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Abstract

In this paper, we describe the implementation of IUGQL1, a graph oriented query

language for object oriented databases that is based on the Graph Oriented Object

Data (GOOD) model. In the implementation, databases (graphs) are represented as

a set of (named) binary relations. The graph oriented queries are translated into

equivalent Tarski algebra expressions. These Tarski expressions manipulate the binary

relations to yield the desired query result.

1IUGQL is an acronym for Indiana University Graphical Query Language.



1 Introduction

Relational database systems have succeeded commercially because of their simplicity and

strong theoretical foundation. However, in recent years, driven by the need for database ap-

plications involving complex objects, new concepts have arisen suggesting further approaches

to database systems. These new concepts have combined ideas from several areas of com-

puter science, most notably the object oriented paradigm, into database technologies.

To incorporate these concepts into databases, a variety of new database models have

been introduced. These database models can be classi�ed into three main categories: the

complex object models, the function-based object models, and hybrids of these. Complex

object models extend the relational model by allowing, besides 
at relations, complex object

types such as tuples, sets, lists, arrays, etc. Function-based object models, on the other hand,

view a database as a graph of objects organized in classes, where the links between objects

express single-valued and multi-valued functions (relationships) between objects. Although

researchers have succeeded in extending the well-known theory of relational query languages

to complex object models, the study of query languages for function-based object databases

is much less developed.

Given this situation, we considered a simple algebra, the Tarski algebra, that is appropri-

ate to support function-based object query languages [7, 12, 13]. Unlike previously considered

algebras, the Tarski algebra operates on graphs (interpreted as conceptual binary relations)

rather than on objects of complex types. In that respect, the Tarski algebra is at the level of

abstraction of function-based object models and is thus more natural and e�ective than other

algebras for such database models. In [12], we showed how to translate queries speci�ed in a

graph-oriented query language into the Tarski algebra. A graph-oriented query speci�cation

language was chosen because graphs are the natural representation of function-based object

databases [6, 10].
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In this paper, we describe the implementation of IUGQL, a graph oriented query lan-

guage for object oriented databases, using the Tarski algebra as an underlying algebraic

foundation. In addition to the implementation of the graphical query language, we have also

successfully implemented optimization techniques proposed in [12] to provide for e�cient

query processing.

In Section 2 we provide a brief overview of the graph oriented model, graph oriented

queries, the Tarski algebra, and the translation algorithm to e�ectively translate queries in

the graph oriented query language into the Tarski algebra. The reader is referred to [6, 12, 13]

for more details. In Section 3, we describe the overall layout of the implementation of IUGQL.

In Section 4, we discuss the lower level components of IUGQL, the Tarski algebra interpreter

and the Tarski machine. In section 5 we discuss the higher level components of IUGQL, the

graph-tarski optimizer and translator. We discuss the graph primitives used to implement

the graph oriented query language and the implementation of the translation algorithms and

graph optimization techniques. In Section 6 we provide details on how to use the system. In

Section 7 we provide detailed example queries and the output produced by IUGQL, which

can be used a tutorial introduction on how to use IUGQL. In Section 8 we provide directions

for future work and research. We provide a few appendices to highlight the important code

header fragments and other relevant details.

2 The Graph Oriented Query Language, the Tarski

Algebra, and the Translation Algorithms

2.1 The Graph Oriented Query Language

The graph-oriented representation of a function-based object database views the database

as a labeled directed graph. The labeled nodes correspond to objects in the database, and
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Figure 1: An object base schema of a persons database and an instance over the persons

schema.

the labeled edges correspond to functions or relationships between the objects [6].

Consider the graph in Figure 1 (top). It represents the object base schema of a persons

database. The rectangular nodes represent structured object classes that can have a complex

internal structure, whereas the circular nodes represent basic object classes. The edges in

the schema denote functions, i.e., properties or relationships between object classes. There

are two possible function types, single-valued (!) function types, and multivalued (!!)

function types2.

The graph shown in Figure 1 (bottom) is an example of an object base instance over this

persons schema. Also attached to each basic object is its value. Notice how each object,

with its properties, agrees with the schema.

Given this graph representation of a database, it is natural to specify queries in the form

2The function (property) (SP; c; P ) is multi-valued since a set of persons can consist of several persons.
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Figure 2: A query graph over the persons object base specifying named parent-child pairs

who have the same name. The two P nodes are the selected nodes.

of query graphs. A query graph, relative to a given object base instance, de�nes a set of

embeddings which are the subgraphs of the object base instance that match the query graph.

Consider the following query: Find all parent-child pairs who have the same name. In

Figure 2, we show a query graph that represents the above query3. Since we are interested in

the two P nodes as output, we designate them as selected nodes (pointed to by bold arrows)

in the query graph as shown in Figure 2.

In addition to the query graph, the graph oriented model also speci�es actions to per-

form transformation operations on the database. The model allows speci�cation of actions

like node addition, edge addition, node deletion, and edge deletion [6]. Our implementation

implements all of the actions speci�ed in the model.

2.2 The Tarski Algebra

Since the object base schemas and instances we are working with are labeled graphs, a natural

(and easy) way to conceptualize them is as a collection of binary relations. To manipulate

these conceptual relations and adhere to the function-based approach, it is necessary to

3For the instance in Figure 1, this query graph de�nes two embeddings corresponding to the two parent-

child pairs, fP4,P6g and fP5,P7g.
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develop an algebra that is closed with respect to the class of binary relations and that is

expressive enough to handle all reasonable queries.

In the 1940's Alfred Tarski proposed an algebra to manipulate binary relations [16]. The

kernel of the basic Tarski algebra consists of four well-known operators on binary relations:

union (r [ s), relation composition (r � s), inverse (r�1), and (�nite) complementation

(r)4. This algebra was extended in [7, 12] to enable representation of complex objects

by adding certain object-id creation operators. The algebra was also extended with some

simple selection operators. The selection operators are very simple and select pairs from a

relation based on certain selection conditions involving constants. The object-id creation

operators are more fundamental and allow the creation of object identi�ers for ordered-

pairs. Speci�cally, the full Tarski algebra has, besides the four basic operators, two constant

selection (the left- and right selection) operators, and two ordered-pair oid creation (the left-

and right oid creation) operators. This grammar was further extended in [14] to facilitate

parallel execution of queries by allowing mechanisms to horizontally partition relations and

accumulate subquery results.

