INCORPORATING HEURISTIC INFORMATION INTO GENETIC SEARCII

Jung Y. Suh
Dick Van Gucht

Computer Science Department
Indiana University
Bloomington, Indiana 47405

(812) 335-6429

CSNET: jysuh@indiana, vgucht@indiana

Keywords: Genetic Algorithms, Heuristics, Optimization Problems,
Simulated Annealing, Sliding Block Puzzle, Traveling Salesman Problem.

Abstract

Genetic Algorithms have been shown to be robust optimiza-
tion algorithms for (positive} real-valued functions defined
over domains of the form R™ (R denotes the real numbers).
Only recently have there been attempts to apply genetic
algorithms to other optimization problems, such as combi-
natorial optimizaticn problems. I[n this paper, we identify
several obstacles which need to be overcome to successfully
apply genetic algorithms to such problems and indicate how
integrating heuristic information related to the problem un-
der consideration helps in overcoming these obstacles. \We
illustrate the validity of our approach by providing genetic
algorithms for the Traveling Salesman Problem and the Slid-
ing Block Puzzle.

1. Introduction

Suppose we have an object space .X' and a function [: X —
R* (R* denotes the positive real numbers) and our task is
to find a global minimum (or maximum) for the function f.
In this paper, we will concentrate on genetic algorithms, a
class of adaptive algorithms invented by John Holland (8],
to solve (or partially solve) this problem.

Genetic algorithms differ from more standard search al-
gorithms (e.g., gradient descent, controlled random search,
hill-climbing, simulated annealing [9] etc.) in that the search
is conducted using the information of a population of strue-
tures instead of that of a single structure. The motivation
for this approach is that by considering many structures as
potential candidate solutions, the risk of getting trapped in
a local optimum is greatly reduced.

Genetic algorithms have been applied with great suc-
cess by De Jong [4] to a wide variety of [unctions defined
over object spaces of the form R®, i.e., each structure z
consists of n real numbers z(1]...z{n]. Oaly recently have
there been attempts to apply genetic algorithms to other op-
timization problems such has the Traveling Salesman Prob-
lem (TSP) [6, 7], Bin Packing [13], Job Scheduling |2, 3].
An important observation made by Grelenstette et.al. [7]
was that to successfully apply genetic algorithms to such
problems, heuristic information has to be incorporated into
the genetic algorithm; in particular they proposed a heuristic
crossover operator and showed the dramatic improvement as
compared to crossover operators which did not such heuris-
tic information. In this paper, we continue the efforts of
[7]. In Section 2 we identifly several problems which need
to be overcome to successfully apply genetic algorithms to
optimization problems other than the standard function op-
timization problems. In Sections 3 and 4 we illustrate the
validity of our approach by providing genetic algorithms lor
the Traveling Salesman Problem and the Sliding Block Puz-
zle [12].

100

2. Design Issues of Genetic Algorithms
In this section, we outline the major obstacles in the de-
sign of genetic algorithms for optimization problems other
than standard function optimization problems and suggest
approaches to overcome themt.

2.1. The Representation Problem

As mentioned before, genetic algorithms have almost exclu-
sively been applied to functions defined over object spaces
of the form R™. \When we want to solve other optimiza-
tion problems, such as combinatorial optimization problems,
simple parametric representations of the structures can no
longer be used. This suggests that the first step towards
successfully applying genetic algorithms to these problems
is to use a natural representation for the structures of the
problem at hand. In particular, we suggest that the choice
of such a representation allows for the definition of recom-
bination operators which incorporate heuristic information
of the problem. We thus imply that the selectign of “good”
representations and recombination operators are highly cor-

related (for a more detailed discussion of these issues we
refer to [5]).
2.2. The Selection of Appropriate Recombination

Operators and the Importance of Local Improve-
ment

The power of applying genetic algorithms to functions de-
fined over R™ is that the standard recombination operators,
crossover and mutation, make intuitive sense ia this prob-
lem. In other problem domains, however, this is not usually
the case. Since the recombination step is critical for the
success of a genetic algorithm, it is important to carefully
select an appropriate set of recombination operators for such
problem domains.

