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ABSTRACT 

 

Danko Antolovic 

 

DEVELOPMENT OF A REAL-TIME VISION SYSTEM  

FOR AN AUTONOMOUS MODEL AIRPLANE 

 

This thesis describes a real-time embedded vision system capable of tracking two-

dimensional objects in a relatively simple (uncluttered) scene, in live video.  This vision 

system is intended as a component of a robotic flight system, used to  keep a model 

airplane in a holding pattern above an object on the ground. The system uses a two-

pronged approach to object tracking, taking into account the motion of the scene and the 

graphic “signature” of the object.   The vision system consists of these main components:  

a motion-detection and filtering ASIC, implemented on FPGAs, a scene-analysis program 

running on a Motorola ColdFire processor,  a dual-port RAM holding the image data, and 

a digital camera on a motorized gimbal. 
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1. INTRODUCTION TO THE SKEYEBALL VISION PROJECT 

Skeyeball is an ongoing project in the Department of Computer Science at  Indiana 

University.  It is centered around a radio-controlled model airplane, which is being 

converted into a semi-autonomous vehicle.  Its primary perception is a computer vision 

system, and it will also be equipped with attitude sensors, digital video and telemetry 

downlink, and digital command uplink. 

 

The objective is to give the airplane the autonomy to fly beyond the line of sight, 

navigate, and find objects of interest by their visual appearance rather than by location.  

 

The objective of the work described here was to build a vision system that follows an 

object in a relatively simple (uncluttered) scene, in live video. This vision system will be 

integrated into a larger robotic navigation system used to steer the airplane into holding 

pattern above a selected feature on the ground. 

 

1.1 History of the vision system 

The Skeyeball vision was first envisioned as a subsystem implemented on a 

microcontroller chip.  Soon it became obvious that a fast (and not too costly) 

implementation of the early processing stages was needed:  vision became an ASIC-cum-

microprocessor system, and it is still such a system today. 
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Picture 1:  Aerial view of a target overflight 

 

The development has gone through two distinct phases.  The first phase yielded a strictly 

laboratory prototype:  the hardware was built from proto boards, and the processors were 

a Xilinx XC4010 FPGA and a Motorola MC68332.  Data were shared through an SRAM 

on the common bus.  This architecture required considerable data copying, and the 25 

MHz MC68332 processor was rather too slow for the task.  Nevertheless, the system was 

capable of (slow) object tracking, moving a camera on a simple gimbal.  Pictures 2 and 3 

show the gimbal and the circuitry of the first phase. 

 

We then obtained some realistic footage by flying the airplane with the immobile camera.  

The laboratory prototype was capable of detecting target features in overflight sequences, 

but tracking an object reliably at flight speeds was very problematic.  Picture 1 shows a 
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typical aerial view:  the plane casts its shadow next to the bright square target (a brightly 

colored blanket on the grass). 

 

This first phase gave us a fairly good insight into the minimal requirements of such a 

system. The second (current) phase is described in the rest of the thesis.  Two major 

architectural improvements are a faster microprocessor (90 MHz Motorola ColdFire) and 

a dual-port RAM for shared data.  Elimination of one very cumbersome proto board has 

also made the ASIC (application-specific integrated circuit) implementation much easier. 

 

The fundamental vision algorithm has not seen much change over time, except for the 

addition of the threshold calculation in the second phase - the improvement has been the 

increased speed.  Much greater modifications had to be made to the data flow procedures, 

to take advantage of the dual-port memory and better bus architecture. 

 

Finally, in the second phase, the system was given the proper startup procedure and radio 

controls, and the entire circuitry was built so as to be suitable for mounting inside the 

airplane.  Pictures 4-7 show the equipment built in the second phase: three circuit boards, 

the new camera gimbal and the radio-controlled power switch. Picture 7 also shows the 

radio and TV links connected to the vision system. 
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1.2 Structure of this document 

This document serves a dual purpose: it describes the constructed system as a solution to 

an engineering/computational problem in broad terms; it also describes it at the level of 

detail needed for modification and further development.   

 

The system divides itself naturally into several subsystems.  The first five sections of this 

document provide an overview, and the remaining sections describe the subsystems 

separately, with the level of detail increasing within each subsystem description. We have 

tried to make it clear where the broad description ends and the detailed one begins: 

typically, detailed descriptions are grouped into specialized subsections. 

 

The ultimate level of detail - schematics, pinout lists and the source code - has been 

relegated to electronic form. This document contains summary descriptions of those 

materials, as well as passages referring directly to source details. Interested reader should 

become familiar with the circuit schematics and the source code. 
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Picture 2:  Gimbal, phase 1 Picture 3:  Circuit boards, phase 1 5 
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Pictures 4,5:  Circuit boards and gimbal, phase 2 
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Pictures 4,5:  Circuit boards and gimbal, phase 2 

Pictures 6,7:  Vision system, radio and TV links, power switch 
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2. FUNCTIONAL OVERVIEW OF THE VISION SYSTEM 

2.1 Vision methodology 

As we stated in the introduction, the objective of this work was to build a vision system 

that will follow an object in a relatively simple scene, in live video.  We have used a two-

pronged approach to object tracking, taking into account the motion of the scene and the 

graphic “signature” of the object.   

 

This approach was motivated by the fact that object recognition is computationally 

intensive, and impossible to accomplish on a frame-by-frame basis with the available 

hardware.  Nevertheless, the vision system must operate fast enough not to allow the 

object to drift out of the field of vision.  Picture 9 illustrates this point. 

 

The objective is to recognize the small dark object as the target, obtain its offset from the 

center of the vision field, and move the camera to bring the object to the center.  

Obviously, the vision system must take a still frame and base its calculation on it.  In the 

meantime, the object will change location, perhaps even drift out of the field. By the time 

it is calculated, the displacement vector may well be irrelevant. 

 

To avoid this, the motion of the scene is tracked frame by frame, and the camera moves 

to compensate for it.  The center of the field moves along with the target, and the 

displacement vector, when available, will still be meaningful.  It should be said, however, 

that the importance of the drift compensation decreased as we used a much faster 

processor in the second phase of the project (see Section 1.1). 
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Picture 8: Method overview 

 

 

Tracking the 
selected object 
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Deep, object-specific 
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Object recognition requires several stages by which redundant and non-essential visual 

information is parsed out, until we are left with a selection of well-defined objects, also 

referred to as the features of the scene.  In our case, the stages are: thresholding, edge 

detection, segmentation into connected components, clean-up and signature/location 

calculation.   

 

Picture 9: Drift compensation 

Picture 10 gives a functional overview of the vision system, where the progressively 

thinner arrows signify the reduction in bulk of the visual information.  This is the typical 

“funnel” of the vision problem, leading from simple computations on large volume of 

data to complex ones on a small volume, yielding a number or two as the result.* 

                                                 
*  At 30 frames per second, 483 lines per frame, and 644 byte-sized pixels per line, raw camera output 
amounts to 9.33 Mbytes /sec.  The 644 samples per line of continuous signal conform to the 4:3 aspect ratio 
prescribed by NTSC, and one byte per pixel is a realistic choice of color depth. 

