,p) applies. It is defined as
follows. Suppose that δ(qi, o,p) = (qj , o

′,p′,dir). Let the expression eo′ be rep(o′)
if o′ ∈ Σ ∪A, and let it be the variable reg otherwise. Let ep′ be rep(p′) if p′ ∈ Σ ∪A,
and let it be the variable hd otherwise. If dir =→ then eqi ,o,p is

if right = [] then (qj , eo′ , [ep′]++left, rep(⊥),[])

else (qj , eo′ , [ep′]++left,head(r), tail(r)),

otherwise it is

if left = [] then (qj , eo′ ,[], rep(⊥), [ep′]++right)

else (qj , eo′ , tail(left),head(left), [ep′]++right).

The Decoding Function First define the function collect : [symb] → [[symb]] that,
on the representation of str((v,w)) or str([v, . . . ,w]) returns the list contain-
ing the list representation of str(v), . . . , str(w) (in order). It suffices to define
collect := λrep.(π3

3 ◦srl(f)) (rep, ([],[],[])), with f : symb×([unit]×[symb]×
[[symb]]) → ([unit] × [symb] × [[symb]]) the expression

λ(symb, (depth, current,accu)).

if symb = rep()) or symb = rep(]) then
if depth = [] then ([()],[],accu)

else ([()]++depth, [symb]++current,accu)

else if symb = rep(() or symb = rep([) then
if depth = [()] then

([],[], [current]++accu)

else if depth = [(), ()] then
([()],[], [[symb]++current]++accu)

else
(tail(depth), [symb]++current,accu)

else
(depth, [symb]++current,accu)

Now define the decoding function decodt : [atom × atom] → t that decodes the
list representation of str(w) back into w for any w : t by induction on t :

• decodatom := λx.head(x);
• decodt×t ′ := 〈decodt ◦ head,decodt ′ ◦ head ◦ tail〉 ◦ collect;
• decod[t] := λx. for y in collect(x) return [decodt (y)]
• decodtree := head ◦ head ◦ srl(f) ◦ 〈id,[]〉, where f : symb × [[tree]] → [[tree]]

is the function expression which reconstructs the represented tree by maintaining
a stack (i.e., a list of list of trees), defined as follows:

λ(symb, rec).
if symb = rep(]) then [[]]++rec

Theory Comput Syst (2009) 44: 590–619 605

else if symb = rep([) or symb = rep(() or symb = rep()) then rec
else if rec = [] then [[tree(π2 symb,[])]]
else if tail(rec) = [] then [[tree(π2 symb,head(rec))]]
else [tree(π2 symb,head(rec)++head(tail(rec)))]++tail(tail(rec))

The Entire Simulation It remains to express q : s → t by simulating M . Let qs be
M’s start state. We assume without loss of generality that M always halts with its
head one tape cell to the left of the output. Let φT be the expression simulating the
primitive recursive function T : N → N, as given by Lemma 14. Observe in particular
that (φT ◦ encods)(v) returns a list of length T (size(v)). Let clean be the function
which removes all blank symbols from a tape representation:

clean := λx. for y in x return (if y = rep(⊥) then [] else [y]).

Let initconf be the function such that initconf (v) is the initial configuration of M

on v:

initconf := λx.(qs, rep(⊥),[],head(encods(x)), tail(encods(x))).

We then express q : s → t by simulating T (n) steps of M on the initial configuration,
cleaning the resulting tape and subsequently decoding the output:

decodt ◦ clean ◦ π4
4 ◦ srl(step ◦ π2) ◦ 〈φT ◦ encods , initiconf 〉. !

Theorem 12 states that structural recursion on lists and trees taken together gives
rise to a robust and very expressive class of queries. It is interesting to note that
this expressiveness drops dramatically when we consider structural recursion on lists
or trees separately. Intuitively, this is because srl only provides “horizontal” recur-
sion across lists, while srt only provides “vertical” recursion down trees. As such,
N T L(srl) can only manipulate inputs up to bounded depth, while N T L(srt) can
only manipulate inputs up to bounded width. For instance, let lastlab : tree → atom
be the query that maps its input tree v to the label of the last node visited when tra-
versing v in pre-order. This query is clearly computable in linear time. Nevertheless:

Theorem 16 The query lastlab : tree → atom is inexpressible in both N T L(srl) and
N T L(srt). Hence, structural recursion on lists or trees alone is not strong enough to
express all linear time queries.

Proof Suppose, for the purpose of contradiction, that lastlab is expressible in
N T A(srl). Let atomsk(v) be the set of atoms occurring in value v “up to tree-
depth k”:

atomsk(a) := {a},
atomsk(v,w) := atomsk(v) ∪ atomsk(w),

atomsk([v, . . . ,w]) := atomsk(v) ∪ · · · ∪ atomsk(w),

atoms0(tree(a, v)) := ∅,

atomsk+1(tree(a, v)) := {a} ∪ atomsk(v).

606 Theory Comput Syst (2009) 44: 590–619

Let depth(f) be the number of occurrences of the functions lab and children in an
N T A(srl) expression f : s → t , and let atoms(f) be the set of atoms for which a
subexpression Ka occurs in f . It is readily verified by induction on f : s → t that
atomsk(f (v)) ⊆ atomsk+depth(f)(v) ∪ atoms(f), for any v : s. Then let v : tree be a
tree for which the node last visited in a pre-order traversal lies at depth(lastlab) + 1
and carries a unique label a not occurring anywhere else in v, nor in atoms(lastlab).
Then a /∈ atoms0(lastlab(v)) since

atoms0(lastlab(v)) ⊆ atomsdepth(lastlab) ∪ atoms(lastlab),

and a /∈ atomsdepth(lastlab)(v) ∪ atoms(lastlab). Since atoms0(a) = {a}, this implies
that lastlab(v) /= a although a is the label of the last node visited when traversing v
in pre-order, which gives the desired contradiction.