Early research on genetic algorithms [4, 8] was primar-
ily concerned with operators which guarantee that (some)
structural information of the structures to which they are
applied is preserved. Examples of such recombination op-
erators are the standard crossover, mutation and inversion
operators used in function optimization. Grefenstette et.al.
argued that such an approach does not carry over with sim-
ilar success to the traveling salesman problem (TSP). They
showed that considering recombination operators (in their
case, only crossover operators) that merely preserve struc-
tural information results in poorly performing genetic al-
gorithms (i.e., not much better than random search). They
discovered b er that it is possible and natural to incorpo-
rate heuristic information about the TSP into the crossover

t It should be noted that De Jong (5] and Grefenstette
et.al. [7] already identified some of these problems. .

operator and still maintain its fundamental property,
namely: preservation of structural information of the struc-
tures to which the operator is applied. This resulted in a
fairly successful genetic algorithm for the TSP, but certainly
not an algorithm that is competitive with other approxima-
tion algorithms for the TSP (see {10}).

We claim that it is often the case that additional im-
provements can be gained il one incorporates even more
heuristics about the problem into the recombination step
of a genetic algorithm. Often, heuristics about problems
are incorporated into algorithms in the form of operators
which iteratively perform local improvemenis to candidate
solutions. Examples of such operators can be found in gra-
dient descent algorithms, hill climbing algorithms, simulated
annealing, etc. We will argue that it is usually straightfor-
ward, and in fact, we think, esseatial il a competitive genetic
algorithm is desired, to incorporate such local improvement
operators into the recombination step of a genetic algorithm.
An additional advantage of this approach is that it suggests
2 natural technique of blending genetic algorithms with more
standard optimization algorithms.

2.3. Avoiding Premature Convergence

One of the major difliculties with genetic algorithms {and in
fact with most search algorithms) is that sometimes prema-
ture convergence, i.e. convergence to a suboptimal solution,
occurs. It has been observed that this problem is closely tied
to the problem of losing diversity in the population. One
source of loss in diversity is the occasional appearance of 2
“super-individual” which in a few generations takes over the
population. One way of avoiding this problem is to change
the selection procedure, as was demonstrated by Baker [1].
Another source of loss of diversity results from poor per-
formance of recombination operators in terms of sampling
new structures. To overcome such problems, we claim that
the recombination operators should be selected carefully so
that they can offset each others vulnerabilities (for 2 more
detailed discussicn of these issues, we refer to [1, 4, 7, 8]).

3. The Traveling Salesman Problem ,
In this section we show that solutions to the problems raised
in Section 2 enable us to develop a genetic algorithm for the
TSP

The TSP is easily stated: Given a complete graph with
N nodes, find the shortest Ilamiltonian tour through the
graph (in this paper, we will assume Euclidean distances
between nodes). For an excellent discussion on the TSP, we
refer to [10].

The object space X obviously consists of all [lamilto-
nian tours (tours, for short) associated with-the graph, and
/. the function to be optimized, returas the length of a tour.

As in JT], we represent a tour by its adjacency repre-
seniation. It turns out that this representation allows us to
easily formnulate and implement heuristic recombination op-
erators. In the adjacency representation, a tour is described
by 2 list of cities. There is an edge in the tour from city 1 to
city j if and only if the value in ith position of the adjacency
representation is j. For example, the tour shown in Figure
1 is represented as (3 15 2 4).