In Figure 3, we show the result of left and right-oid creation on a relation r, denoted

r
/ and r

., respectively. Each ordered pair in r has received a separate oid. The left-value

(right-value) of that pair is found in r
/ (r.).

The oids that our system generates are based on either one of two strategies, the tuple

sensitive strategy, or the relation sensitive strategy. In tuple sensitive oid creation, the

relation name is ignored, and a concatenation of the left and right values of the pair is

used as the oid. In relation sensitive oid creation, the relation name is pre�xed to the

concatenation of the values of the pair to generate the oid.

There are also some derived Tarski operators that are useful in the translation process.

4For a detailed explanation of the operators, see [12, 13].
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Figure 3: Example of left and right oid creation on a relation r.

They are r
�, r�l, r�r , r� , and r \ s, and are de�ned in [12].

2.3 Encoding an Object Base as Conceptual Binary Relations

Reconsider the (labeled-directed) graph in Figure 1 which represents the schema and an

instance of the persons object base. This object base can be encoded as a set of binary

relations, by storing each edge type as a binary relation, and inserting the left and right

nodes of the edge in the graph as pairs in the corresponding relation. Nodes are stored as

relations with identical pairs.

The conceptual binary relation instance or the Tarski instance for the persons object

base is shown in Figure 4.

2.4 The Translation Algorithm

The translation algorithm is a graph reduction algorithm which uses the techniques of edge

reduction, node combination, projection, chaining, disconnected node combination, and selec-

tion [13].

The key problem in the query graph translation process is to derive an algebraic expres-

sion for the search conditions speci�ed in the query graph of Figure 2. We brie
y discuss
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the techniques of edge reduction and node combination in this section5 as they are the most

important in the translation process.

1. The multiple edge reduction technique.

In this technique, multiple function edges between a pair of objects in the query graph

are replaced by a single function edge that represents the intersection of all the edges.

This reduces the query graph by at least one edge.

2. The node combination technique.

In this technique, two objects connected by a function edge in the query graph are com-

bined into one composite object (using oid-creation), and the edges leaving/entering

the two nodes are simulated by appropriate compositions6. This reduces the query

graph by at least one edge and one node.

The techniques of edge reduction and node combination are summarized in Figure 5.

By repeatedly applying these graph reduction techniques, it is possible to reduce the query

graph to a single node. This node (and its associated Tarski algebra expression) encodes the

algebraic solution to the query graph.

Once we have applied the translation algorithm to the query graph in Figure 2, we have

to compute the result of the query. This is accomplished by backtracking the sequence of

node combinations performed during the translation process and computing the projections

onto the selected nodes [12, 13]. The actions are translated by appropriately creating new

binary relations and/or side-e�ecting existing binary relations [12, 13].

5The implementation of all the techniques used is discussed in more detail Section 5.3.

6For more details, see [12, 13].
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3 Overall Layout of the Implementation of IUGQL

As indicated in Figure 6, the implementation of IUGQL has two major components, the

lower level query processing component, and the higher level graph translator component.

At the lower level of the implementation, we implement binary relations on top of the

EXODUS storage manager [3] using the E programming language [4]. Facilities for creat-

ing, loading, and storing binary relations are provided. These binary relations constitute

the underlying storage structure of the system. On top of this storage structure, we have

implemented an interpreter for the Tarski algebra and a Tarski machine to facilitate the ma-

nipulation of the binary relations using Tarski algebra expressions. The Tarski interpreter

and machine have been written in C using yacc to parse Tarski algebra expressions. The

interpreter and machine also support the extended Tarski algebra operators outlined in [14]

that facilitate speci�cation of parallel execution of queries.

At the higher level of the implementation, we provide a Graph-Tarski translator and

optimizer that translate graph oriented queries into equivalent optimized Tarski algebra ex-

pressions. The relevant graph primitives required to create and manipulate graphs were

identi�ed and implemented in C++. The query graph translation algorithms were then im-

plemented using the graph primitives. This component of the implementation takes a graph7

as input and returns an equivalent Tarski algebra expression as output which is then eval-

uated by the lower level Tarski interpreter and machine to provide the �nal result of the

query.

We have completed a working prototype of IUGQL and are now planning on adding an

X-window based graphical front-end to the system to enable users to input graphs via the

interface.

7In this version of IUGQL, graphs are input textually.
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4 Lower Level Components of IUGQL

4.1 The Tarski Interpreter

The interpreter for the extended Tarski algebra was implemented in C using yacc to parse

Tarski algebra expressions. The grammar (speci�ed in yacc) for the interpreter is shown

below.

/* Grammar for the Tarski algebra */

expr: /* nothing */

| expr '\n'

| expr bexpr '\n' /* create/load/append/delete expressions */

| expr aexpr '\n' /* assignment expressions */

| expr rexpr '\n' /* basic tarski expressions */

| expr eexpr '\n' /* extended tarski expressions */

| expr error '\n' /* error detection */

;

bexpr: CREATE '(' REL ')' /* create new binary relation */

| APPEND '(' rel ')' /* append to existing relation */

| LOAD '(' REL ')' /* load existing relation from EXODUS */

| PREOPRTR '(' rel ')' /* PREOPRTR can be append, delete,

scan or store */

| DELETEVAR '(' VAR ')'

| NEW '(' ')'

| SHOW_DICT /* SHOW_DICT lists all the relations

and variables in the symbol table */

| REL_OID /* change the oid-creation strategy to

relation sensitive */

| TUP_OID /* change the oid-creation strategy to

tuple sensitive */

| OID_STRAT /* show current oid-creation strategy */

;

rel: REL /* relation name */

;

rexpr: OPRTR '(' rexpr ')' /* (unary) OPRTR can be id, lid, rid, tau,

inv, compl, compl1, ltag, rtag, stag,

sstag, new, or closure */

| OPRTR '(' rexpr ',' rexpr ')' /* (binary) OPRTR can be compose,
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necompose, lecompose, gecompose,