A similar reasoning shows that lastlab is inexpressible in N T A(srt). !

4 Taming Structural Recursion

Since queries are expected to be computable in polynomial time for all practical
purposes, it follows from Theorem 12 that N T L(srl, srt) is too powerful a query
language. In this section we therefore investigate intrinsic restrictions of structural
recursion that capture exactly the polynomial time queries. We start with a semantic
restriction, from which we next derive a suitable syntactic restriction.

4.1 A Semantic Restriction

Let us refer to the expressions g in srl(g) or srt(g) as step expressions. It is clear
that, in order for a query f : s → t to be computable in polynomial time, f should
never create intermediate results of more than polynomial size. This condition is triv-
ially satisfied if f is an expression that does not use structural recursion. To see
how structural recursion can create results of exponential size or more, consider the
query explist : [s] → [s] defined by explist := λz. srl(λ(x, y).y++y) (z, [a]). Clearly,
if v is a list of length k, then explist(v) is a list of length 2k . As Caseiro [9] was
the first to note, the problem here is that the step expression λ(x, y).y++y dou-
bles the size of the result at each recursive invocation. A similar problem arises
with structural tree recursion. Indeed, consider exptree : tree → tree defined by
exptree := λu. srt(λ(x, y, z).tree(x, y++y)) (u,[]). If v is a linear tree (i.e., a tree
in which each node has at most one child) of depth k, then exptree(v) returns a tree
of size 2k . Again, the problem is that the step expression λ(x, y, z).tree(x, y++y) of
exptree doubles its result at each recursive invocation. This leads us to the following
definition.

Definition 17 (Tamed expressions) An N T L(srl, srt) expression is tamed if

1. for every subexpression srl(f) with f : s × t → t there exists a function F :
N → N such that size(f (v,w)) ≤ F(size(v)) + size(w); and

2. for every subexpression srt(f) with f : atom × [t] × s → t there exists a function
F : N → N such that size(f (u, v,w)) ≤ F(size(u) + size(w)) + size(v).

Theory Comput Syst (2009) 44: 590–619 607

Clearly, explist and exptree are not tamed. The following proposition shows that
being tamed is a strong enough restriction to ensure polynomial time computability.

Proposition 18 Every query definable by a tamed expression in N T L(srl, srt) is
computable in polynomial time.

Proof The proof proceeds by induction on tamed N T A(srl, srt) expressions. We
only illustrate the following interesting cases.

• Case srl(f). By the induction hypothesis, f is computable in polynomial time
T : N → N, where we may assume w.l.o.g. that T is monotone increasing. Since
srl(f) is tamed, there exists a function F : N → N such that size(f (v,w)) ≤
F(size(v))+size(w) for all v and w. Since in polynomial time one can construct at
most a polynomial output, it follows that F can be taken a polynomial. Computing
srl(f)(u) for a given value u = ([v1, . . . , vm],w) of size n is equivalent to com-
puting f (v1, f (v2, . . . f (vm,w) . . .)). Now observe that f (vm,w) has size at most
F(n) + n since the size of vm and w is at most n. Similarly, f (wm−1;f (wm,w))
then has size at most F(n) + F(n) + n. Continuing this reasoning, we see that
the maximum size of an input to f is bounded by m × F(n) + n. Since we need
to evaluate f at most m ≤ n times, the total time needed to compute srl(f)(u) is
hence bounded by O(n × T (n × F(n) + n)), which is a polynomial in n.

• Case srt(f). By the induction hypothesis, f is computable in polynomial time
T : N → N, where we may assume without loss of generality that T is monotone
increasing. Since srt(f) is tamed, there exists a function F : N → N such that
size(f (u, v,w)) ≤ F(size(u) + size(w)) + size(v). Since in polynomial time one
can construct at most a polynomial output, it follows that F can be taken a
polynomial. It is then straightforward to prove by induction on a tree v that
size(srt(f)(v,w)) ≤ size(v) × (F (1 + size(w)) + 2), for any w. Indeed, if v =
tree(a,[]), then

size(srt(f) (v,w)) = size(f (a,[],w))

≤ F(size(a) + size(w)) + size([])

≤ size(tree(a,[])) × (F (1 + size(w)) + 2).

If v = tree(a, [v1, . . . , vk]), then

size(srt(f) (v,w)) = size(f (a, [srt(f)(v1,w), . . . , srt(f)(vk,w)],w))

≤ F(size(a) + size(w)) + size([srt(f)(v1,w), . . . , srt(f)(vk,w)])
= F(1 + size(w)) + size(srt(f)(v1,w)) + · · · + size(srt(f)(vk,w)) + 2

≤ (1 + size(v1) + · · · + size(vk)) × (F (1 + size(w)) + 2)

≤ size(v) × (F (1 + size(w)) + 2).

To compute srt(f)(u) for a given value u = (tree(a, [v1, . . . , vm]),w) of size n
we must compute f (a, [srt(f)(v1,w), . . . , srt(f)(vm,w)]). Hence, we first need
to compute srt(f)(vi,w) for every i. This involves calling f again multiple times.

608 Theory Comput Syst (2009) 44: 590–619

Note, however, that the total number of times that f gets called is bounded by n.
Furthermore, at each such call, the size of the input to f is bounded by n× (F (1 +
n) + 2) by our observation above. The total time needed to compute srt(f)(u) is
hence bounded by O(n × T (n × (F (1 + n) + 2))), which is a polynomial in n. !

The converse to Proposition 18 is also true: every polynomial time query can be
defined by a tamed N T L(srl, srt) expression. In fact, in the following subsection we
will show an even stronger statement. Say that f : s → t is linearly bounded if there
exists a constant c such that size(f (v)) ≤ size(v) + c for every v : s.