We now turn to the most critical step of the design:
the selection of appropriate recombination operators. \We
clected to have two such operators. The first operator is 2
slight modification of the heuristic crossover operator intro-
duced by Grefenstette et.al. [7]. This operator constructs
an offspring from two parent tours as [ollows: Pick a ran-
dom city as the starting poiat for the offspring's tour. Com-
pare the two edges leaving the starting cily in the parents
and choose the shorter edge. Continue to extend the par-
tial tour by choosing the shorter of the two edges in the
parents which extend the tour. If the shorter parental edge
would introduce a cycle into the partial tour, check il the
other parental edge introduces a cycle. In case the second

101

Figure 1. The tour (3152 4).

edge does not introduce a cycle, extend the tour with this
edge, otherwise extend the tour by a random edge. Con-
tinue until a complete tour is generated. It is in the se-
lection of the shorter edges that we exploit heuristic infor-
mation about the TSP; indeed, it seems likely that a good
tour will contain short edges. The effect of the heuristic
crossover operator is to “glue” together “good” (i.e., short)
subpaths of the parent tours. (Notice also that it preserves
structural information about the parent tours.) The prob-
lem with the heuristic crossover operator is that it leaves
undesirable crossings of edges as illustrated in Figure 2 (see
also Appendix 1). In other words, the heuristic crossover
operates perforins poorly wlen it comes down to fine-tuning
candidate solutions. This motivated us to introduce a sec-
ond recombination operator.

Whereas the heuristic crossover operator can be
thought of as a global operator, the second recombination
operator has a more local behavior and thus qualifies as 2
local improvement operator. It was introduced by Lin and
Kernighan [11] and is called the 2-opt operator. The 2-opt
operator randomly selects two edges (iy, /1) and (43, j2) from
a tour (see Figure 2) and checks if ED(1;,5,)+ ED(fa, ja) >
ED(i,,7) + ED{i3, j;) (ED stands for Euclidean distance).
If this is the case, the tour is repiaced by removing the
edges (iy, 1) and (i3, j2) and replacing them with the edges
(i1, ja) and (i3, ;) (see Figure 3). Actually, we use 2 more
subtle variation of the 2-opt operator, inspired by recent
work on simulaled annealing for the TSP by Kirkpatrick
et.al. [9]. In this variation there is a (small) probability
(depending on a slowly decreasing temperature} that when
ED{iy,ji) + ED(i3.73) € ED(i1,ja) + ED(i3, 1), the orig-
inal tour is replaced using the previously described transfor-
mation f.

To make the description of our genetic algorithin complete,

we need to describe three parameters:
a. crossover rate: this parameter indicates the amount
of structures in the population which wiil undergo cross-

over.

. local improvement rate: this parameter indicates
the amount of structures in the population which will
undergo 2-opt operations.

. 2-opt rate: if the graph under consideration has NV
nodes, each structure which is selected to undergo local
improvement will undergo (N x 2 —opt rate} 2-opt
operations per generation.

The algorithm was stopped when the majority of the tours

in the population were identical.

We tried our algorithin on a wide variety of (euclidean)

t 1t should be noted, however, that the performance of
the algorithin with the simple 2-opt is usually only slightly
worse than an algorithm that uses the simulated annealing

version.

f.l X\z
ip iy
Figure 2. Tour with edges (i, ;) and (dq, ja).
i1U t
i i
Figure 3. Tour with edges (fy, jz) and (:',:jl),

traveling salesman problems. In Figure 4, we shiow a selec-
tion of such problems.

krolak

lattice

4-¢ircles

i i

TN o

i oA L
200-cities
. lat-4-circ

Figure 4. Five Traveling Salesman Probleins

In Table I, we show the results obtained by the algorithm
of Grelenstette et.al. [7] for the following parameter set-
tings: initial population = 100 randomly chosen tours,
crossover rate = 50%, local improvemeat rate = 0%,

2-opt rate = not applicable. In Table 2, we show the re-
sults of a genetic algorithms which uses the local improve-
nent operator with the following parameter settings: pep-
ulation eize = 00 structures, crossover rate = 50%,
local improvement rate = 50%, 2-opt rate = Q.].