union, diff, inter, or cross */

| IF '(' rexpr ')' THEN '(' rexpr ')' ELSE '(' rexpr ')'

| NIF '(' rexpr ')' THEN '(' rexpr ')' ELSE '(' rexpr ')'

| rel

| REL '=' rexpr /* assignment */

| SELR '(' CNST ',' rexpr ')' /* right selection with constant */

| SELR '(' VAR ',' rexpr ')' /* right selection with variable */

| SELL '(' CNST ',' rexpr ')' /* left selection with constant */

| SELL '(' VAR ',' rexpr ')' /* left selection with variable */

| '(' rexpr ')'

| '(' VAR ',' VAR ')' /* used for enumeration */

| '{' rexpr ',' rexpr '}' /* which is useful */

| '{' rexpr ',' aexpr '}' /* in */

| '{' aexpr ',' rexpr '}' /* the */

| '{' aexpr ',' aexpr '}' /* extended Tarski algebra */

| '{' '}' /* empty relation */

| eexpr /* extended Tarski expression */

;

aexpr: VAR '=' CNST /* constants should be enclosed in

double quotes, eg. "John" */

| VAR /* variable names should be

preceded and followed by

_ (underscore), eg. _x_ */

;

eexpr: for '(' eexpr ')' eop '(' eexpr ')' end /* for expression */

| rexpr

;

for: FOR '[' VAR ',' VAR ']' IN

;

eop: EOPRTR /* EOPRTR can be eunion, einter,

or ediff */

;

end: /* nothing */
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4.2 The Tarski Machine

The Tarski machine is implemented as a simple stack machine. The actions taken by the

Tarski interpreter for every rule in the grammar, generate intermediate code instructions

that get pushed onto the execution stack, which is an array of pointers. The pointers on the

execution stack point to either built-in Tarski operator functions or to data in the symbol

table. The machine is generated during parsing by pushing the appropriate instructions onto

the execution stack. As and when subexpressions are evaluated depending on the instructions

on the execution stack, they get pushed onto an interpreter stack, which contains either the

contents of a relation or variable, or a pointer to an appropriate symbol table entry.

Each cycle of the machine executes the instruction (function) pointed to by the program

counter, and increments the counter, so it is ready for the next instruction. Of course, the

program counter may also be incremented to step over arguments to instructions and point to

further instructions. The execution of the machine is fairly straightforward, as instructions

on the execution stack are executed and intermediate results pushed and popped from the

interpreter stack. The only complicated case is the case of the execution of the for expression

of an extended Tarski expression. This is accomplished by recursive calls to the execution

of the machine for each subexpression in the extended Tarski expression.

Binary relations can be created interactively, and then stored persistently using the EX-

ODUS storage manager. Persistent storage facilities for storing/loading binary relations are

provided using the E programming language. The functions that implement the built-in

unary and binary Tarski operators are loaded into a symbol table when the program is in-

voked. Relations and variables created during the execution of the interpreter are also stored

in the symbol table for e�cient access. Binary relations in the symbol table are stored as

a linked list of attribute pairs. Temporary relations evaluated during the computation of a

Tarski expression are stored in a di�erent symbol table to enable common sub-expression
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optimization.

4.2.1 EXODUS Storage Structure for Binary Relations

Binary relations are stored persistently using the EXODUS storage manager. Each pair in

a binary relation is declared as a class with a left and right attribute in the E programming

language as shown below.

dbclass rel_persist {

public:

dbchar left[1000];

dbchar right[1000];

};

A complete binary relation is stored as a collection8 of such attribute pairs. The database

(set of all binary relations) is stored as a persistent array of such collections. The correspond-

ing E declaration is illustrated below.

persistent collection<rel_persist> relCollect[MAXRELSTORE];

The names of the binary relations are stored in a persistent array of names, and is used

as a dictionary to keep track of the relations. Routines for loading/storing binary relations

from/on the EXODUS storage manager are provided using the collection scan mechanisms

provided in E.

4.3 Source Code Files and their Functionality

� tarski.h This �le contains declarations for all the data structures used for the imple-

mentation of the Tarski interpreter and machine.

� tarski.y This �le contains the grammar for the extended Tarski algebra speci�ed using

yacc which parses Tarski expressions and speci�es actions to generate intermediate code

8A collection in E is a set of related objects that can be allocated dynamically.
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for each rule in the grammar. This �le implements the lexical analyzer yylex() and

the core of the Tarski interpreter.

� symbol.c This �le contains the routines required for creation, lookup, and installation

of the symbol table.

� init.c This �le contains de�nitions for the function pointers for the built-in operators

of the Tarski algebra, the function init() installs them in the symbol table.

� func.c This �le implements all the built-in Tarski operators, in addition to handling

the creation of binary relations.

� persistdb.h This �le contains the declarations required for persistent EXODUS stor-

age of the binary relations. Each relation is stored as a collection of attribute pairs,

and the whole database is stored as an array of such collections, and is maintained

with a simple dictionary.

� func exodus.c This �le handles the persistent storage facilities using the E program-

ming language, providing routines for storing and loading relations into/from the EX-

ODUS storage manager.

� code.c This �le contains the routines that execute the (intermediate) machine instruc-

tions and manipulate the execution and interpreter stacks, the function execute()

actually runs the Tarski machine.

� Makefile This �le compiles all the above �les into the executable tarskicc, the Tarski

\compiler". The �les are compiled using the E compiler (an extension of g++) of

EXODUS. The \compiler" can be run with command line options -p or -r for tuple

sensitive tagging or relation sensitive tagging, tuple sensitive being the default.
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5 Higher Level Components of IUGQL

5.1 The Graph-Tarski Translator and Optimizer

This is the main high level component of the implementation. This component translates

graph oriented schemas and instances into corresponding binary relations, and translates

query graphs into equivalent optimized Tarski algebra expressions using the algorithms out-

lined in [12, 13]. The Tarski expressions generated by the translator are then fed to the

Tarski interpreter, to evaluate the �nal result of the query.

In this version of the translator, the input graphs (schema, instance, and query) are

speci�ed textually as a list of edges between nodes and are stored in separate �les. The

translator reads the input �les and builds the corresponding schema/instance/query graphs.