Proposition 19 Every polynomial time query can be defined by an expression in
N T L(srl, srt) in which f is linearly bounded for every subexpression srl(f) or
srt(f).

It readily follows that every polynomial time query can be defined by means of a
tamed N T L(srl, srt) expression.

4.2 A Syntactic Restriction

We prove Proposition 19 by providing an effective syntax for the polynomial time
queries in which all step expressions are linearly bounded. To motivate this syntax,
consider again the problematic step expression λ(x, y).y++y from explist as defined
in Sect. 4.1. Since this step expression doubles the recursive argument y, it is not
linearly bounded, and our syntax should therefore disallow it. The first solution that
comes to mind is to require that x and y occur at most once in the body e of a
step expression λ(x, y).e. This solution is defective in multiple ways. On the one
hand it is too restrictive. Indeed, harmless, linearly bounded step expressions like
λ(x, y). if e1 = e2 then x++y else y with x and y occurring in e1 or e2 are excluded.
Clearly, there is a difference between testing a variable and actually using it to con-
struct the output. On the other hand, the solution is not restrictive enough. Indeed,
the step expression, λ(x, y). for z in [a, b] return y would be accepted, although it is
equivalent to the problematic λ(x, y).y++y above. For these reasons, a more fine-
grained restriction of step expressions along the lines of Caseiro [9] is in order.

Let e[x/e1, y/e2] stand for the expression we obtain by simultaneously replacing
every free occurrence of x and y in e by e1 and e2, respectively.

Definition 20 (Linear N T C) An N T C expression is linear if

• it is a variable x, an atom a, the empty tuple () or the empty list [];
• it is [e], (e, e′), e++e′, or tree(e, e′) with e and e′ linear and FV(e) ∩ FV(e′) = ∅;
• it is for y in e return y or for y in e return children(y) with e linear;
• it is if e = e′ then et else ef with e and e′ arbitrary and et and ef linear;
• it is e[x/g(e′), y/h(e′)] with e and e′ linear, FV(e) ∩ FV(e′) = ∅, and g and h

distinct elements of {π1,π2,head, tail, lab, children}; or
• it is λ(x, . . . , y).e with e linear.

Theory Comput Syst (2009) 44: 590–619 609

For instance, y++y is not linear as y occurs free in both arguments of ++. The
step expression f from Example 5 used to compute the transitive closure of a graph
is also not linear, as the for loops used do not have the required form. In contrast,
if e1 = e2 then x++y else y is linear since test expressions can be arbitrary and since
the branches x++y and y are both linear. Also, tail(x) and (head(π1x), tail(π1x)) are
linear:

tail(x) = y[y/tail(x), z/head(x)] and

(head(π1x), tail(π1x)) = (z1, z2)[z1/head(π1x), z2/tail(π1x)].

Observe in particular that in case of e[x/g(e′), y/h(e′)] with e and e′ linear, FV(e)∩
FV(e′) = ∅, and g /= h elements of {π1,π2,head, tail, lab, children}, x and y need
not occur in e.

We next introduce the corresponding restriction on N T A expressions. For two
expressions g : s → s′ and h : t → t ′, let g × h : s × t → s′ × t ′ abbreviate
〈g ◦ π1, h ◦ π2〉 and let α : r ×(s× t) → (r ×s)× t abbreviate 〈〈π1,π1 ◦π2〉,π2 ◦π2〉.

Definition 21 (Linear N T A) An N T A expression is linear if

• it is Ka, id, !, π1, π2, sng, [], ++, flatten, flatten ◦ map(children), head, tail, tree,
lab, children, α, or 〈!, id〉;

• it is g ◦ h or g × h with g and h linear;
• it is 〈g,h〉 with g and h distinct elements of {π1,π2,head, tail, lab, children}; or
• it is cond ◦ 〈g1, g2, h1, h2〉 with g1, g2 arbitrary and h1, h2 linear.

For instance, 〈id, id〉 is not linear, whereas swap : s × t → t × s given by swap :=
〈π2,π1〉 is linear. The linear N T C expression λx.(head(π1x), tail(π1x)) can also
be linearly expressed in N T A as 〈head, tail〉 ◦ π1. This is no coincidence, as the
following proposition shows.

Proposition 22 Linear N T A ≡ linear N T C in the sense that every query defin-
able by a linear N T A expression f : s → t is definable by a closed linear N T C
expression e : s → t , and vice versa.

Proof First observe that the N T C expressions

π1(x)++π2(x) and
(
(π1(x),π1(π2(x))),π2(π2(x))

)

are linear since

π1(x)++π2(x) = (y++z)[y/π1(x), z/π2(x)] and

(
(π1(x),π1π2(x)),π2π2(x)

)

= ((y1, y2), y3)[y2/π1(z), y3/π2(z)][y1/π1(x), z/π2(x)].

Next, observe that π1(x), π2(x), head(x), tail(x), lab(x), and children(x) all linear
since for instance π1(x) = y[y/π1(x), z/π2(x)]. Finally, verify the following claim

610 Theory Comput Syst (2009) 44: 590–619

by induction on an N T C expression e: if FV(e)∩ FV(e′) = ∅ and e and e′ are linear,
then e[x/e′] is also linear.