End calc. 

Start calc. 
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To identify a target object within the scene, we used the second moments about the 

object’s principal axes of inertia as the “signature.”  Second moments are invariant under 

rotations and translations, fairly easy to calculate, and work well in simple scenes. 

 

2.2 Biological parallels 

It is not entirely surprising that certain functional analogies should develop between 

robotic perception, such as this real-time vision system, and perception in animals. While 

such analogies must not be taken too literally, they provide a glimpse at useful 

generalizations to be made about perception problems, and we will sketch them out as 

appropriate. 

 

For example, camera motion based on feature recognition bears a similarity to the 

(involuntary) saccadic motion of the eyes, the one-shot movement that brings a detail of 

interest into the center of the vision field.1  Eyes’ saccades are fast, have large amplitude 

(as large as the displacement of the object of interest), and they are ballistic movements, 

i.e. they are not corrected along the way. Such a motion is compatible with a need for 

speed over precision: if the object identification is computationally intensive, use the 

result to full extent, and as fast as possible. 

                                                                                                                                                 
At the end of the process, the vision produces a few dozen bytes every couple of frames – actual rate 
depends on the contents of the image. 
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Picture 10: Functional overview  
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3. PROJECT STATUS 

3.1 Capabilities and limitations 

We have tested the lab vision system by manually moving irregular shapes in a vision 

field fairly free of random clutter, and also by means of a rotating table (Section 3.2 

below). 

 

The recognition system tracks its target reliably under translation and rotation, and in the 

presence of  several shapes introduced as interference. Excessive skew breaks off the 

tracking, since the vision algorithm makes no provision for it, but an oblique view of ca. 

20 degrees is still acceptable (Section 3.2).  Likewise, occlusion is interpreted as a change 

of shape, and the target is lost when partially occluded (e.g. by drifting beyond the edge 

of the vision field).  These limitations are obvious consequences of the vision 

methodology described in Section 2.1 and Picture 10. 

 

The tracking and motion detection work equally well with the zoom engaged. As 

expected, zoom makes the system more reliable in tracking small targets, at the expense 

of limiting the field of vision to the central one-ninth.  

 

3.2 Measurements of the tracking speed 

The Skeyeball airplane flies within certain ranges of speed and altitude;  our fixed-

camera flights have ranged from 18 to 60 mph, with a typical speed of ca. 35 mph.  

Likewise, target-overflight altitudes have been from 60 to 320 ft.  Consequently, the line 

of sight to the target feature changes direction relative to the body of the airplane, with  
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certain angular velocity, and the vision system must be able to keep up with it.  In the test 

flights, the target passed through the vision field of the fixed camera in time intervals 

ranging from 0.8 to 4.2 seconds, depending on the altitude and velocity of the airplane. 

 

In order to obtain some quantitative measure of the vision’s tracking abilities, we have 

constructed a test rig - a rotating table with features to track.  The vision system locks 

successfully onto the (largest) presented feature and the camera turns following the 

rotation of the table.  The rotation speed is gradually increased, until the tracking breaks 

off or target acquisition becomes impossible.  Picture 11 shows the experimental setup: 

the camera gimbal, the rotating table with two features, and the TV screen showing the 

camera’s view. 

 

Picture 12 shows the geometry of the setup. The speed of the table’s motor was regulated 

by applying variable voltage, and the angular speed of the table was measured as the time 

needed for ten turns. A simple formula relates the table’s angular speed ω to the camera’s 

sweeping speed, θ: 

2

1 




+

=

r

d

ωθ  
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Picture 11:  Laboratory set-up for the tracking-speed measurements 

 

Picture 12:  Table speed vs. the camera’s sweep 

 

d 

r 

θ 

ω 
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d  is the elevation of the camera above the table, and  r is the distance of the target feature 

from the center of  the table. 

 

At d = 26.5 cm, and r = 10 cm, we found that the tracking was still reliable with the 

camera sweeping an arc at the maximum speed of: 

��PD[��� �����GHJUHHV�VHFRQG�� 

The camera’s field of vision is ca. 47 degrees high and ca. 60 degrees wide (see Section 

20), which puts this vision system within the range of speeds required to keep up with the 

overflight speeds that were quoted above. 

 

Of course, tracking speed depends on the complexity of the scene.  These measurements 

were performed with two or three shapes, plus an intermittently visible edge of the table.  

The scene observed in a real flight is richer in features, but at least for grassland and 

trees, features tend to have low contrast and disappear below the threshold, which in turn 

is set to single out high-contrast targets. 

 

3.3 Summary remarks on the perception problem 

Real-time perception can be envisioned as a funnel in which the data volume is reduced, 

but the algorithmic complexity increases. Typically, there will be several stages with 

fairly different breadth/depth ratio. 

 

This is intrinsically not a problem amenable to single-architecture processing.  Of course, 

a speed tradeoff is in principle always possible, but engineering considerations such as 
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power consumption and heat dissipation place a very real limit on that approach.  We 

believe that it is better to use several processor architectures, each suitable for a different 

stage of the perception process.  Appearance on the scene of configurable microchips 

makes this goal both realistic and appealing. 

 

Robotic perception is also a problem in embedded computing. Requirements imposed by 

the small model airplane are a bit on the stringent side, and one can envision a much 

more relaxed design for an assembly line or security system. However, the need for 

perception is naturally the greatest in mobile robots. In such applications the vision 

system will always have to be compact and autonomous, because it bestows autonomy on 

a mobile device whose primary function is something other than carrying a vision system 

around. 

 

Architecture should follow function, starting at a fairly low level.  For example, data 

collection in this system is done with a digital camera which serializes the (initially) 

parallel image input. This choice was dictated by good practical reasons, but the system 

lost a great deal of processing power because of that serialization. Image input should 

have been done in parallel, which in turn would have required a specialized device and a 

much broader data path in the initial processing stage. 

 

The segmentation stage is better suited for implementation on general-purpose processors 

because of the smaller data volume and more "sequential" algorithms. An architectural 

alternative may be possible here: segmentation could be attempted on a highly connected 
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neural net circuit, trading off an exact algorithm for an approximate, but parallelizable, 

search procedure.  Neural net searches, on the other hand, are usually slow to converge 

and may not improve the overall speed. 

 

Animal vision cannot be separated from cognitive functions and motor coordination, and 

this must be true for robotic vision as well. How much “intelligence” is built into high-

level processing of visual information depends on the ultimate objectives of Skeyeball: 

for example, searching for a 3D shape in a complex panorama is a problem different from 

that of hovering above a prominent feature on the ground. 

 

In terms of steering and motor coordination, biological parallels are relevant. It is known 

that inertial motion sensors play a large role in the gaze control of mobile animals [1]. 