From the schema and instance graphs, commands to generate the appropriate binary rela-

tions are fed to the Tarski interpreter, which in turns generates intermediate code causing

the Tarski machine to create and store the binary relations on top of the EXODUS storage

manager. Of course, the loading of schema and instance graphs needs to be done only once.

To work with previously created schemas and instances, it is possible to load such schemas

and instances from the persistent store provided by EXODUS. The query graph is then re-

duced to a single node using the algorithms (edge reduction, node combination, projection,

chaining, disconnected node combination, and selection) outlined in detail in [12, 13]. The

Tarski expression for this single node is generated and then fed to the Tarski interpreter and

machine to evaluate the �nal result of the query. After the query graph is evaluated, the

corresponding action speci�ed, is also performed using the algorithms outlined in [12]. The

implementation of the Tarski-Graph translator and optimizer was done in C++. This greatly

helped the design process as separate classes were used to model the di�erent sub parts of

the translator. In the following subsection, we list the source �les and their functionality.
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5.2 Source Code Files and their Functionality

� graph.h The header �le for the graph class.

� graph.c This �les implements graph manipulation functions like add node, add edge,

del node, del edge etc. Graphs are internally implemented as a list of nodes and a list

of edges, with a connection list for each node that stores the edges (and their connected

nodes) connected to that node.

� list.h The header �le for the nodelist, edgelist, and clist classes.

� list.c This �le implements the nodelist, edgelist, and clist manipulation operations.

The nodelist is implemented as a list of schema nodes with each schema node linked to

a list of all the instance nodes of that type. A similar implementation is used for the

edgelist. A connection list (clist) is maintained for each node that stores a list of the

edges (and their connected nodes) connected to that node. Functions for manipulating

these lists like append, remove etc., are implemented in this �le.

� generic node.h The header �le for the node, edge, c node, and info classes.

� generic node.c This implements the node, edge, c node, and info manipulation op-

erations. Nodes and edges have information (info), labels, and other details contained

in them. The info in a node/edge in turn stores the tarski exp associated with the

node/edge. The c nodes constitute the clist. Routines for manipulation of the above

information like get info etc. are implemented in this �le.

� label.h The header �le for the label class.

� label.c This �le implements the routines for creation and manipulation of labels for

nodes/edges. The labels have a pre�x and a su�x. The pre�x indicates the schema, i.e.,
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to which node/edge type the particular node/edge belongs, while the su�x indicates

the instance number of the node/edge.

� tarski.h The header �le for the tarski exp class.

� tarski.c This �le implements the routines for creation of basic Tarski expressions,

and also for the generation of complex binary and unary Tarski expressions from basic

Tarski expressions.

� sel.h The header �le for handling the manipulation of selected nodes of a query.

� sel.c This �les implements routines for maintaining a list of selected nodes, and

handling projections onto selected nodes during query evaluation.

� schem.h The header �le for handling the manipulation of schema nodes of a database.

� schem.c This �le implements the handling of schema nodes needed to implement the

actions like node/edge addition/deletion etc.

� f.h The header �le for forward declaration of classes and other information.

� main.c This �le actually implements all the algorithms (edge reduction, node combi-

nation, projection, chaining, disconnected node combination, selection9) needed for the

translation of query graphs into equivalent Tarski algebra expressions. The implemen-

tation of the various actions is also handled in this �le.

� Makefile This �le compiles all the above �les into the executable graph2tarski, the

Graph-Tarski translator. The �les are compiled using the AT&T C++ compiler CC.

The C++ header �les (with the important member functions only) for the various classes

are included in the appendices.

9Selection conditions are incorporated in the query graph when building the query graph itself, for opti-

mization reasons.
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5.3 Algorithms Used for Implementation of the Translator

In this subsection, we brie
y discuss the implementation (with pseudo-code) of the main

algorithms [12, 13] used in the translation of query graphs into equivalent Tarski algebra

expressions.

5.3.1 Edge Reduction

Edge reduction replaces multiple edges between a pair of nodes by a single equivalent edge

between the nodes, that represents the intersection of all the edges. The implementation of

edge reduction is fairly straightforward.

reduce_edges(graph)

begin

while (e1 = graph.get_edge()) do /* get any edge */

n1 = e1.from_node();

n2 = e1.to_node();

t1 = get_tarski_exp(e1);

graph.del_edge(e1);

while (e2 = graph.get_edge(n1, n2)) do

/* get other edges between n1 and n2 */

t2 = get_tarski_exp(e2);

t1 = tarski_exp(intersect(t1,t2));

graph.del_edge(e2);

end;

graph.add_edge(n1, n2, t1);

/* add new edge between n1 and n2 with tarski_exp t1 */

end;

end;
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5.3.2 Node Combination

Node combination combines two nodes connected by a single edge into one single node, and

simulates the edges leaving/entering the two nodes by appropriate compositions. The tricky

issue involved in the node combination is handling the projections onto the selected nodes

after the node combination. The handling of projections is crucial towards the evaluation

of the �nal result of the query. We describe the algorithm used for projection in the next

subsection.

combine_nodes(graph, e, n1, n2) /* combine nodes n1 and n2 */

/* connected by edge e from n1 to n2 */

begin

t1 = get_tarski_exp(e);

t2 = tarski_exp(tau, t1);

newnode = graph.add_node(t2);

/* add new node with tarski_exp t2 = tau(t1) */

while (e1 = graph.get_edge(n1)) do

/* handle edges entering/leaving node n1 */

t3 = tarski_exp(ltag, t1); /* or inv(ltag(t1)) */

graph.add_edge(n1, e1.other_node(), t3);

end;

while (e2 = graph.get_edge(n2)) do

/* handle edges entering/leaving node n2 */

t4 = tarski_exp(rtag, t1); /* or inv(rtag(t1)) */

graph.add_edge(n2, e2.other_node(), t4);

end;

update_projections(graph, n1, n2, newnode, t1);

/* update projections onto selected nodes */

graph.del_edge(e);

graph.del_nodes(n1, n2);

end;