Table I
Genetic Algorithm Without Local Improvement
TSP Nodes Optimum Qur Generations

Solution
krolak{10] 100 21282 25691 104
lattice 100 100 104.9 209
4-circles 200 24.67 35.0 300
lat-4-cire 200 112.56 139.2 286
200-cities 200 ? 192.8 376
Table 2

Genetic Algorithm With Local Improvement
TSP Nodes Optimum Our Generations

Solution
krolak 100 21282 21651 G789
lattice 100 100 100 188

4-circles 200 24.5 24.5 218
lat-4-circ 200 112.56 113.3 GG
200-cities 200 7 153.6 946

In Figure 5, we show the (best) tours obtained and the gener-
ation in which they were first found by the algorithm which
uses local improvement. Clearly, the addition of a local im-
provement technique improves the performance (measured
in terms of the tour length of the best tour obtained) of
the algorithm dramatically. (In terms of extra resources,
on average, the algorithm using local improvement required
about 2.2 times more generations to obtain its best struc-
ture.) In fact, the results obtained by our algorithm are very
competitive, again, in terms of the tour length of the best
tour obtained, compared to results reported in the literature
for other approximation algorithms for the TSP [9, 10]. {In
Appendix 1, we give additional results.)

4. The Sliding Block Puzzle (SBP)
We now describe how the approach described in Section 2
can be used in the design of a genetic algorithm for a problem
which is not usually thought of as a function optimization
problem: the Sliding Block Puzzle [12]}.

Consider the initial board of the puzzle shown in Figure
G and let the board shown in Figure 7 be a goal board (the
empty tile is represented by the symbol 0).

1 2 3 4
5 6 7 8
9 0 10 11
12 13 14 15
Figure 6. The Initial Board of a Sliding Block Puzzle.
1 2 3 4
6 9 0 8
5 10 7 11
12 13 14 15

Figure 7. A Goal Board a Sliding Block Puzzle.

t In our implementation, we used 3% 3 and 4 x 4 puzzies.

20

krolak (216511

(G20

4-circles (24.51)

lattice (100.0)

<J

A

Ol

\
Corl 5 y

P tt T

[AVAR

200-cities (153.67)

I

YA

d

— — %N

lat=d4-circ (113.34)

Figure 5. Best Tours Obtained by a
Geaetic Algorithm with Local Improvement.

The objective of the SBP is to reach the goal board starting
from the intial board using a sequence of valid moves, There
are four basic moves:

L: move the empty tile to the left.

U: move the empty tile upwards.

R: move the empty tile to the right.

D: move the empty tile downwards.

The only precondition required for applying a move is that
it should not move the empty tile out of the board. For
example, 2 sequence which transforms the board shown in
Figure 6 into the board shown in Figure 7 is (L.U.R,D.R.U).

In order to apply genetic algorithms to the SBP, we
need to formulate the problem as a function optimization
problem. The abject space X consists of all valid sequences
of moves applicable to the initial board. Notice that the
structures in X do not have a fixed length representation.
Other research with genetic algorithms on object spaces with
structures having variable length representations was done
by Smith'[14] who implemented a machine learning system
(LS-1) using structures corresponding to production system
programs.

In order to define f, the function to be optimized, we
need to introduce some extra notation. We will denote the
initial board by I8 and the goal board by GB. Let (z,,...,1,)
be 2 sequence of valid moves {i.e., an element of X), we
denote by IB(zy,...,z.) the board which is obtained by
applying the sequence of moves (z,,. ceyTy) to IB.

Consider the boards 1B(z,,...,z,) and GB. For each tile
(except the empty tile) in IB(z,,. .-.1Ta), compute the Afan-
haltan dislance between the tile's position in IB(z,,...,z,)
and its position in CB. We define the per formance(z,,..,1,)
as the sum of ail these Manhattan distances.