Since the input from the motion sensors is simpler, and the processing presumably faster, 

this sensory pathway provides the supporting motion information much faster than can be 

obtained by visual processing.  The airplane may very well benefit from an eventual 

integration of its vision and attitude/motion sensors. 

 

Visual perception is an ill-posed problem, and examples of functioning compromises may 

be more valuable than exact results. Throughout this document, we point out similarities 

with biological systems which strike us as interesting, although we do not pursue them in 

depth for lack of expertise on the subject.  A few pitfalls notwithstanding, we believe that 

a synthesis of computational, physiological and engineering knowledge will be necessary 

for the eventual development of reliable and versatile perception systems.
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4. HARDWARE ARCHITECTURE 

4.1 Architectural components 

Picture 13  is an overview of the architecture of the vision system. Picture 14  shows all 

the signals pertaining to the flow of data from the camera, through the processors and 

back to servo motors, but it omits some peripheral details. 

 

Camera  - The “eye” of the system is a small digital camera, producing grayscale (non-

color) NTSC video signal; its other characteristics are largely unknown. The camera is 

mounted on a gimbal driven by two servo motors, with a 50-degree range of motion in 

each direction, and is permanently focused on infinity. 

 

Sync separator – the NTSC grayscale video signal contains three synchronization signals. 

These are extracted by means of video sync separator LM1881 by National 

Semiconductor, mounted on a prototyping board along with supporting circuitry. 

 

A/D converter – we use Analog Devices’ AD876, which is a pipelined 10-bit converter. It 

is mounted on the same proto board, with supporting circuitry for its reference voltages. 

 

Sampling control, thresholding and threshold calculation, motion detection and zoom are 

implemented as digital designs on a synchronous pair of Xilinx XC4010 FPGA's, running 

at 33.3 MHz. Start-up configuration is done with two Atmel’s AT17LV config ROMs. 
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The entire object recognition is implemented as code, running on a 90 MHz Motorola 

MCF5307 ColdFire integrated microprocessor.  We use a commercial evaluation board, 

SBC5307, with 8 megabytes of DRAM, start-up flash ROM, expansion bus and 

communication ports. 

 

The two processors share image data through a 32K dual-port SRAM, CY7C007AV by 

Cypress Semiconductor. Data access is implemented as a round-robin procedure, with the 

objective of speeding up high-volume data transfer in the early stages of the vision 

process. 

 

The driver for the servo motors that move the camera is implemented on one of the two 

FPGA’s.  Motion feedback from the servos is generated by a PIC16F877 microprocessor, 

on the basis of servos’ analog position signals. 

 

4.2 Biomorphic approach to architecture  

Nervous systems of animals utilize specialized hardware almost by definition.  There is 

much evidence that biological architecture follows function:  for example, the retina, with 

its layers of many specialized types of cells, is apparently a structure which has evolved 

to deal with the initial stages of the vision funnel, from the cellular level up. 

 

Architecture of this robotic system follows the same “biomorphic” principle as much as 

possible. In order to increase overall speed and throughput, we have opted for ASICs and 

dedicated data paths, even at the cost of under-utilizing some components.  Multitasking 



 21 

and time-multiplexing are systematically avoided. Biological systems follow this 

principle because of evolutionary constraints, but they solve the real-time perception 

problem well, and the trade-offs they make appear to be the right ones. 
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5. DESIGN SUMMARY 

This section provides a top-level summary of the schematics and code modules which 

comprise the functional configuration of the hardware described in Section 4.  

 

5.1 XC4010  digital design 

Configuration of the two FPGA processors is implemented with the Xilinx Foundation 

development tool, either as schematics or as Abel HDL code.2  This list gives an 

overview of the functionalities contained in the highest-level modules.  Design 

components and signals are described throughout the text and in the schematics 

themselves. 

 

5.1.1 Front-end FPGA 

This design consists of seven top-level schematics and a number of macros. It utilizes 

about  60% of the logical blocks (CLBs) of the XC4010 FPGA. 

 

VISION_IN – contains the entry point for the video sync signals, vertical and horizontal 

image framing and sampling, and the zoom. 

 

ANALOG_IN – input from the A/D converter, normalization to black reference level, 

black-and-white thresholding. 

 

FIELD_END – placeholder schematic, invoking macros for vector output, run-time 

parameters and the round robin. 
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VISION_OUT – input/output to the DPRAM. 

 

RR_ADDRESS – address counters for image buffers, round-robin address multiplexer. 

 

MOTION_VECT – invokes the pixel read/write cycle, calculation of the motion vector. 

 

CLOCKS – entry point for the external clock and reset signal, generation of internal 

clocks. 

 

5.1.2 Back-end FPGA 

The design consists of five top-level schematics and a number of macros. It utilizes 96% 

of the CLBs of the XC4010 FPGA. 

 

DUTY_CYC_PP – IRQ5/parallel port communication, duty cycle generator, servo-

motion signal. 

 

HIST_DP – data path for the threshold search in the histogram. 

HIST_IO_RAM – histogram storage and management. 

HIST_MINMAX – comparison logic for the threshold search, control ASM. 

HIST_INTEGRAL – calculation of the histogram and features area. 



 26 

5.2 MCF5307 (ColdFire) code 

Programs running on the MCF5307 ColdFire processor are written in C and ColdFire 

assembler,3 and compiled/assembled with GNU “gcc” and “as.”  This list groups the code 

modules by system function; further description is provided in the text and in the source 

comments. 

 main.c    - initialization and main loop for feature recognition 

 

Configuration and startup: 

 cache.s    - cache initialization 

 ConfigRegs.s   - MCF5307 configuration, running from flash 

 ConfigRegs2.s   - MCF5307 configuration, running from DRAM 

 crt0.s    - setup for the C language 

 globals.c   - init. of global variables for functional code 

 glue.c    - heap setup and other book-keeping 

 start.s    - processor startup sequence 

 vector.s   - vector table 

 

Feature recognition: 

 ConnectedComponents.c - segmentation algorithm 

 Diagnostics.c   - vision system’s error reporting 

 FeatureDetector.c  - feature “signatures”  

 FeaturePoints.c  - maintenance of heap data structures 

 Features.c   - driver modules for acquisition and tracking 
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 GraphDFS.c   - depth-first graph traversal 

 SimpleEdge.c   - edge detector 

 

Inter-process communication: 

 CyclesPP.s   - communication through the parallel port 

 IRQHandler.s   - handler for the Interrupt 5 (Process 1) 

 roundRobin.s   - round-robin DPRAM access 

 

Servo motion: 

 servo.s    - translating displacements to servo duty cycles 

 

Auxiliary: 

 Datalog.c   - interface library for the diagnostic data log 

 DataOutput.c   - diagnostic data output 

 serial.c    - communication library for the serial port(s) 

 SerialHandler.s  - UART interrupt handler 

 IRQ7Handler.s  - handler for the Interrupt 7 (soft restart) 

 TermInput.c   - stub for the terminal command input 
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6. NTSC AND THE EVENTS SYNCHRONOUS WITH THE VIDEO SIGNAL 

 

Frames of  the NTSC television signal4 consist of two interleaved fields, marked by an 

even/odd synchronization signal. At the beginning of each field  there is a period of time 

when the beam retraces back to the top of the image (at low intensity), a period marked 

by the vertical synchronization signal. Also, horizontal retracing between video lines is 

marked by the horizontal sync.5  Pictures 15 to 18 show some details of the operations 

synchronous with the video signal.† 

 

We sample the content of the video signal during the even field of each frame, and at 

variable resolution – every third line in the absence of zooming, every line when the 

zoom is engaged.  Motion detection, which compares adjacent video frames, is performed 

simultaneously with the sampling, between the pixels, as it were. An early fraction of the 

odd field is used for communication between processes and for the threshold calculation. 