20



5.3.3 Projection

As discussed in [12, 13], it is necessary to backtrack the sequence of node combinations in

order to compute the �nal result of the query. This is accomplished in the implementation

by an incremental update of the projections at each step of the node combination. Initially,

a list of the selected nodes is maintained. Every time, a node combination (involving se-

lected nodes or bold10 nodes) is performed, the current projection onto the selected nodes

and the current bold node that projects onto the selected node are stored. This provides a

mechanism to update the projections onto the appropriate selected nodes if the bold nodes

are subsequently involved in other node combinations. Finally, when the algorithm termi-

nates, the selected nodes will have the appropriate projections. In general, the result may

contain duplicates, which may be eliminated as argued in [12]. Duplicate elimination can be

simulated in the Tarski algebra, but can be supported much more e�ciently as a primitive

in an implementation [12].

update_projections(graph, n1, n2, newnode, t1); /* newnode is a result of */

/* node combining n1 and n2 */

/* t1 is the tarski_exp of the */

begin /* edge connecting n1 and n2 */

if (n1.is_selected())

begin

n1.boldnodename = newnode.name;

n1.projection = tarski_exp(ltag, t1);

end;

if (n2.is_selected())

begin

n2.boldnodename = newnode.name;

n2.projection = tarski_exp(rtag, t1);

end;

if (n1.is_bold())

10A bold node is one that is a result of a previous node combination [12, 13].
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begin

for each selectednode (with boldnodename = n1.boldnodename) do

selectednode.boldnodename = newnode.name;

selectednode.projection =

tarski_exp(compose, ltag(t1), selectednode.projection);

/* Update projection path */

end;

end;

if (n2.is_bold())

begin

for each selectednode (with boldnodename = n2.boldnodename) do

selectednode.boldnodename = newnode.name;

selectednode.projection =

tarski_exp(compose, rtag(t1), selectednode.projection);

/* Update projection path */

end;

end;

end;

5.3.4 Chaining

This is a very important query optimization technique where a chain of edges between two

nodes is replaced by a single edge. Again, we have adopted an incremental algorithm for

chaining to make the implementation clean and easy to comprehend. We identify \possible

to chain nodes" as those that are not selected and have only two edges entering/leaving them.

remove_chains(graph)

begin

if (chain_node = graph.possible_to_chain())

begin

e1 = graph.get_edge(chain_node);

e2 = graph.get_edge(chain_node);

t1 = get_tarski_exp(e1);

t2 = get_tarski_exp(e2);

n1 = one node at end of chain;

n2 = other node at other end of chain;

t3 = tarski_exp(compose, t1, t2); /* or inv(t1) or inv(t2) */

/* depending on edges leaving/entering */
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graph.add_edge(n1, n2, t3);

graph.del_edges(e1, e2);

graph.del_node(chain_node);

end;

end;

possible_to_chain()

begin

while (n1 = graph.get_node()) do

if (n1.is_not_selected() and (num_edges(n1) == 2))

return n1;

else

repeat while;

end;

return NULL;

end;

5.3.5 Disconnected Node Combination

This is very similar to a regular node combination of two nodes connected by an edge except

that we create an imaginary edge between the two disconnected nodes to re
ect the cartesian

product of all possible combinations of the two nodes11. After the creation of this imaginary

edge, node combination and projection are done in a similar fashion as detailed previously.

5.3.6 Overall Translation Algorithm

The overall translation algorithm is implemented using the algorithms illustrated in the

above subsections. First the schema, instance, and query graphs are built from the input

�les. Then the query graph is translated into an equivalent Tarski algebra expression, which

is fed to the Tarski interpreter and machine to provide the �nal answer to the query.

graph2tarski_translate()

begin

11The semantics of disconnected nodes is exactly captured by the cartesian product, and this can be done

in the Tarski algebra, for details see [12, 13].
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build_schema_graph();

build_instance_graph();

build_query_graph();

reduce_edges(query_graph);

remove_chains(query_graph);

while(e = query_graph.get_edge()) do

begin

combine_nodes(query_graph, e, e.from_node(), e.to_node());

/* combine_nodes invokes update_projections(...); */

reduce_edges(query_graph);

remove_chains(query_graph);

end;

combine_disconnected_nodes(query_graph);

perform_actions(schema_graph, query_graph);

communicate_IUGQL_lower_level();

end;

6 Using IUGQL

In this version of the implementation, graphs are input as a list of edges between nodes

in text �les. Three �les are used for inputting schema, instance, and query graphs, and

are appropriately named schema, instance, and query12 respectively. The Graph-Tarski

translator takes these three �les as input from the command line with an option of -b to

build the schema and instance graphs if needed. If the -b option is not speci�ed, previously

created schema and instance graphs are loaded from EXODUS. Due to some problems with

the g++ compiler (which was needed to compile the lower level Tarski machine to provide

persistence), the translator had to be compiled with AT&T C++. Therefore, the two levels

could not be compiled into one executable module. To work around this problem, the

12The query �le speci�es both the query graph and the action.
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communication between the translator and interpreter was accomplished through �les (that

are transparent to the user). The translator generates Tarski expressions and writes them

into a �le which is used by the interpreter as input. To make all this transparent to the user,

the commands

graph2tarski (-b) schema instance query

tarskicc (-p) (-r)

are put into a single �le named iugql with execute permissions and the system can be run

with just one command iugql. Currently, the system is a working prototype and is being

tested extensively. This, we feel, is a good example of an implementation of an object based

graph oriented query language with a strong algebraic foundation.

7 Examples

In this section, we show actual examples to input schema, instance, and query graphs to

IUGQL, and illustrate the output generated by IUGQL. This section can be used a tutorial

introduction to IUGQL. It must be noted that in all the query outputs we illustrate, the

�rst relation is the relation corresponding to the �nal node that the query graph reduces to,

and the subsequent relations are the new/updated relations that the actions specify.