In our first attempt, we defined

Sz,

+ but quickly discovered that a much better measure s

1ZTa) = performance(z,,. .., L2

P& e B ms'a{performunce[:h...,:(-HI <i<nj,

i.e., the value of a structure (z,,... +Ta) is defined as the per-
formance of the sub-sequence (z,, ;) whose correspond-
ing intermediate board IB(z,, -1 Zi) comes closest to GB (it
should be noted that computing f{z,,...,z,) can be done in
O(n)). It should be clear that whenever Szh,...,24) =0,
the sequence (zy,...,z,) contains a subsequence (z, ... y Ti)
which is a solution to the SBP. We now turn to the selection
of the recombination operators.

The crossover process here is similar to that in the TSP.
Suppose that two sequences of operators are given. We pick
the first operator from each sequence. Apply each opera-
tor to the initial board to see which operator yields 2 new
board closer to the goal board. Choose with high proba-
bility the operator which yields the closer board, i.e., the
one with the better performance. Notice that it is here that
we employ heuristic information about the Sliding Puzzle
Problem, indeed, it seems likely that we should try to ob-
tain intermediate configurations that get closer to the goal
board. We do not always choose the better operator, how-
ever, because this may eventually lead to a bad sequence
whose performance we can not improve as long as it starts
with that particular operator. In short, we could get stuck
in the local optimum. Ilowever, it is our assumption that
in general it is more likely the case that selecting the better
operator will contribute to constructing a good sequence.
In case the two operaters have the same performance, pick
any of them randomly. Once the operator is chosen, it be-
comes the first operator of the new sequence and the board
is updated accordingly. Now we pick the second operators
of each sequence. Again, we will take the one with the bet-
ter performance. [t may however be the case that one or
both of them is nd longer legal, i.e., it pushes the empty
tile off the edge of the board. This is possible because the
operator chosen for the new sequence is not necessarily the
one which preceded the current two operators. In case only
one ol the operators is illegal, choose the one which is le-
gal. Otherwise, randomly generate 2 legal one. [t becomes
the second operator of the new sequence. Again update the
board. This process is repeated until we reach the end of
the two sequences.

The local improvement process is performed on a single
structure. First randomliy pick m positions (0 <m < n
in the sequence. For the left-most position, make the cor-
responding board arrangement by applying the operators in
the sequence preceding this position. Randomly generate a
legal operator in that position and check if this new opera-
tor is acceptable by comparing it with the old operator using
the boltzman distribution test (i.e., perform simulated an-
nealing). This test goes as follows: Accept the new operator
il it yields a board closer to the goal board than the old one
does. Otherwise, accept it with the probability according
to a boltzman distribution. If the temperature in the boltz-
man distribution is high, the new operator will be accepted
with high probability, even if its performance is bad. If the
temperature is low, the operator is accepted with less prob-
ability. (Temperature deceases exponentially. \We chose the
temperature T = Tpp°®, where T, is a initial temperature,
0 < p <1 and gen is the number of generations). If the
new operator is accepted, it replaces the old one in the se-
quence. If not, the oid one is kept. Now proceed scanning
the given sequence to the right until the second in itially cho-
sen position at which local improvement will be performed
is reached, checking if, along the way, any of the operators
should be updated due to the replacement of the previous

103

operator. If an operator has to be updated, replace it with
a legal one. Repeat this process for all the initially cho-
sen positions at which local improvement will be performed.
Upon completion of this process, the whole new sequence is
compared with the initial sequence and accepted according
to the boltzman distribution test.

To overcome the difficulties of the non-fixed length rep-
resentation of sequences, the genetic algorithm is embedded
in 2 loop which periodically exteads the length of the struc-
tures of the population under consideration. For example,
we may start out with a population of sequences of length
10, apply the genetic algorithm to this population until 2
steady state is reached, then extend the sequences by ran-
domly adding a fixed amount of valid moves to each sequence
in the steady state population and resume the GA on the
new population until 2 new steady state is reached. This ex-
{ension process is continued until 2 solution or near-optimum
solution is obtained.