 

6.1 Even field 

Picture 15 shows the beginning of the even field, the synchronization signals, the A/D 

sampling clock, and the composite analog video signal.  Notice the long vertical blanking 

period before the beginning of the actual image transmission. 

 

                                                 
† Pictures 15-18, 27, 28, 32, 35, 38 and 42 are screen shots from a Hewlett-Packard 
16500B logic analyzer. 
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Picture 15: The even field 

 

The sampling clock operates in bursts, during the sampled portion of the even field (see 

Pictures 15, 16, 19 and 26). First sample of each line is taken during the so-called back 

porch of the horizontal sync, at the black reference intensity. We use the first sample as 

the zero reference for the remaining grayscale values in that line: there is quite a bit of 

intensity wobble in the camera signal, and this referencing makes the image steadier.  

 

Picture 16 shows the video content of one line, the sampling clock and the thresholded 

digital data obtained from the video signal. The values of one (black pixels) in the middle 

of the line correspond to the dip in the video signal, which was in turn caused by a dark 

object at the top of camera’s vision field. 

Blanking period Image transmission 
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Picture 16: Video signal carrying one line 

 

Picture 17,  at 1.7 MHz sampling rate, shows the delay between the sampling clock and 

the return of digital data.  The A/D converter is pipelined,6 introducing a delay of four 

clock periods, which we account for by delaying the beginning of pixel read/write cycles. 

The I/O at the end of the line extends past the sampling clock by the same amount. 

 

The field AR is the pixel’s address in the DPRAM (right port), VID is the converter’s 

output.  First tick of the AD clock occurs at the end of back porch, and the resulting black 

reference value is latched four ticks later, as 0x31 in the VID signal.  HD is the 

normalized grayscale value: notice that VID – HD = 0x31 past the black reference. 

Back porch 
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 DR is the thresholded signal, showing in this case a black object in the first line. OE_R, 

WE_R and CE_R are the memory control signals of the DPRAMs right port. 

 

 

Picture 17:  A/D pipeline delay 

 

Motion vector calculations and storage of the digital image are described in Section 12, 

dealing with the  pixel read/write cycle (p. 64). 

 

6.2 Odd field 

Picture 18 shows the beginning of the odd field and the DPRAM  I/O associated with it. 

At this time, parameters are updated, the motion vector has been calculated and is written 
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out (notice the twelve dips in the WE signal), and Process 1 updates the status byte 

(notice that the semaphore operation SEM_R brackets the status byte read and write). 

IRQ5 is asserted, triggering the handler on MCF5307 and starting the parallel-port 

communication (see Section 16, on IRQ/PP). 

 

 

 

Picture 18: The odd field 

Param Motion vector Status byte 
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7. FORMATTING THE IMAGE SCAN  

The design receives the sync signals already separated from the total video signal. It uses 

the syncs to control the digitization and framing, to assign coordinates to pixels, and to 

count total numbers of pixels and black pixels in the image.  For convenience in 

analyzing the VCR video signal, which does not have the even/odd sync, this sync signal 

is being generated internally. 

 

Deciding at which points to sample the video signal, i.e. generating a sampling clock for 

the A/D converter, is the main functionality derived from the synchronization signals.  

Vertical formatting means the selection of video lines, while the horizontal formatting 

means a selection of discrete sampling points on the continuous video signal.  The two 

formats differ in details, and are made somewhat more complex by the presence of the 

zoom (see Section 10, on the digital zoom).   Also, in this system, sampling is limited to 

the even field of the frame. 

 

Picture 19 shows the formatting geometry and the signals involved, in the absence of 

zooming.  Zoom geometry is shown in Picture 26. 
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Picture 19:  Formatting and sampling 

 

7.1 Vertical formatting 

Briefly, the vertical formatting circuit (in the schematic VISION_IN) determines three 

things: 

- at which line in the even field to start sampling 

- at what line density to scan (how many lines to skip between scans, if any) 

- how many lines to scan (i.e. when to stop) 

 

Black reference 
sample; BP_END 

Li
ne

 s
yn

c 

Vertical blanking VERT_SYNC 

Scanned lines 
per field 
(fixed) 

DLY_END = 0 Samples per line 
(fixed) 

Scanned line density; 
SCAN_LINE 

Sampling rate 1.83 MHz; 
signal 1_7_MHZ 

Area of the video signal; 
even field = digitized area 
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7.1.1 Starting line 

Obviously, sampling must be suppressed during the vertical retrace (vertical blanking), 

and when the 3X zoom is engaged, over the top third of the image as well.  This is 

accomplished by extending the duration of the vertical sync to the first scanned line, 

counting the requisite number of lines.  A loadable counter and a small ASM, triggered 

by the signal VSNC and clocked by LINE_SYNC, produce the signal VERT_SYNC, 

which extends to the first scanned line. 

 

Picture 20: VERT_SYNC ASM 

 

7.1.2 Line density 

Component LOAD_CNT2 is a counter which reloads an external value D_IN whenever it 

runs out, then continues running to that value. It has a provision for the zero count, and 

two term count signals, full period and half period.  It runs while its TRG input is high.  

This component is used to set the line density, by clocking it with LINE_SYNC. 

 

W                          0 

 VERT_SYNC = 0 

VSNC 

  TC_LD 

R                           1 

         TC_EN 
VERT_SYNC = 1 

TC_VS 

0 

0 

1 
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Picture 21: LOAD_CNT2 ASM 
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7.1.3 Line count 

Component SCAN_LPF is a stopping counter which is reset asynchronously on the rising 

edge of its TRG input.  Its output GATE remains high for the duration of the count; 

afterwards the counter sleeps until the next reset.  This component is used to count the 

scanned lines in the even field. 

 

Picture 22:  SCAN_LPF ASM 

7.2 Horizontal formatting 

The horizontal formatting circuit (also in VISION_IN) does these four things: 

- decides at what pixel density to sample  

- produces the sampling signal for the black reference at a fixed position in line 

- decides where in the scanned line to start sampling pixels 

- and how many pixels to sample per line (i.e. when to stop) 

  TC 

      (BA) 

0 

1 

The asynchronous reset state 

W1                      00 

SYNC_LD 
CNT_EN 

R                         01 

GATE 
CNT_EN 

W2                      10 
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7.2.1 Pixel density 

An ASM and a loadable counter, identical to those in LOAD_CNT2, generate a clock 

signal at the pixel sampling frequency, by reducing the system clock by a factor 

dependent on the zoom. 