7.1 Schema Input File

We present below a schema of a persons database. This is a textual representation of the

schema graph in Figure 1 (top), where each line represents an edge (with from/to nodes).

graphtype:schema

SP_1 c_1 P_1 /* Edge c_1 connects node SP_1 to node P_1 */

P_2 ch_1 SP_2
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P_2 n_1 S_1"" /* Simple node S_1 with no value */

P_2 g_1 S_2""

P_2 age_1 S_3""

end

7.2 Instance Input File

We present below an instance based on the persons schema. This is a textual representation

of the instance graph in Figure 1 (bottom). A tabular form of the same instance is illustrated

in Figure 4.

graphtype:instance

SP_1 c_1 P_1

SP_1 c_2 P_2

SP_1 c_3 P_3

SP_1 c_4 P_4

SP_1 c_5 P_5

SP_1 c_6 P_6

SP_1 c_7 P_7

SP_2 c_8 P_3

SP_2 c_9 P_4

SP_4 c_10 P_5

SP_4 c_11 P_6

SP_5 c_12 P_7

P_1 n_1 S_1"Brian" /* Simple node S_1 with value Brian */

P_1 ch_1 SP_2

P_2 ch_2 SP_2

P_2 n_2 S_2"Glenda" /* Simple node S_2 with value Glenda */

P_3 ch_3 SP_3

P_4 n_4 S_41"Jim" /* Simple node S_41 with value Jim */

P_4 g_4 S_42"Male" /* Simple node S_42 with value Male */

P_4 ch_4 SP_4

P_5 n_5 S_51"Cindy" /* Simple node S_51 with value Cindy */

P_5 g_5 S_52"Female" /* Simple node S_52 with value Female */

P_5 ch_5 SP_5

P_6 n_6 S_61"Jim" /* Simple node S_61 with value Jim */

P_6 g_6 S_62"Male" /* Simple node S_62 with value Male */

P_6 ch_6 SP_6
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P_7 n_7 S_71"Cindy" /* Simple node S_71 with value Cindy */

P_7 g_7 S_72"Female" /* Simple node S_72 with value Female */

end

7.3 Query Input File - Node Addition

We present below a query graph that speci�es parent-child pairs with the same name, and

a node addition of a new node PC specifying such parent-child pairs, and the corresponding

parent and child edges. For the given instance, this query should return the pairs fP4,P6g

and fP5,P7g.

graphtype:query

P$1 ch_1 SP_1 /* $ between prefix and suffix indicates selected node */

SP_1 c_1 P$2

P_1 n_1 S_1"" /* Simple node S_1 with no value */

P_2 n_2 S_1""

end

NA /* Action node addition */

PC_1 par_1 P_1

PC_1 child_1 P_2

end

7.3.1 Sample Run - Node Addition

We present below a sample run of the system on the persons instance, the above query, and

the node addition action. We see that the output corresponds to what is expected, i.e., the

pairs fP4,P6g and fP5,P7g.

Chaining edges ch1 and c1

Chaining edges n1 and n2

Node combining nodes P1 and P2

Final query graph

----------------------------------------------------

NODE : label is tau(inter(compose(ch,c),compose(n,inv(n))))_P1P2

tarski_exp : tau(inter(compose(ch,c),compose(n,inv(n))))

27



ADD NEW RELATION PC (FOR NA)

ADD NEW RELATION par (FOR EDGE IN NA)

ADD NEW RELATION child (FOR EDGE IN NA)

[[[ch C c] & [n C [n I]]] Tau]

----------------------------------------------------------------

[[ch C c] & [n C [n I]]]-Tau P-Tau

----------------------------------------------------------------

[P4][P6] [P4][P6]

[P5][P7] [P5][P7]

PC

----------------------------------------------------------------

[[ch C c] & [n C [n I]]]-Tau P-Tau

----------------------------------------------------------------

[P4][P6] [P4][P6]

[P5][P7] [P5][P7]

par

----------------------------------------------------------------

[[ch C c] & [n C [n I]]]-L P

----------------------------------------------------------------

[P4][P6] P4

[P5][P7] P5

child

----------------------------------------------------------------

[[ch C c] & [n C [n I]]]-R P

----------------------------------------------------------------

[P4][P6] P6

[P5][P7] P7

7.4 Query Input File - Edge Addition

We present below a query graph that speci�es pairs of persons, one being the grandparent of

the other, and an edge addition of a new grandparent edge between such person nodes. For

the given instance, this query should return the pairs fP1,P5g, fP2,P5g, fP1,P6g, fP2,P6g,

28



and fP4,P7g.

graphtype:query

P$1 ch_1 SP_1 /* $ between prefix and suffix indicates selected node */

SP_1 c_1 P_2

P_2 ch_2 SP_2

SP_2 c_2 P$3

end

EA /* Action edge addition */

P_1 gpar_1 P_3

end

7.4.1 Sample Run - Edge Addition

We present below a sample run of the system on the persons instance, the above query,

and the grandparent edge addition action. We see that the output corresponds to what is

expected, i.e., the pairs fP1,P5g, fP2,P5g, fP1,P6g, fP2,P6g, and fP4,P7g.

Chaining edges c1 and ch2

Chaining edges ch1 and compose(c,ch)c1ch2

Chaining edges c2 and compose(ch,compose(c,ch))ch1compose(c,ch)c1ch2

Node combining nodes P3 and P1

Final query graph

----------------------------------------------------

NODE : label is tau(compose(inv(c),inv(compose(ch,compose(c,ch)))))_P3P1

tarski_exp : tau(compose(inv(c),inv(compose(ch,compose(c,ch)))))

ADD NEW RELATION gpar (FOR EA)

[[[c I] C [[ch C [c C ch]] I]] Tau]

----------------------------------------------------------------

[[c I] C [[ch C [c C ch]] I]]-Tau P-Tau

----------------------------------------------------------------

[P5][P1] [P5][P1]

[P5][P2] [P5][P2]

[P6][P1] [P6][P1]

[P6][P2] [P6][P2]

[P7][P4] [P7][P4]
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gpar

----------------------------------------------------------------

P P

----------------------------------------------------------------

P1 P5

P2 P5

P1 P6

P2 P6

P4 P7

7.5 Query Input File - Node Deletion

We present below a query graph that speci�es persons who have children, and a node deletion

that deletes all such parents from the database. For the given instance, this query should

return the persons P1, P2, P4, and P5.

graphtype:query

P$1 ch_1 SP_1 /* $ between prefix and suffix indicates selected node */

SP_1 c_1 P_2

end

ND /* Action node deletion */

P_1

end

7.5.1 Sample Run - Node Deletion

We present below a sample run of the system on the persons instance, the above query and

the parent node deletion action. Node deletion also updates the edges connected to the

deleted node. In the output, we �rst see the relation that corresponds to the �nal node after

the translation, and then see the results of updating the node and edge relations to re
ect

the removal of these persons from the database.