The results of initial experiments are promising. Con-
sistently we find solutions or near-optimum solutions using
little computational time. In the case of the 3 x 3 sliding
puzzle games, we always found a solution using the following
parameter settings: initial populatiom = 20 randomly
chosen structures af length 10, the extension of the struc-
tures when the algorithm reached a steady state was done
in chunks of length §, crossover rate = 70%, local ia-
provement rate = 30%. In the case of 4 x 4 sliding puz-
zle games, the boards we reached (for difficult cases) are
within 4 to 5 in Manhattan distance from the goal config-
uration, hence the majority of tiles are in place. Unfortu-
nately, we seem to have trouble generating exact solutions
for these puzzles. In Figure 8 we show a typical case of such
a “difficult® puzzle. For this example, it takes 31 moves to
transform the initial board into the goal board. In Figure
9, we show a board reached by a genetic algorithm using
the following parameters: initial population size = 50
randomly chosen structures of length 20, the extension of
the structures when the algorithm reached a steady state
was done in chunks of 10, crossover rate = 70%, local
inprovement rate = 30%. This board has a Manhattan
distance of 4 from the goal board. In Appendix 2, we report
additional results.

1 2 3 4 101 6 2
5 a6 T8 3 8 15 4
9 0 10 11 g 7 1311
12 13 14 15 5 0 12 14

Figure 8. The Initial and Goal Board of a 4 x 4-SBP.

101 6 2
3 8 15 4
5 7 13 14
9 0 12 11

Figure 9. A Board Obtained by 2 Genetic Algorithm.

The fact that we only reached near-optimum solution
was not totally unexpected since it is well known that genetic
algorithms are excellent in finding near-optimum solutions
(see the TSP above and [4]), but are usually not powerful
enough to find exact solutions. However, we plan to fine-
tune our current algorithm and expect, at least for the SBP,
to overcome this problem.

. 5. Conclusion
Ve have identified several problems in generalizing genetic
algorithms to optimization problems other than the stan-
dard function optimization probl By addressing these
problems we designed genetic algorithms for two well-know
problems: the Traveling Salesman Problem, an example of 2

combinatorial optimization problem, and the Sliding Dlock
Puzzle, an example of a puzzle problem studied in Artificial
Intelligence. It turned out that the sclection of a natural
representation and the selection of heuristically motivated
recombination operators is critical in the design of robust
genetic algorithms for such problemms. We believe that our
approach is quite general and can be applied to many related
problems.

Finally, it is worthwile to mention that the “operator-
oriented” approach used in the SBP is easily generalized
to inany other problemns, thus rendering genetic algorithms
applicable to such problems. As an example, in the stan-
dard function optimization problem (assuming that the ar-
guments to the [unction are represented in binary code), we
could define the following operators:

Set(i,1): set the i-th position in the bitstring 00...00 to 1
and design heuristically motivated recombination operators
which work on sequences of such operations. A similar ap-
proach could be taken for the TSP.

Acknowledgements
We would like to thank the referees for their insightful com-
ments and criticisms which helped us to improve the paper.

G. References

[1] J. Baker,* Adaptive Selection Methods for Genetic Algo-

rithms", Proc. of an Int'l Conl. on Genetic Algorithms and

Their Applications, pp. 101-111 {July 1985).

[2] L. Davis, “Job Shop Scheduling with Genetic Algori-

thms", Proc. of an Int’l Conl. on Genetic Algorithins and

Their Applications, pp. 136-140 (July 1985).

g| L. Davis, “Applying Adaptive Algorithms to Epistatic
omains”, Proc. of 9th IJCAI, pp. 162-164 (Aug 1985).

[4] K.A. De Jong, “Adaptive System Design: a Genetic Ap-

proach”, IEEE Trans. Sysi., and Cyber. Vol. SAC-10(9),

pp. 556-574 (September 1980).