Then every linear N T A expression f : s → t can be translated into the linear
N T C expression f ∗

x : t such that FV(f ∗
x) ⊆ {x} and f ≡ λxs.f ∗

x :

(Ka)∗x = a id∗
x = x

!∗x = () (π1)
∗
x = π1(x)

(π2)
∗
x = π2(x) sng∗

x = [x]
([])∗x = [] ++∗

x = π1(x)++π2(x)

head∗
x = head(x) tail∗x = tail(x)

tree∗
x = tree(x) lab∗

x = lab(x)

children∗
x = children(x) α∗

x = ((π1(x),π1π2(x)),π2π2(x))

〈!, id〉∗x = ((), x) (g ◦ h)∗x = g∗
y [y/h∗

x]
(g × h)∗x = (g∗

y , h∗
z)[y/π1(x), z/π2(x)] 〈g,h〉∗x = (y, z)[y/g(x), z/h(x)]

Furthermore,

flatten∗
x = for y in x return y,

flatten ◦ map(children)∗x = for y in x return children(y), and
cond ◦ 〈f1, f2, g,h〉∗x = if f ′

1 x = f ′
2 x then g∗

x else h∗
x,

where f ′
1 and f ′

2 are the N T C expressions equivalent to f1 and f2 respectively, which
exist by Proposition 4.

For the converse, recall our convention that (v1, . . . , vn) is an abbreviation of
(v1, (v2, (. . . , (vn−1, vn) . . .))) and observe that the function

splitni1,...,ik (v1, . . . , vn) = ((vi1 , . . . , vik), (vj1 , . . . , vjl))

with 0 ≤ k ≤ n; 1 ≤ i1 < · · · < ik ≤ n a (possibly empty) subset of {1, . . . , n}; and
1 ≤ j1 < · · · < jl ≤ n = {1, . . . , n} − {i1, . . . , ik}, is linearly expressible in N T A.
Indeed,

splitni1,...,ik =

〈!, id〉 when 0 = k ≤ n

frontni1 when 1 = k ≤ n

α ◦ (id × splitn−1
i2−1,...,ik−1) ◦ frontni1 when 2 ≤ k < n

〈π2,π1〉 0 〈!, id〉 when 2 ≤ k = n

where frontni with 1 ≤ i ≤ n is the linear N T A expression such that

frontni (v1, . . . , vn) = (vi, v1, . . . , vi−1, vi+1, . . . , vn),

expressed as follows:

frontni =

id when 1 = i ≤ n

〈π2,π1〉 when 2 = i = n

〈π2,π1〉 ◦ α ◦ (id × 〈π2,π1〉 ◦ frontn−1
i−1) when 2 ≤ i,3 ≤ n

Theory Comput Syst (2009) 44: 590–619 611

Using splitni1,...,ik we can translate every linear and closed N T C expression
λ(x

s1
1 , . . . , x

sn
n).e with e : t and FV(e) ⊆ {x1, . . . , xn}, into an equivalent linear N T A

expression f
x1,...,xn
e : s1 × · · · × sn → t . The translation proceeds by induction on the

linearity of e.

• When e is one of x, a, (), or [], we take

f x1,...,xn
xi

:= πn
i , f x1,...,xn

a := Ka, f
x1,...,xn

() :=!, f
x1,...,xn
[] := [].

• When e is (e1, e2) with FV(e1) ∩ FV(e2) = ∅, then let xi1, . . . , xik with 1 ≤ i1 <

· · · < ik ≤ n be the free variables of e1 and let xj1, . . . , xjk with 1 < j1 < · · · < jl ≤
n be {x1, . . . , xn} − {xi1, . . . , xik }. Intuitively, to simulate (e1, e2) we first split the
free variables e into a pair: the first component consisting of the free variables of
e1, the second of the free variables of e2, and then call e1 and e2 on these respective
components. That is, we take

f
x1,...,xn

(e1,e2)
:= (f

xi1 ,...,xik
e1 × f

xj1 ,...,xjl
e2) ◦ splitni1,...,ik .

• The case for e = e1++e2 and e = tree(e1, e2) is similar.
• When e = for y in e′ return y or e = for y in e′ return children(y), we take

f
x1,...,xn

for y in e′ return y = flatten ◦ f
x1,...,xn

e′ ,

f
x1,...,xn

for y in e′ return children(y) = (flatten ◦ map(children)) ◦ f
x1,...,xn

e′ .

• When e = if e1 = e2 then e3 else e4 then let g1 and g2 be the N T A expressions
equivalent to λ(x1, . . . , xn).e1 and λ(x1, . . . , xn).e2, respectively. (These exist by
Proposition 4). Then we take

f
x1,...,xn
if e1=e2 then e3 else e4

= cond ◦ 〈g,h,f x1,...,xn
e3

, f x1,...,xn
e4

〉.

• When e = e1[y/g(e2), z/h(e2)] with FV(e1) ∩ FV(e2) = ∅ and g and h distinct
elements of {π1,π2,head, tail, lab, children}, then let xj1, . . . , xjl with 1 ≤ j1 <

· · · < jl ≤ n be the free variables of e2 and let xi1, . . . , xik with 1 ≤ i1 < · · · <

il ≤ n be {x1, . . . , xn} − {xj1, . . . , xjl }. Then we take

f x1,...,xn
e := f

y,z,xi1 ,...,xik
e1 ◦ α−1 ◦ ((〈g,h〉 ◦ f

xj1 ,...,xjl
e2) × id) ◦ splitnj1,...,jl

where α−1 such that α−1((y, z), (xi1 , . . . , xik)) = (y, z, xi1 , . . . , xik) is

α−1 := 〈π2,π1〉 ◦ (〈π2,π1〉 × id) ◦ α ◦ 〈π2,π1〉 ◦ (〈π2,π1〉 × id). !

An easy induction on linear N T A expressions then shows that linearity implies
linear boundedness:

Proposition 23 Every query definable by a linear N T L expression is linearly
bounded.

612 Theory Comput Syst (2009) 44: 590–619

Definition 24 (Safety) An expression in N T L(srl, srt) is safe if every step expres-
sion occurring in it is linear.