Chaining edges ch1 and c1

Node combining nodes P1 and P2

Final query graph

----------------------------------------------------
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NODE : label is tau(compose(ch,c))_P1P2

tarski_exp : tau(compose(ch,c))

UPDATE RELATION P (FOR ND)

UPDATE TO EDGE RELATION c (FOR ND)

UPDATE FROM EDGE RELATION ch (FOR ND)

UPDATE FROM EDGE RELATION n (FOR ND)

UPDATE FROM EDGE RELATION g (FOR ND)

UPDATE FROM EDGE RELATION age (FOR ND)

[[ch C c] Tau]

----------------------------------------------------------------

[ch C c]-Tau P-Tau

----------------------------------------------------------------

[P1][P3] [P1][P3]

[P1][P4] [P1][P4]

[P2][P3] [P2][P3]

[P2][P4] [P2][P4]

[P4][P5] [P4][P5]

[P4][P6] [P4][P6]

[P5][P7] [P5][P7]

[P D [[[ch C c] L] RId]]

----------------------------------------------------------------

P-l P-r

----------------------------------------------------------------

P3 P3

P6 P6

P7 P7

[c D [[[[[ch C c] L] RId] C [c I]] I]]

----------------------------------------------------------------

SP P

----------------------------------------------------------------

SP1 P3

SP1 P6

SP1 P7

SP2 P3

SP4 P6

SP5 P7
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[ch D [[[[ch C c] L] RId] C ch]]

----------------------------------------------------------------

P SP

----------------------------------------------------------------

P3 SP3

P6 SP6

[n D [[[[ch C c] L] RId] C n]]

----------------------------------------------------------------

P n

----------------------------------------------------------------

P6 Jim

P7 Cindy

[g D [[[[ch C c] L] RId] C g]]

----------------------------------------------------------------

P g

----------------------------------------------------------------

P6 Male

P7 Female

[age D [[[[ch C c] L] RId] C age]]

----------------------------------------------------------------

P age

----------------------------------------------------------------

7.6 Query Input File - Edge Deletion

We present below a query graph that speci�es persons who have children and their set of

children, and an edge deletion that deletes the child edge from all such parents. For the given

instance, this query should return the pairs fP1,SP2g, fP2,SP2g, fP4,SP4g, and fP5,SP5g.

graphtype:query

P$1 ch_1 SP$1 /* $ between prefix and suffix indicates selected node */

SP_1 c_1 P_2

end

ED /* Action edge deletion */

P_1 ch_1 SP_1
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end

7.6.1 Sample Run - Edge Deletion

We present below a sample run of the system on the persons instance, the above query, and

the child edge deletion action. Again here, the �rst relation in the output corresponds to

the �nal node after the translation and the other relations show the results of updating the

child edge relation. The output corresponds exactly to what is expected.

Node combining nodes P1 and SP1

Node combining nodes tau(ch)P1SP1 and P2

Final query graph

----------------------------------------------------

NODE : label is tau(compose(rtag(ch),c))_tau(ch)P1SP1P2

tarski_exp : tau(compose(rtag(ch),c))

UPDATE RELATION ch (FOR ED)

[[[ch R] C c] Tau]

----------------------------------------------------------------

[[ch R] C c]-Tau P-Tau

----------------------------------------------------------------

[[P1][SP2]][P3] [[P1][SP2]][P3]

[[P1][SP2]][P4] [[P1][SP2]][P4]

[[P2][SP2]][P3] [[P2][SP2]][P3]

[[P2][SP2]][P4] [[P2][SP2]][P4]

[[P4][SP4]][P5] [[P4][SP4]][P5]

[[P4][SP4]][P6] [[P4][SP4]][P6]

[[P5][SP5]][P7] [[P5][SP5]][P7]

ch

----------------------------------------------------------------

P SP

----------------------------------------------------------------

P3 SP3

P6 SP6
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8 Summary and Future Work

IUGQL is a good example of an object based query language with a strong underlying

algebraic foundation. IUGQL is currently a working prototype in the database lab at Indiana

University.

In the next version of the implementation, we propose to incorporate the creation and use

of indices to manipulate binary relations to make the Tarski machine more e�cient. We also

plan to add an X-Window based graphical front end to IUGQL to enable users to actually

queries graphically. In this version, graphs are input textually. We also plan to incorporate

the translation of query graphs into the extended Tarski algebra [14], to further optimize

query evaluation [14]. We are currently working on extending the graph oriented query

language itself to allow the speci�cation of more complex generalized conjunctive declarative

queries. Also, in this version, composition of actions is not supported, i.e., the e�ects of

one action cannot be used to in
uence subsequent actions. The system can be fairly easily

extended to support composition of actions, and we are currently working on adding this

feature to the system.
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Appendices

Class Declarations for the Graph-Tarski
Translator

A graph.h

class graph

{

private:

graphtype gtype;

nodelist nl; /* a list of schema nodes */

edgelist el; /* a list of schema edges */

public:

graph(); /* constructor */

graph(graphtype g); /* constructor */

~graph(); /* destructor */

void print();

node* add_node(label l, info* ptr, boolean& Exists);

/* add a node to the graph if it does not exist already */

edge* add_edge(label l, info* ptr, node* n1, node* n2, boolean& Exists);

/* add an edge between n1 & n2 to the graph if it does not exist already */

void del_node(node* ptr); /* delete a node from the graph */

void del_edge(edge* ptr); /* delete an edge from the graph */

node* get_node(char* name, int visit, boolean set);

/* get a node whose label is name, visit_num is less than visit.

if name is NULL, return a random node.

if SET is TRUE it sets the visit_num of the node to visit. */

edge* get_edge(node* n1, node* n2, int visit, boolean set);

/* get an edge between n1 and n2. if n1 is NULL get any edge containing

n2, similarly if n2 is NULL. if both are NULL return any random edge.