 

7.2.2 Black reference sampling 

Component LOAD_CNS is a counter which synchronously loads an external value D_IN, 

runs to that value and stops. It has a provision for the zero count, and two term count 

signals, full period and half period.  It starts when its SYNC_LOAD input goes high.  

This component is used to generate the black ref. sampling signal (BPE), by counting off 

the length of the back porch in the intervals of the sampling clock. 

 

7.2.3 Starting pixel 

A second LOAD_CNS counts off the delay from BPE to the first pixel (zero, or one third 

of the line for the 3X zoom). It raises the signal EN_SAMP, during which pixel sampling 

is enabled. 

 

7.2.4 Pixel count 

An ordinary counter counts the sampled pixels in the line, and lowers the EN_SAMP 

when the full number of pixels is reached. 
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7.3 Auxiliary components 

CLK_DELAY – this component creates bursts of its input clock CLK, for the duration of 

the input CTRL, only delayed by a fixed number of clock periods. CLK is assumed to be 

a continuous clock  This component is used to create a clock burst delayed by four clock 

periods, which is needed to latch the output from the A/D converter’s pipeline. 

 

HCP (half-clock pulse) – passes to Q the first high half-period of CLK, following the 

rising edge of its input D, and only that. It is used to convert the term-count signals 

(which last a full clock period) into half-period pulses. The component is asynchronous, 

and uses three FF’s (A,B and C) which mutually clear each other, according to this 

timing diagram: 

 

Picture 23: HCP timing diagram 

 

         Q 

 CLK 

 D 

 A 

 B 

 C 

signifies a flip-flop in continuous clear 
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7.4 Signals 

Sync signals are active low, inverted and used as active high through the design.  In order 

to process still-frame output from VCRs, which lacks the odd/even signal, this signal is 

generated internally. 

 

LINE_SYNC - active high delimiter between video lines, typically 4.7 microseconds. 

Suppressed during the odd field. 

 

VSNC - active high delimiter between fields, typically 230 microseconds. Suppressed 

during the odd field. 

 

VERT_SYNC - derivative of VSNC. Extends from the beginning of VSNC to the first 

sampled line in the field, covering vertical retrace and vertical zooming delay. Covers up 

unused synchronization interval in LINE_SYNC. 

 

SCAN_LINE – active high during each scanned line; reflects the vertical sampling 

density (every line or every third line, set by the zoom level).  Its derivative SCAN_L1 is 

low during horizontal syncs. Both signals are active only during even fields. 

 

EN_SAMP - when this signal is high, pixel sampling of the video line is permitted. This 

signal is high in every n-th video line, as set by SCAN_LINE, and covers either the entire 

line or the middle third of it, as set by the zoom level. 
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1_7_MHZ - clock which controls the density of pixel sampling of the video lines. At 108 

pixels per line, this clock runs at 1.83 MHz or 5.49 MHz, depending on the zoom level  

(see clock-reducing counter). 

 

BP_END - the single pulse indicating the end of back porch.  Its delayed derivative, 

LATE_BPE, is used to latch the black reference level. Unlike the rest of the sampling 

signals, these are not affected by the zoom. 

 

AD_CLK - triggering signal sent to the A/D converter. It comprises BP_END  and the 

1_7_MHZ line sampling burst covered by EN_SAMP. 

 

LATE_CLK – line sampling burst, delayed by several periods (4) of the sampling clock, 

to allow for pipeline delay in the A/D converter. This signal clocks the utilization of the 

digitized signal. 

 

DLY_END – single pulse indicating the end of horizontal zooming delay. 
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8. DIGITIZING AND THRESHOLDING (schematic ANALOG_IN) 

Video signal from the camera is digitized with the AD876 converter chip. The circuit 

generates the sampling trigger for the converter, AD_CLK, and receives 8-bit grayscale 

signal, VIDEO, in return.  

 

Video signal is corrected for the intensity fluctuations by subtracting the black reference 

value from it. The corrected video is thresholded to a strictly black and white signal, 

C_BIT, which is both stored in the RAM and passed to frame comparators. 

 

The corrected video is also passed to the back-end FPGA for histogram/threshold 

calculation, during the even field.  In the odd field, the signal THR_RDY from back-end 

latches the calculated threshold into a data register, to be used in the next frame. 

 

Presently, the sampling is done on 81 lines of every even field of the video signal, at 108 

pixels per line. This yields a 108x81 b/w digitized image frame, at the correct NTSC 

width-to-height ratio of 4:3. 

 

8.1 Black-and-white inversion 

Which side of the threshold is considered active, or a feature, is a matter of convention, 

and can be set by a run-time parameter. The choice does not affect the edge detection, 

although it affects the sensitivity of the motion detector somewhat. 
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9. SETTING THE THRESHOLD AUTOMATICALLY 

9.1 Heuristic procedure 

This vision system operates on the assumption that the scene consists of  relatively 

luminous target feature(s) and relatively dark uninteresting background (or the reverse). 

An early and important step is to set a black-and-white threshold that will separate the 

features from the background, greatly reducing the complexity of the scene. 

 

Setting this threshold manually is a delicate task.  The selection is guided by the apparent 

simplicity of the b/w image, and once set, the threshold usually works well for a range of 

similar images. It would be difficult for the navigator to adjust the threshold in flight, and 

small errors in the threshold can alter the result dramatically.  Automatic thresholding 

was implemented to make the vision more robust. 

 

Finding the threshold follows this heuristic procedure: 

a) Construct the grayscale histogram of the image.  This is a straightforward pixel count, 

accumulated in an array of 256 grayscale levels. 

 

b) Find the highest maximum in the histogram and assume that it is located in the middle 

of a large "hump" representing the background. 

 

c) Find the lowest minimum on one side of the highest maximum (in this case, the 

brighter side). Set the threshold to that grayscale level: the area opposite (brighter than) 

the background hump represents features.   
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d) Disregard threshold choices which define a very small feature area in the histogram, 

since they typically have no visual significance. 

 

e) If the search for a meaningful minimum fails, reverse the grayscale and look for 

features on the opposite end of the histogram in the next video frame 

 

f) Clear the histogram. 

 

The assumption here is that the lowest minimum gives best separation of the histogram 

into background and features of interest, and  the success ultimately depends on the 

grayscale separability of the image.  Picture 24 gives an illustration of the procedure. 