It immediately follows from Proposition 23 that safe expressions are tamed; they
are hence computable in polynomial time by Proposition 18. Note, however, that
some expressions, like the one computing the transitive closure of a graph in Exam-
ple 5 or the one expressing toc from the Introduction in Example 7 denote polynomial
time queries, but are not safe. This hence raises the question how powerful safe ex-
pressions are. Fortunately,

Proposition 25 Every polynomial time query is expressible by a safe, closed function
expression in N T C(srl, srt).

Proof Let q : s → t be a query computable by a DTM M in polynomial time
T : N → N. Since T serves only as an upper bound on the running time of M , we
may assume without loss of generality that T (n) = ckn

k +· · ·+ c2n
2 + c1n+ c0 with

ck, . . . , c0 natural number coefficients. It is readily verified that for every type s there
exists φT : [s] → [s] in N T L such that φT (v) is a list of length T (n) when v is a list
of length n. Indeed, it suffices to note that we can simulate natural number addition
by concatenation and multiplication by the for loop: if v is a list of length m and w

is a list of length n, then v++w is a list of length m + n and for x in v return w is a
list of length m × n. It is then straightforward to obtain φT by suitable combination
of constant lists (to represent the coefficients), concatenation, and the for loop.

As in the proof of Proposition 15, we can now express q : s → t by simulating M :
first, we encode the input v : s to q as a DTM tape using an expression encods ; next,
we simulate T (size(v)) steps of M on this tape; and finally, we decode the resulting
DTM tape str(q(v)) into q(v) using an expression decodt . The detailed simulation
is as in the proof of Proposition 15 except that in order to simulate M the required
T (size(v)) number of steps, we use the function φT defined above. The proposition
then follows, as it is readily verified that every step expression used in the simulation
is linear. !

In particular, Examples 5 and 7 can hence be expressed in a safe way. Proposi-
tion 19 immediately follows from Propositions 23 and 25. Moreover, from Proposi-
tions 23, 18, and 25 it immediately follows that safe expressions provide an effective
syntax for the polynomial time queries.

Theorem 26 The class of queries expressible by safe expressions in N T L(srl, srt)
coincides with the class of queries that are computable in polynomial time.

5 Natural Sublanguages

Note that the results of Sects. 3 and 4 do not necessarily imply anything about the ex-
pressiveness of structural recursion in XQuery, our main motivation for considering
structural recursion in the first place. Indeed, the expressions of N T L(srl, srt) can

Theory Comput Syst (2009) 44: 590–619 613

create and manipulate arbitrary values (including e.g., lists of lists and list of pairs)
during their computation, whereas XQuery expressions can only manipulate atoms,
trees, lists of atoms, and lists of trees according to the XQuery data model [15]1. We
will nevertheless show in this section that N T L is a conservative extension of the
non-recursive for-let-where-return fragment X Q of XQuery: a query from XQuery
values to XQuery values is expressible in N T L if, and only if, it is already express-
ible in X Q. As this conservativity continues to hold in the presence of (safe) struc-
tural recursion, our results of Section 3 and 4 immediately transfer to (safe) structural
recursion in XQuery.

We also show that N T L is a conservative extension of N L L — a list-based
interpretation of the nested relational language of Buneman et al. [8]. Whereas
N T L(srl, srt) expressions can create and manipulate arbitrary values (including
trees), N L L can only manipulate list-based complex objects — values without trees.
As this conservativity continues to hold in the presence of (safe) structural recursion,
our results of Section 3 and 4 hence also transfer to (safe) structural recursion on
list-based complex objects.

5.1 Structural Recursion in XQuery

An XQuery type is a type in which lists can only hold atoms or trees, as given by the
following grammar:

s, t ::= atom | tree | s × t | [atom] | [tree].

Let an XQuery value be a value in some XQuery type and let an xquery be a query
from an XQuery type s to an XQuery type t .

For V ⊆ {srl, srt} we define X Q(V) to be the natural sublanguage of N T C(V) in
which we restrict expressions to only manipulate XQuery values. Formally, X Q(V)
is the subset of N T C(V) expressions in which every subexpression e has type e : t
or e : s → t with s and t XQuery types. For instance,

λxtree×tree.tree(lab(π1x), children(π2x))

is an expression in X Q. The expression srt(f) from Example 7 that simulates toc
from the Introduction is not in X Q(srl, srt) however. Indeed, f has type f : atom ×
[[tree] × tree] × unit → ([tree] × tree), where [[tree] × tree] is not an XQuery type.
Nevertheless, toc is expressible in X Q(srt), as the following proposition shows.

Proposition 27 Let V ⊆ {srl, srt}. N T L(V) is a conservative extension of X Q(V)
in the sense that every xquery definable by an expression in N T L(V) is definable
by an expression in X Q(V). Similarly, safe N T L(V) is a conservative extension of
safe X Q(V).

1To be completely precise, XQuery expressions can only manipulate list of items, where every item is
either an atom or a tree node. A single item is identified with the singleton list containing that item.
To enable the mixture of atoms and trees in lists, the types in XQuery are based on so-called regular
expression types. To keep our presentation simple, we have chosen to consider instead a standard type
system and disallow mixture of atoms and trees.

614 Theory Comput Syst (2009) 44: 590–619

Proof Observe that every value can be represented as a single tree. For exam-
ple, v = [(a, tree(b,[]))] of type [atom × tree] can be represented as to(v) :=
tree(list, [tree(pair, [tree(a,[]), tree(b,[])])]) where list and pair are arbitrarily
fixed distinct atoms. We can then simulate any xquery f : s → t in N T C(V) by
consistently replacing subexpressions that create non-XQuery values with subex-
pressions that create the tree representation of these values and by replacing subex-
pressions that operate on non-XQuery values with subexpressions that perform these
operations on the corresponding tree representation. The detailed simulation is as
follows.