[5] K.A De Jong, “Genetic Algorithms: a 10 Year PPerspece-

tive", Proc. of an Int'l Conl. on Genetic Algorithms and

Their Applications, pp. 169-177 (July 1985).

G| D.E. Goldberg and R. Lingle, “Alleles, Loci, and the
raveling Salesman Problem”, Proc. of an Iut’l Conf. on

Genetic Algorithms and Their Applications, pp. 154-159

(July 1985).

[7] J.J. Grefenstette, R. Gopal, B.J. Rosmaita and D. Van

Gucht, “Genelic Algorithms for the Traveling Salesman Pro-

blem”, Proc. of an Int'l Conl. on Genetic Algorithms and

Their Applications, pp. 160-168 (July 1985).

E] J. llolland, Adeplation in Nalural and Arlificial Systems,
niv. of Michigan Press, Ann Arbor (1975).

[9] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, “Optimiza-

tion by Simulated Annealing”, Science Vol. £20{4598), pp.

671-680 (May 1983).

BO]L E.L. Lawler, J.I{. Lenstra, A.l[.G. Rinnooy Kan and
.. Shmoys (Ed), The Traveling Salesinan Problem, John

Wiley & Sons Ltd (1985).

[11] S. Lia and B.W. Kernighan, “An Effective [leuristic

Algorithm for the Traveling Salesman Problem”, Operalions

Research 1972, pp. 498-516.

g2| N.J. Nilsson, Principles of Artificial Intelligence, Tioga
ublishing Company Palo Alto, Calilornia (1980).

[13] D. Smith, “Bin Packing With Adaptive Search”, Proc.

of an Int'l Conference on Genetic Algorithms and Their Ap-
lications, pp. 202-20G {July 1985).

14] S.F. Smith, “Flexible Learning of Problem Solving lleu-

ristics Through Adaptive Search™, Proc. of 8th IJCAI (Aug.

1983).

104

APFIOLL |

® we—= afdlticnal retuite comserming
Fromies The follms

1a Gt eorer lmm—rs, [

fog—letlon flve « The reerrr of towrs in & populstion st
T yleam time
Strmciure Length 1 The lowr lesgus,
Crovsover @ste « The portion of population wicrgoley
creti-arer. The rest will wnderge lecsl
Imprevement
DECAATIO + 1€ T 148 the curvent lewperature werd (o
sracallng scheme, DECRATIO * T will bw
the new temperaiure.
4* mOTC: the (altlal bemr=rature 19 the
1% of sseraga drelotion of the initlel
botlon (0-th generaticm).
compatetion ©f Lha Lowr lemgeh
nf Cownle s o telsl,
INTERT o« the aumiwr of trlals siter which the
tesperature i wprated
1ot mste 1 {I-vrt Rate * Struetm
the mumher of 1-spt
TLwctura wedergoing

o
Trlal « Coum

erqth) ylelde
toticns on &
ool leprevemsnt.

ov te tesd & tabia,

Locsl Ssie () (LR}

lattlice TIL 1 rids. 6303y
ia Bee 4379y
185 % (1899.16513)
1103 (130 101y 108
L6 (135. 4146y

o ev10)
(198,17 784)
(1897 1006%)
413732838y
100,08 {16):13650)

The stoes table glved the fTor the lattlce TE&,
e crmductad } saperimants waleg Lwo differemt J-ops
raten.

0\ Lacal Mate =cime thet we ace resalng Trose-sver onaly
withont uilng locsl laprovesant,

Tha descriptlon “esp. L™ ctonds fnr ssperisent 1.

The motatlon ema.mem (999 tLEL] lidicetes that we obisla=
cd the solutlon of lrageh LLL.L alter ggg gemerations
which tood titt triaels.