 

The grayscale version of the image is not currently used in the later vision stages; neither 

is the value of the threshold. For that reason, the histogram/threshold process is 

implemented in hardware, on the back-end XC4010 connected to the front-end vision 

processor via a dedicated data bus.  While the histogram/threshold algorithm is well 

suited for implementation in code, running it on the ColdFire processor would have 

complicated the data flow and slowed down the feature recognition. 
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Picture 24:  Sample histogram 

 

9.2 Description of the threshold calculation on the back-end FPGA 

9.2.1 Data path 

The histogram is stored in a synchronous RAM component, SYNC_RAM, which is 

contained in the schematic HIST_IO_RAM, along with elements which build (and clear) 

the histogram.  There are 256 word-sized locations in SYNC_RAM; the histogram is 

maintained by presenting the grayscale value to the RAM as the address, and 

incrementing the corresponding location by one (or setting it to zero). 

 

During the histogram build (even field), histogram addresses are the video data coming 

from the front-end FPGA through the bus HIST_IO.  Depending on the nature of the 

image, these grayscale values may be inverted by subtracting them from 255.  During the 

threshold calculation (odd field), HIST_ADDR is generated internally by a counter, and 

histogram values appear on the bus HIST_OUT. 

 

 

0 255background features 

threshold 
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The threshold calculation sweeps the histogram twice, by convention in downward 

direction (255 to 0, white to black).  The sweep of histogram addresses is generated by 

the counter C(P); specific count values are latched in MIN_LOC and MAX_LOC 

registers, as the locations of histogram extrema (schematic HIST_DP). 

 

Minima and maxima are detected by comparing three adjacent histogram values, which 

flow through the comparison registers PL, P and PR during the sweep. These are the 

relevant comparisons, with black dots representing relative heights of the adjacent bars of 

the histogram: 

 

 

We use the left-biased comparisons. Current extremes are latched into registers 

CUR_MIN and CUR_MAX.  Since we are interested in the global extremes, locally 

found extremal values must be compared with current largest/smallest values.  All the 

comparison logic is contained in the schematic HIST_MINMAX. 

 

PL  P   PR 

or (P > PR) • (P < PL) left-biased maximum 

or (P > PL) • (P < PR) right-biased maximum 

or (P < PL) • (P > PR) left-biased minimum 

or (P < PR) • (P > PL) right-biased minimum 

PL   P   PR 
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Step d) from previous section is implemented in the schematic HIST_INTEGRAL. 

Histogram integral and the features integral are accumulated in registered adders, and the 

features integral is compared with an appropriate fraction of the total histogram integral. 

 

Since the search for a meaningful minimum can fail, the success/failure is recorded in the 

flip-flop MIN_FOUND and passed to the control ASM.  

 

9.2.2 Control 

Control ASM is implemented in the Abel code component HIST_ASM, shown in Picture 

25 (two pages).  The algorithm is by its nature sequential, and can be roughly divided into 

these six steps: initialize the address and the comp registers, search for the maximum, re-

initialize, search for the minimum, notify front end or invert the grayscale, clear the 

histogram.  Individual states and logic are explained in the ASM chart. 

 

9.2.3 Signals 

 

CP_SYNC_LD – synchronously load the value 255 into the address counter C(P). 

 

CLR_REG – synchronously clear registers PR, CUR_MAX, MAX_LOC. 

 

PL_LD, P_LD, PR_LD – enable loading of comp registers PL, P and PR. 
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CUR_MAX_LD, MAX_LOC_LD, CUR_MIN_LD, MIN_LOC_LD – enable loading of 

maximum/minimum registers. 

 

PR_ASYNC_LD – asynchronously set registers PR and CUR_MIN to “infinite” value. 

 

THR_RDY – notify the front end that the threshold is ready. 

 

INV_GRAY – set the grayscale inversion for the next frame. 

 

CLR_WE – enable writing zeros into the histogram. 

 

NORM_EN, FT_EN – enable the accumulation of histogram and feature integrals. 

 

FFR – feature integral is meaningful relative to the entire histogram area. 
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Picture 25:  Control ASM for the histogram/threshold calculation, p.1 
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10. DIGITAL ZOOM 

It became very obvious during test flights that the human navigator and the vision 

steering system need two different perspectives on the ground scene. At altitudes of 200-

300 ft, view through the wide-angle camera was adequate for general orientation, but the 

target was impractically small for the vision system to handle. Using a narrow-field (f=16 

mm) lens, or equivalently, flying close to the ground, produced good target images if and 

when the target was ever located. The camera was fixed to the body of the plane,  but 

even with an independently movable camera the navigator would have difficulties 

spotting  areas of interest through the narrow field. 

 

A camera with the zoom lens, or even two different cameras on the same gimbal, would 

solve this difficulty at the cost of additional mechanical equipment. However, since the 

vision system originally used only one sixth of the total image information (sampling 

every third line of the even field), there was room for electronic, instead of optical, 

zooming.  Only the vision system sees the effect of the zoom, since the navigator 

currently receives no digitized image feedback. 

 

The digital zoom, as implemented, is a 3X zoom. It amounts to using the full line density 

of the even field, sampling pixels at three times the "no zoom" rate. In order to maintain 

the same data volume, only the central one-ninth of the video image is actually digitized 

and passed to the vision system. A 6X zoom could be implemented by using the lines in 

the odd field also, but some care would have to be exercised regarding the end-of-field 

communication between processes. 
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10.1 Zoom implementation on the FPGA 

The zoom has been implemented on the front-end FPGA, as part of the overall digitizing 

circuit. The zoom level is passed to the FPGA as a run-time parameter, and a selection is 

made between two sets of five constants. These five constants define the resolution and 

framing of the image. 

 

In order to cope with high sampling frequency, the FPGA's clock rate is set to 33.3 MHz, 

and the pixel read/write cycle was made as short and pipelined as feasible (see 

description in Section 12). Picture 26 shows the zoom’s geometry and the signals 

involved. Refer back to Section 7, Formatting the image scan, for details (p. 33). 

 

Pictures 27 and 28 give an overview of the formatting, modified by the zoom. Picture 27 

shows the sampling clock active in the central one-third of the lines of  the even field. 

Greater magnification shows the sampling clock also limited to the central one-third of 

one line, with the black reference sample following the horizontal sync (Picture 28). The 

non-zero data signal (DR) is due to a dark object in the camera’s field of vision. 

 

When the zoom is engaged, rotations of the camera produce larger displacements in the 

image. Therefore, the procedure that calculates servo duty cycles must also take the zoom 

into account and turn the camera by smaller angles (see the program module Servo.s). 
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Picture 26:  Formatting and zoom 
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Picture 27:  Vertical formatting (zoom) 

 

Picture 28:  Horizontal formatting (zoom)

ref. sampled 
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11. ROUND ROBIN PROCEDURE FOR DATA SHARING 

Presence of two processes (motion detection and feature recognition), running on 

separate processors, makes heavy demands on the memory containing the image data.  In 

this system, access conflicts and bus logjams are avoided by using a dual-port SRAM 

chip and a round-robin data access procedure. 