For a general type s, let tos : s → tree be the N T C expression that transforms
values into their tree representations, defined by induction on s as follows:

• tounit = λx.tree(unit,[]);
• toatom = λx.tree(x,[]);
• totree = λx.x;
• tos×t = λ(x, y).tree(pair, [tos(x)]++[tot (y)]);
• to[s] = λx.tree(list, for y in x return tos(x)).

Next, let froms : tree → s be the N T C expression that transforms tree representa-
tions back into their original values, defined by induction on s as follows.

• fromunit = λx.();
• fromatom = λx.lab(x);
• fromtree = λx.x;
• froms×t = λx.(froms(head(children(x))), fromt (head(tail(children(x)))));
• from[s] = λx. for y in children(x) return froms(y).

Clearly, to and from form a lossless encode-decode pair in the sense that froms ◦ tos =
ids , for any type s.

Now define, for every expression e in N T L(srl, srt) the expression X [e] such that
X [e] : tree if e : t and X [e] : tree → tree if e : s → t as follows.

• X [xs] := xtree;
• X [a] := tree(a,[]);
• X [λxs.e] := λxtree.X [e];
• X [e1e2] := X [e1]X [e2];
• X [()] := tree(unit,[]);
• X [π1e] := head(children(X [e]));
• X [π2e] := head(tail(children(X [e])));
• X [(e1, e2)] := tree(pair, [X [e1]]++[X [e2]]);
• X [if e1 = e2 then et else ef] := if X [e1] = X [e2] then X [et] else X [ef];
• X [[]] := tree(list,[]);
• X [[e]] := tree(list, X [e]);
• X [e1++e2] := children(X [e1])++children(X [e2]);
• X [head(e)] := head(children(X [e]));
• X [tail(e)] := tail(children(X [e]));
• X [for xs in e1 return e2] := tree(list, for xtree in children(X [e1]) return

children(X [e2]));
• X [tree(e1, e2)] := tree(lab(X [e1]), children(X [e2]));

Theory Comput Syst (2009) 44: 590–619 615

• X [lab(e)] := tree(lab(X [e]),[]);
• X [children(e)] := tree(list, children(X [e]));
• X [srl(f)] := λztree.srl(λ(xtree, ytree).X [f (xs, yt)])(X [π1z

[s]×t], X [π2z
[s]×t])

when f has type f : s × t → t ; and
• finally,

X [srt(f)] := λutree.srt
(
λ(xatom, y[tree], ztree).X [f (xatom, y[t], zs)]

)

(X [π1z
tree×s], X [π2z

tree×s])

when f has type f : atom × [t] × s → t .

It is straightforward to show by induction on e that for every superset x, . . . , y of
the free variables of e,

1. if e : t , then to ◦ (λ(x, . . . , y).e) ≡ X [λ(x, . . . , y).e] ◦ to; and
2. if e : s → t then to ◦ (λ(x, . . . , y, z).ez) ≡ X [λ(x, . . . , y, z).(ez)] ◦ to.

Hence, if f : s → t is a closed expression, then

f ≡ idt ◦ (λz.f z) ≡ fromt ◦ tot ◦ (λz.f z) ≡ fromt ◦ X [λz.f z] ◦ tos .

Observe that if f is an expression in N T L(V), then X [f] is an expression in
X Q(V). Moreover, if s and t are XQuery types, then tos and fromt are X Q expres-
sions. In other words, fromt ◦ X [λz.(f z)]◦ tos is an expression in X Q(V) equivalent
to f , which shows that every xquery definable by a closed N T C(V) expression is
definable by a X Q(V) expression. Hence, N T L(V) is a conservative extension of
X Q(V).

It remains to show that safe N T L(V) is a conservative extension of safe X Q(V).
Hereto, first modify the definition of X [·] as follows:

• X [for y in e return children(y)] := tree(list, for y in children(X [e]) return
children(y));

• X [srl(λ(xs, yt).e)] := λztree.srl(λ(xtree, ytree).X [e])(X [π1z
[s]×t], X [π2z

[s]×t]);
and

• X [srt(λ(xatom, y[tree], zs))] := λutree.srt(λ(xatom, y[tree], ztree).X [e])(X [π1u
tree×s],

X [π2u
tree×s]).

It is readily verified that equations (1) and (2) above continue to hold. Therefore,
if f : s → t is a safe closed expression in N T C(V) with s and t XQuery types, then
fromt ◦ X [λz.f z]◦ tos is an equivalent expression in X Q(V). It remains to show that
this expression is also safe. Since to and from do not use structural recursion, it suf-
fices to show that every step expression occurring in X [λz.f, z] is linear. Since all step
expressions in f are linear and hence of the form λ(x, y).e or λ(x, y, z).e and since
these step expressions are translated into step expressions of the form λ(x, y).X [e]
and λ(x, y, z).X [e] respectively, it suffices to show that X [e] is linear if e is. We do
so by induction on the linearity of e.

• X [e] is clearly linear if e is a variable x, atom a, the empty tuple (), or the empty
list [].

616 Theory Comput Syst (2009) 44: 590–619

• If e = [e′], then X [e] = tree(list, X [e′]). Since X [e′] is linear, so is X [e].
• If e = (e1, e2) with FV(e1) ∩ FV(e2) = ∅ then

X [e] = tree(pair, [X [e1]]++[X [e2]]).

This expression is linear since X [·] preserves the set of free variables of an expres-
sion, and since X [e1] and X [e2] are linear by the induction hypothesis.

• If e = e1++e2 or e = tree(e1, e2) the reasoning is similar.
• If e = for xs in e1 return x then

X [e] = tree(list, for x in children(X [e1]) return children(x)).

This expression is easily seen linear since X [e1] is linear by the induction hypoth-
esis and since children(X [e1]) = y[y/children(X [e1]), z/lab(X [e1])].