5. beteigs

Formlsilen f1ee = 199

Tiratturs Lemps = jow

Evmnimer Bara = 8 4
BIRATIS = @813

1 og

1. mearen

Pepmiastom #10n

TR (reas Yivey
Teavy (PMariee

i voe

et {restiemni]

i3 any I

| =nsosay 1 fseay
) .

- E

“hoe

g

-

e

-t BT

M-

5. D Bemtms Faimis

Frpaistion Elve = 188
Birmgtms s fongan = dod

-y

ko

£. Lotnras sms 4 Corvins

Fopulation O1ge = j03
Biresiere Lengen = ioa
o

']

A4

—-—bmw

-

muma

Bomrt Bain o 1w .r
tenatan e L VL (184 smny 199 [iedsavis)
L T
.. 3 { Vo)
- 1rave smin e "
- 3 ANITe 83eap 1L E (rissisese)

- w e

—wme

- B
- B

G5

- = BLE

E L F]

-6 AD

APPENLIR 2

In this appendix, we show some of the results
obtalned for two Jx) puzzles and one (diffi-
cult) 4x4 puzile.

Population Size : same as in appendix 1
Percent of Population
undergoing
cross-over : same as in appendix 1
simulated
annealing : same as In appendix 1

Annealing Schedule -

temperature = (initial average deviation) -+
{0.975 *+* gen)

vhere gen denotes the number of generations
and *=* denotes: ralse to the power.

Hote: The Loczl Improvement Rate is 20 § here
but is not explicitly shown,

Extension Schedule ek §

This table indicates it
that, betwveen the 0-
generation length th and the 5-th gene-

ration, the length S i it h il Mot
0= 5 10 of the structures ls .
after 5 20 10. After the 5-th ot I
generation, ssey 3 smay
the structures are extended to have
l=ngth 20.
- N —
1. 3wy 3 iding Pussls E
Fapulation F1: L i i s G Sl
Fergent :('r “-:-f G :“-'$::- 3 . :“-‘4=,Q 17 1} 3 esuy
s guing -
m:;u slmilated snnasiing v 30 T I
- = {Initlal svarage daviavien) * (D.975 ** gem)
Whers gen Serates Tha geseratlon. =y R
Cetenaion lq—n-lu.__ H 3 g
grnerstion] A
e ————————— suel d=ss smwe § wash
@ -8 10 Tetat 11
slter 3 o
Meter O standa for tha ewpoy tile. & =ep gl
intt besrd poal boerd dlstence
“* tmaw § =%
Ly 11 % Fieniy: F—
. o 3 & 3 a -
« T 8 4« v o
s tesm I °*
-
o | 13 s
10 3 14 0 L I' 103
a1 8 a & 7 oy
o
e

Bast Structers soisined in ssch swperissnt

arper imant dlitence fres musber of mamter et
. gesl Board mmwes Takan trisls Takes

1522 suay 8 wees
teten E13 €o0s vmeg 37 auny
.

taam 1 reierE

1 11 than 300
H 1% than X0
1 e less when 10D
1 s ieas tham 109 1w .
Woiae
ilvsn
e P s -
Hienp e '
. A L1 LT 1 1 .
Ty & Elloing Pusele 1y i]
Pepulation Sius ‘30 HH B H
Pergens ot Popubation :
wder poing CF e .3 anp

e guing slouloted sancsling ¢ 29 [

Mrsaling Schadule: Tesperature = (1a1tisl sversge devlation) * (0.973 4% gen}
whars gea Seectod Lha generatios.
Toos mpuy 3 sasp
tetst 230

Betas O stends for The septy

LALE Soerd poal baerd Teee adga 13 cuep
tetal dar

101 3 4 19 18 2

36 7 @ 3} 813 4 I

LR Rt v TN

12 13 1e 33 3 01714

fass o e
tataw ::. LS '

Bk Strectere chealmed Ia osch swmer Lowt

et Lt distoncs (rem maber of
el board e taken
1 4 n
7 3 =
3 4 n

106