 

The RAM chip used is CY7C007AV,7 an asynchronous 32K x 8 part by Cypress 

Semiconductor. It has two address/data ports, which can read simultaneously from the 

same memory location.  The part arbitrates read/write access conflicts in hardware, 

although that feature is not used here. The chip also has a bank of hardware semaphores, 

with their own chip-select signals and arbitration logic. This feature was essential in 

implementing the round robin procedure.8 

 

In this scheme, the motion detection (process P1) reads from one memory area, say M1, 

and writes into another (M2). It swaps these areas on each new video frame.  

 

Feature recognition (P2) takes a few frames' time to complete one calculation. When P2 

needs  an update, it reads the P1's read frame, say M1 (P2 never writes). On the next 

video frame, P1 reads M2 and writes to M3, then swaps M2 and M3 until P2 claims 

whichever of these is P1's read frame at the moment (see Picture 29).   
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Picture 29: Round robin 

 

 

Picture 30:  DPRAM’s memory buffers 

 

Buffers  M1-M3 are implemented as distinct memory areas on the dual-port memory 

chip, and waiting is eliminated completely. P2 can start reading the P1's read frame 

through its own bus, and the round-robin motion is performed by switching the starting 

addresses of  M1-M3  (see Picture 30). Read/write conflicts cannot occur on buffer 

access, only double reads, which are permitted by the DPRAM. 
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At any moment, each buffer is assigned to one of these three states: P1 writes, P1 reads, 

P2 reads; any buffer can be in any of them, and no two buffers are ever the same.  The 

record of the current state is maintained in a dedicated location, the status byte, which is 

updated by P1 and P2 on every turn of the round robin. 

 

Since P1 and P2 are mutually asynchronous, genuine access conflicts will occur on the 

status byte.  These are avoided by protecting the status byte with the semaphore: only one 

port can hold the semaphore (this is arbitrated by the memory chip), and that port updates 

the status before releasing the semaphore.  The other process stays in a polling loop until 

access is granted, but the duration of the busy wait is no more than a one-byte I/O 

operation, which is insignificant on either processor. 

 

11.1 Status byte 

The status byte, at the DPRAM address 0x08, contains three two-bit fields corresponding 

to the buffer states P1W, P1R and P2R, and the value in each field is the number of the 

buffer assigned to that state. 

 

 

Maintenance of the status byte is very simple. On reset, its value is set to 0b00100100 

(0x24), which means that: 

- buffer zero is P1's write buffer 

- buffer one is P1's read buffer 

- buffer two is P2's read buffer 

   0     0     P1R     P1W 0x08     P2R 
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Process 1 swaps the contents of fields P1W and P1R (interchanges its working buffers).  

Process 2 swaps the contents of fields P1R and P2R (releases the buffer it just read and 

takes up the reading buffer of the Process 1).  Between updates, each process maintains a 

private copy of the status information; otherwise, its working buffer(s) could change in 

mid-cycle, with disagreeable results.  Picture 31 shows the allowed swaps of the status 

byte values. 

 

Picture 31: Status byte values 
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11.2 Round Robin on the front-end FPGA 

The procedure by which the two processes share buffers of image data in the DPRAM 

has already been described earlier.  This section deals with the implementation of the 

round robin on the FPGA side, as the component ROUND_ROBIN. 

 

The private copy of the status byte resides in the register SBYTE_REG, which is read 

from and written to the DPRAM address 0x08.  Notice the peculiar ordering of input bus 

leads, which accomplishes the swapping of fields P1R and P1W. 

 

Current addresses for the three image buffers reside in three counters driven by the 

LATE_CLK (see schematic RR_ADDRESS).  Fields P1R and P1W are used to operate 

the multiplexer which selects the current buffer for read or write operations. 

 

The ASM (see picture 33) is straightforward: it polls the semaphore for access, reads and 

writes the status byte, then releases the semaphore. Picture 34 shows the timing diagram. 

 

SEM_IN – read value of the semaphore. 

SEM_OUT – written value of the semaphore. 

RR_SE – semaphore enable (the semaphore’s chip select). 

SEM_WE, SEM_OE, SEM_D_TSB – control signals for the semaphore I/O. 

RR_CE – chip enable for the regular RAM area. 

SB_WE, SB_OE - control signals for the RAM I/O. 

STAT_A_TSB – address TSB control for the entire round robin sequence. 
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Picture 32:  Semaphore-protected update of the status byte 
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11.3 Round Robin on the MCF5307 processor 

Implementation of the round robin procedure in code is straightforward:  the flowchart is 

almost  identical to the ASM chart in Picture 33.  The procedure is invoked once in each 

pass of the feature recognition loop (see module main.c).  It polls the semaphore for 

access and  reads the status byte when the access is granted;  swaps the fields P1R and 

P2R, updates the status byte and releases the semaphore.  The new P2R (in the local copy 

of the status byte!) is used to select the starting address of the read buffer, and that 

address is made available to the vision code in the global variable  IMAGE_FRAME. 

 

The subroutine round_robin is contained in the program module RoundRobin.s, along 

with the subroutine config_cs, which configures the left port (ColdFire side) of the 

DPRAM.   

 

Note on the DPRAM addresses on MCF5307:  The hardware is configured so that the 

ColdFire processor uses its chip select 4 for the semaphore bank of the DPRAM, and the 

chip select 5 for the regular storage area.  ColdFire chip selects are assigned blocks of 

address space 2 MB in size;9  consequently, the base addresses for the semaphores and 

the regular RAM become 0xFF800000 and 0xFFA00000 respectively, even though they 

are contiguous in the DPRAM’s address space (see Picture 48 on p. 98).  ColdFire 

generates the proper address in the lower 15 bits, and the high bits serve only to activate 

the right chip select. 
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12. THE PIXEL READ/WRITE CYCLE 

The pixel read/write cycle is central to the early vision processing:  it stores the digitized 

B/W image and performs the motion detector's frame comparison. This section describes 

the cycle suitable for the 33.3 MHz system clock and the 5.4 MHz pixel sampling rate. 

 

Events within the cycle are sequenced by the state machine PIXEL_CYCLE, which is 

clocked by the system clock and runs one full sequence per period of the sampling clock. 

 

The pixel cycle accesses two memory buffers, P1R and P1W; corresponding addresses of 

the pixel in these two buffers are determined by the round robin algorithm. Pixel 

calculation is triggered by the delayed sampling clock, LATE_CLK, which also 

increments the buffer addresses. 

 

The pixel's  read address is calculated during the high time of the sampling clock, and the 

value is stable on the signal M_BIT one clock period later; this is the pixel's value from 

the previous frame.  The thresholded signal, C_BIT, becomes available around the same 

time.   Both bits are presented to the comparator/accumulator (see Section 13.3, the 

description of the FPGA design, p.70, for details) and the incremented value of the 

motion vector is clocked in one period later.  