• If e = for x in e1 return children(x) then

X [e] = tree(list, for x in children(X [e1]) return children(x)).

This expression is easily seen linear since X [e1] is linear by the induction hypoth-
esis and since children(X [e1]) = y[y/children(X [e1]), z/lab(X [e1])].

• If e = if e1 = e2 then et else ef , then

X [e] = if X [e1] = X [e2] then X [et] else X [ef],

which is linear by a straightforward application of the induction hypothesis.
• If e = e1[x/g(e2), y/h(e2)] with g and h distinct elements of {π1,π2,head, tail,

lab, children}, then it is easily seen that

X [e] = X [e1][x/X [g(e2)], y/X [h(e2)]].

We show that this expression is linear by a case analysis on g and h. First observe,
however, that since g and h must both be applicable to the same type t with e2 : t ,
it is impossible for g to be π1 and h to be head or for g to be children and h to be
π2, and so on. This leaves us with the following cases.

1. Case f = π1 and g = π2. Then X [π1(e2)] = head(children(X [e2])) and
X [π2(e2)] = head(tail(children(X [e2]))). Then let z be a variable not occur-
ring in e1 or e2. It is readily verified by induction on X [e1] that X [e1][y/

head(z)] is also linear. Hence, so is

X [e1][y/head(z)][x/head(children(X [e2])), z/tail(children(X [e2]))],

which equals X [e].
2. The reasoning for f = head and g = tail; f = lab and g = children; and their

symmetrical versions are similar. !

Combined with Theorems 12 and 26 and the fact that (safe) X Q(V) is a syntacti-
cal subset of (safe) N T L(V), we hence immediately obtain:

Theory Comput Syst (2009) 44: 590–619 617

Corollary 28

1. The class of queries expressible in X Q(srl, srt) coincides with the class of xqueries
that are computable in primitive recursive time.

2. The class of queries expressible in safe X Q(srl, srt) coincides with the class of
xqueries that are computable in polynomial time.

5.2 Structural Recursion on List-Based Complex Objects

A complex object type is a type in which tree does not occur, as generated by the
following grammar.

s, t ::= unit | atom | s × t | [s].
Let a complex object be a value in some complex object type, and let a complex object
query be a query from a complex object type s to a complex object type t .

For V ⊆ {srl} we define the nested list language N L L(V) to be the natural sub-
language of N T L(V) in which we restrict expressions to only create and manipu-
late complex objects. Formally, N L L is the subset of N T L expressions in which
every subexpression e has type e : s or e : s → t with s and t complex object types.
For instance, 〈Ka,[]◦!〉 is an N L L expression, but lab ◦ tree(a,[]) is not as
lab : tree → atom and tree(a,[]) : tree do not have complex object types.

Proposition 29 N T L(srl, srt) is a conservative extension of N L L(srl) in the sense
that every complex object query definable by an expression in N T L(srl, srt) is defin-
able by an expression in N L L(srl). Similarly, safe N T L(srl, srt) is a conservative
extension of safe N L L(srl).

Proof If f : s → t is a complex object query definable by an expression in
N T L(srl, srt), then f is primitive recursive by Proposition 13. Hence, by Propo-
sition 15 there exists an expression g : s → t in N T L(srl, srt) that defines f by
simulating a DTM M for f . Checking the proof of this proposition, we see that since
s and t do not contain tree the expression g simulating M never constructs or in-
spects trees, nor does it use srt. In other words, g is an expression in N L L(srl) that
defines f .

Similarly, if f : s → t is a complex object query definable by a safe expression
in N T L(srl, srt), then f is computable in polynomial time by Theorem 26. In par-
ticular, there exists a safe expression g : s → t in N T C(srl, srt) that defines f by
simulating a DTM M for f as shown in the proof of Proposition 25. Checking this
proof, we see that since s and t do not contain tree the expression g never constructs
or inspects trees, nor does it use srt. In other words, g is a safe expression in N L L(srl)
equivalent to f , from which the proposition follows. !

Combined with Theorems 12 and 26 and the fact that (safe) N L L(srl) is a syntac-
tical fragment of (safe) N T L(srl, srt) we hence immediately obtain:

Corollary 30

1. The class of queries expressible in N L L(srl) coincides with the class of complex
object queries that are computable in primitive recursive time.

618 Theory Comput Syst (2009) 44: 590–619

2. The class of queries expressible in safe N L L(srl) coincides with the class of com-
plex object queries that are computable in polynomial time.

The fact that N L L(srl) captures the class of primitive recursive complex object
queries may seem in contrast to the result of Grumbach and Milo [19] who consider
a language that includes structural recursion on pomsets (a datatype that generalizes
sets, bags, and lists), which is claimed to capture the elementary queries on pomsets.
It seems counter-intuitive that a language that essentially generalizes N L L(srl) has
lower complexity. There is an error in their upper-bound proof, however; also non-
elementary queries can be expressed [18].

We note that the polynomial time queries on list-based complex objects have al-
ready been captured by means of the list-trav iteration construct by the first three
authors and Colby [13]. This iteration construct is rather awkward, however, and we
think that safe structural recursion provides an elegant alternative.

We also note that in the restricted case of queries mappings tuples of lists of atomic
data values to lists of atomic data values, the polynomial time queries were already
captured by Bonner and Mecca in their work on Sequence Datalog [5].

6 Conclusions and Future Work

In conclusion, structural recursion is a powerful query primitive on lists and trees.
Unrestricted, it captures the class of all primitive recursive queries, while by disal-
lowing doubling of the recursive arguments we obtain the class of all polynomial time
queries.