get a random edge whose visit_num is less than visit. if SET is TRUE the

visit_num of the edge is set to visit. */

graphtype get_graphtype();
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void mark_node(node* ptr);

void mark_edge(edge* ptr);

void unmark_node(node* ptr);

void unmark_edge(edge* ptr);

void unmark_alledge();

void unmark_allnode();

int get_num_edges(node* nptr); /* return number of edges to and from node */

boolean check_if_edges(node* nptr); /* check if the node has any edges */

node* possible_to_chain(boolean& single); /* check for "chainability" */
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B list.h

class nodelist

{

private:

node* head;

node* last;

public:

nodelist(); /* constructor */

~nodelist(); /* destructor */

node* append(info* i , label l); /* append a new node to the nodelist */

void remove(node* n); /* remove a node from the nodelist */

node* head_node(); /* return head_node of the nodelist */

node* next(node* ptr); /* return next node in the nodelist */

node* search(label l); /* search for a specific node */

};

class edgelist

{

private:

edge* head;

edge* last;

public :

edgelist(); /* constructor */

~edgelist(); /* destructor */

edge* append(node* from, node* to, info* i , label l);/* append to edgelist */

void remove(edge* n); /* remove an edge from the edgelist */

edge* head_edge(); /* return head_edge of the edgelist */

edge* next(edge* next); /* return next node in the edgelist */

edge* search(label l); /* search for a specific edge */

};

class clist

{

private:

c_node* head;

c_node* last;

public :
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clist(); /* constructor */

~clist(); /* destructor */

c_node* append(edge* e, node* n); /* append a node and edge to the c_list */

void remove(c_node* n); /* remove a node from the c_list */

c_node* head_node(); /* return head_node of the c_list */

c_node* next(c_node* ptr); /* return next c_node */

clist* search(node* n, edge* e); /* return a list of c_nodes satisfying

search criteria. if n is NULL search

only for e and vice versa */

};
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C generic node.h

class info /* info stored in nodes and edges */

{

private:

char* value;

public:

tarski_exp* tarski; /* tarski_exp of the edge/node */

objtype typ; /* complex, simple, or bold */

boolean selected; /* selected node or not */

info (tarski_exp* tarski,objtype x); /* constructor */

info (tarski_exp* tarski, objtype x, boolean sel);

info (tarski_exp* tarski, objtype x, char* baseval, boolean sel);

/* constructors for selected nodes */

info (); /* constructor */

~info (); /* destructor */

void set_selected(boolean flag); /* set info to selected or not */

char* get_str_data();

void set_str_data (char* s); /* data manipulation functions */

};

class node

{

friend class nodelist;

friend class graph;

private:

node* next;

boolean del; /* delete flag */

clist connection; /* a list of nodes connected to the node by an edge */

boolean is_schema; /* schema node or not */

nodelist ilist; /* a ptr to the instance list */

node* sch_node; /* a ptr to the schema node */

label id; /* a label which is unique to the node */

info* data; /* info stored in the node */

boolean mark; /* used to mark a node */

public:

node(info* i, label id);/* constructor */

node(); /* constructor */
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~node(); /* destructor */

label get_label(); /* get node's label */

info* get_info(); /* return a ptr to a copy of the node's info */

void set_label(label l);/* set node's label to l */

void set_info(info* i); /* makes a copy of *i and puts it in node */

void set_selected(boolean flag); /* sets a node to be selected or not */

boolean is_deleted(); /* checks if node is deleted or not */

boolean is_selected(); /* checks if node is selected or not */

class edge

{

friend class edgelist;

friend class graph;

private:

edge* next;

boolean del; /* delete flag */

boolean is_schema; /* schema edge or not

edgelist ilist; /* a ptr to the instance list */

edge* sch_edge; /* a ptr to the schema edge */

label id; /* a label which is unique to the edge */

info* data; /* info stored in the node */

node* from; /* from node of edge */

node* to; /* to node of edge */

boolean mark; /* used to mark the node */

public:

edge (node* f, node* t, info* i, label id); /* constructor */

edge(); /* constructor */

~edge(); /* destructor */

node* from_node(); /* get the from node of edge */

node* to_node(); /* get the to node of edge */

label get_label(); /* get label of edge */

info* get_info(); /* return a ptr to the copy of the edge's info */

void set_label(label l);/* set label of edge to l */

void set_info(info* i); /* makes a copy of *i and puts it in edge

boolean is_deleted(); /* checks if edge is deleted or not */

};

class c_node

{
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friend class clist;

private:

c_node* next;

boolean del;

public:

node* n; /* node in this c_node */

edge* e; /* edge in this c_node */

c_node(edge* e1, node* n1); /* constructor */

c_node() ; /* destructor */

boolean is_deleted(); /* checks if c_node is deleted or not */

};
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D label.h

class label

{

private:

char* prefix; /* schema part of label */

char* suffix; /* instance part of label */

public:

label(char* p, char* s);/* constructor */

label(); /* constructor */

~label(); /* destructor */

void set_p(char* p); /* set prefix to p */

void set_s(char* s); /* set suffix to s */

char* get_p(); /* get prefix */

char* get_s(); /* get suffix */

char* get_l(); /* get whole label */

};
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E tarski.h

class tarski_exp

{

private:

char* value;

public:

tarski_exp(char* l); /* constructor */

tarski_exp(); /* constructor */

~tarski_exp(); /* destructor */

tarski_exp& generate_if(char* op, tarski_exp& t1, tarski_exp& t2,

tarski_exp& t3);

/* generate an if/nif tarski expression depending on operation op */

tarski_exp& generate2(char* op, tarski_exp& t1, tarski_exp& t2);

/* generate a new tarski expression depending on operation op for

binary operators */

tarski_exp& generate1(char* op, tarski_exp& t);

/* generate a new tarski expression depending on operation op for

unary operators */

tarski_exp& generate_asgn(char* assgn, tarski_exp& t);

/* generate assignment expression */

tarski_exp& generatesel(char* op, char* cnst, tarski_exp& t);

/* generate a new tarski expression for left and right selection */

char* get(); /* get tarski_exp as a character string */

};
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