We should stress, however, that although our effective syntax for the polynomial
time queries in terms of the safe expressions is satisfying from a theoretical point
of view, it is unsatisfying from a programmer’s point of view as it for instance pro-
hibits the natural formulation of the transitive closure and table-of-contents queries
as given in Examples 5 and 7. Indeed, the programmer must resort to Turing ma-
chine simulation to express these queries, which is clumsy at best. In the theory of
programming languages there has been considerable research on type systems that
ensure linear boundedness while still maintaining programmability [16, 20, 21, 23].
We therefore feel that a further investigation of the properties of these systems as they
apply to database query languages in general and query languages on lists and trees
in particular is warranted.

References

1. Abiteboul, S., Beeri, C.: The power of languages for the manipulation of complex values. VLDB J.
4(4), 727–794 (1995)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)
3. Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the polytime functions (ex-

tended abstract). In: STOC 1992, pp. 283–293. ACM Press, New York (1992)
4. Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D., Robie, J., Siméon, J.: XQuery 1.0: An XML

Query Language. W3C Recommendation, January 2007

Theory Comput Syst (2009) 44: 590–619 619

5. Bonner, A.J., Mecca, G.: Sequences, datalog, and transducers. J. Comput. Syst. Sci. 57(3), 234–259
(1998)

6. Boolos, G.S., Jeffrey, R.C.: Computability and Logic, 3rd edn. Cambridge University Press, Cam-
bridge (1989)

7. Buneman, P., Fernandez, M.F., Suciu, D.: UnQL: a query language and algebra for semistructured
data based on structural recursion. VLDB J. 9(1), 76–110 (2000)

8. Buneman, P., Naqvi, S.A., Tannen, V., Wong, L.: Principles of programming with complex objects
and collection types. Theor. Comput. Sci. 149(1), 3–48 (1995)

9. Caseiro, V.-H.: Equations for defining poly-time functions. PhD thesis, University of Oslo (1997)
10. Chandra, A.K., Harel, D.: Computable queries for relational data bases. J. Comput. Syst. Sci. 21(2),

156–178 (1980)
11. Cobham, A.: The intrinsic computational difficulty of functions. In: Logic, Methodology, and Philos-

ophy of Science II, pp. 24–30. Springer, Berlin (1965)
12. Colby, L.S., Libkin, L.: Tractable iteration mechanisms for bag languages. In: ICDT 1997. Lecture

Notes in Computer Science, vol. 1186, pp. 461–475. Springer, Berlin (1997)
13. Colby, L.S., Robertson, E.L., Saxton, L.V., Van Gucht, D.: A query language for list-based complex

objects. In: PODS 1994, pp. 179–189. ACM Press, New York (1994)
14. Draper, D., Fankhauser, P., Fernández, M.F., Malhotra, A., Rose, K., Rys, M., Siméon, J., Wadler, P.:

XQuery 1.0 and XPath 2.0 Formal Semantics. W3C Recommendation, January 2007
15. Fernández, M.F., Malhotra, A., Marsh, J., Nagy, M., Walsh, N.: XQuery 1.0 and XPath 2.0 Data

Model. W3C Recommendation, January 2007
16. Girard, J.-Y.: Light linear logic. Inf. Comput. 143(2), 175–204 (1998)
17. Gladstone, M.D.: Simplifications of the recursion scheme. J. Symb. Log. 36(4), 653–665 (1971)
18. Grumbach, S., Milo, T.: Personal communication
19. Grumbach, S., Milo, T.: An algebra for pomsets. Inf. Comput. 150(2), 268–306 (1999)
20. Hofmann, M.: A mixed modal/linear lambda calculus with applications to Bellantoni-Cook safe re-

cursion. In: CSL 1997. Lecture Notes in Computer Science, vol. 1414, pp. 275–294. Springer, Berlin
(1998)

21. Hofmann, M.: Linear types and non-size-increasing polynomial time computation. In: LICS, pp. 464–
473 (1999)

22. Hofmann, M.: Semantics of linear/modal lambda calculus. J. Funct. Program. 9(3), 247–277 (1999)
23. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order functional programs. In:

POPL, pp. 185–197 (2003)
24. Hull, R., Su, J.: Algebraic and calculus query languages for recursively typed complex objects.

J. Comput. Syst. Sci. 47(1), 121–156 (1993)
25. Immerman, N., Patnaik, S., Stemple, D.W.: The expressiveness of a family of finite set languages.

Theor. Comput. Sci. 155(1), 111–140 (1996)
26. Leivant, D.: Stratified functional programs and computational complexity. In: POPL 1993, pp. 325–

333. ACM Press, New York (1993)
27. Libkin, L., Wong, L.: Query languages for bags and aggregate functions. J. Comput. Syst. Sci. 55(2),

241–272 (1997)
28. Sazonov, V.Yu.: Hereditarily-finite sets, data bases and polynomial-time computability. Theor. Com-

put. Sci. 119(1), 187–214 (1993)
29. Suciu, D.: Bounded fixpoints for complex objects. Theor. Comput. Sci. 176(1–2), 283–328 (1997)
30. Suciu, D., Wong, L.: On two forms of structural recursion. In: ICDT 1995. Lecture Notes in Computer

Science, vol. 893, pp. 111–124. Springer, Berlin (1995)

	Structural Recursion as a Query Language on Lists and Ordered Trees
	Abstract
	Introduction
	Organization

	The Nested Tree Language
	Semantics of NTA
	Semantics of NTC
	Notational Convention

	Structural Recursion and Its Expressiveness
	Structural Recursion Operators
	Expressiveness
	The Encoding Function
	The Step Function
	The Decoding Function
	The Entire Simulation

	Taming Structural Recursion
	A Semantic Restriction
	A Syntactic Restriction

	Natural Sublanguages
	Structural Recursion in XQuery
	Structural Recursion on List-Based Complex Objects

	Conclusions and Future Work
	References