 

The address is now switched to the pixel's write address, and on the rising edge of WE, 

one clock after the address switch, the new pixel value is written to the write buffer.  The 
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entire read/write cycle takes five clock cycles: at 33.3 MHz, this is sufficiently fast to 

complete all pixel processing at the sampling rate. 

 

In addition, there are RAM-controlling signals in the cycle: output enable, write enable 

and the three-state output buffer on the zero bit of the data line. All of these are active 

low. Picture 37 shows the timing diagram of the read/write cycle, one column per state. 

 

Picture 35 shows the read/write cycle driven by the 33.3 MHz clock, and running at the 

full sampling rate of the 3X zoom. 

 

 

Picture 35:  Pixel cycle 
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Picture 36: PIXEL_CYCLE ASM
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13. FRAME COMPARISON AND THE MOTION VECTOR  

13.1 Methodology 

Motion detection in this system is limited to linear displacements of the entire scene, 

since we are interested only in detecting changes due to the movements of the plane (ego-

motion). Drift detection would perhaps be a more accurate term. 

 

Formula used to calculate the motion vector is as follows: 

∑
∑ ∆

=∆
j

ii

pix

pixx )(
 

This is essentially the formula for the dipole moment of the displacement, with the 

previous frame’s pixels counting as the negative charge, and the current frame as 

positive. Summations are over the entire image,  pix is the pixel value (zero or one),  ∆pix 

is the difference between consecutive frames, and ix is the i-th pixel’s position. The 

normalization constant in the denominator is simply the number of black pixels in the 

image. 

 

Motion detection in the vision of insects with composite eyes utilizes the principle of 

consecutive activation/deactivation of receptors; direction of motion is determined by the 

pattern of neural wiring between adjacent receptors (eyelets in the composite eye).10 11   

Our detector has no pixel adjacency information, and cannot detect local motion within 

the image. Instead, it obtains an integrated value of spatial distances between 

activated/deactivated pixels. For simple drift motion, this is an adequate motion vector, 
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with the caveat that the detector is sensitive to appearance of new objects in the 

periphery, which it interprets as motion. 

 

13.2 Computation 

Pixels are processed in real time, and each pixel cycle contains the following steps: 

- corresponding pixel from previous frame is read from the DPRAM buffer P1R; 

- current and previous pixel are presented to two comparators, which calculate the    

components of the motion vector; 

- current pixel is stored in the DPRAM buffer P1W. 

Each b/w pixel is stored in the zero-th bit of a byte, which makes addressing simpler and 

faster. Higher bits of these bytes are not used. 

 

13.3 Design components 

line-in-frame counter - counts scanned video lines within one frame. Used as the vertical 

(Y) coordinate of the current pixel. 

 

pixel-in-line counter - counts the sampling clock (LATE_CLK), starting at the beginning 

of each video line.  Used as the horizontal (X) coordinate of the current pixel. 

 

pixel-in-frame counter - counts the sampling clock (LATE_CLK), starting at the 

beginning of a frame.  It resets to the starting address of the frame in the SRAM, and its 

value is used as the address of the SRAM byte that contains the current pixel. 
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COMP_ACCUM - comparator/accumulator; this component adds/subtracts the value on 

the input bus NUM[31:0] to/from the current value in its internal register. The current 

value is always available on the output bus SUM[31:0]. The sign of the operation 

depends on the values of CBIT and MEM, as follows: 

 

CBIT MEM operation 

0 0 none 

1 0 add 

0 1 sub 

1 1 none 

 

This operation is designed to capture the differences in pixels of adjacent frames. It is 

enabled by the EN signal.  ASYNC_CTRL resets the register value to zero 

asynchronously, and no operations take place while ASYNC_CTRL is high. 

 

black pixel counter - counts the sampling clock (LATE_CLK), starting at the beginning 

of a frame, only if C_BIT is high on the rising edge of the clock.  Count of black pixels in 

one frame. 

 

13.4 Signals 

C_BIT – single-bit output of the digitizing/thresholding circuit ANALOG_IN.  This is 

the current pixel of the current frame. 
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M_BIT - current pixel of the previous frame, retrieved from DPRAM and compared with 

the C_BIT to detect motion. 

 

CALC_EN – enable signal for the comparison; output of the PIXEL_CYCLE sequencing 

ASM.
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14. WRITING THE MOTION VECTOR TO DPRAM 

At the beginning of the odd field, vector components and the normalization constant are 

written in DPRAM, at the address 0x0C, as three longwords in the big endian order. 

Component VECT_OUT handles that procedure. 

 

VECT_OUT has an address counter, a word counter and a byte-in-word counter. The 

latter two counters operate the multiplexers which select the proper byte for output, and 

the whole procedure consists of a straightforward double loop, corresponding to three 

words and four bytes per word. The ASM chart is shown in Picture 39. 

 

TRG – the trigger signal. 

…_CNT_EN, …_CNT_LD – control signals for the counters 

WE_OUT, TSB - DPRAM control signals  

DONE – ending signal; signal to the next stage to proceed. 



 73 

Picture 38: Vector output 
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Picture 39: VECT_OUT ASM
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15. PARAMETERS OF THE FRONT-END FPGA 

The component PAR_IO1 handles the parameter logistic. Currently, there are three byte-

size parameters allocated to the front-end FPGA, starting at the DPRAM address 0x09: 

- b/w threshold, (0 – 255) 

- one byte of bitwise parameters: 

o bit 0 - b/w inversion; zero stands for dark features, one for bright features 

o bit 1 - zoom level: zero for no zoom, one for 3X zoom 

- mailbox, written to DPRAM on each frame: 

o bit 0 – zoom level indicator: zero for no zoom, one for 3X zoom 

 

Parameters can be added as needed, by a fairly straightforward extension of this 

component. 

 

Default values of the parameters are contained in the circuit, as byte-size constants. On 

the first high TRG after power-up, that is on the first odd field, default parameters are 

written to DPRAM at consecutive addresses. On subsequent TRGs, each parameter’s 

address is presented on the bus ADDR_OUT, and the corresponding parameter selection 

signal goes high, for the duration of two clocks. This allows the current parameter values 

to be read from DPRAM and latched into parameter registers in the circuit.  The mailbox 

parameter is written to DPRAM on each frame, to be read by the microprocessor. 

 

The ColdFire program updates the parameters in the DPRAM during the IRQ5 handler, 

and reads the mailbox.  This mechanism allows for changes in the parameters to be made 
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at run time, e.g. by operator commands, as well as for the FPGA to send signals to the 

ColdFire. Currently, the mailbox is used to notify the ColdFire when the zoom command 

has been radioed to the front-end FPGA. 

 

Sequencer ASM for PAR_IO1 is shown in Picture 40.  Its subcomponent, INIT_BOX, 

raises PAR_INIT once after the power-up, and its ASM is shown in Picture 41. 

 

TRG – the trigger signal; high once per frame, at the start of odd field 

 

TRG_MACH – derivative trigger, produced by the initialization component INIT_BOX. 

 

ADDR_CNT_EN, ADDR_CNT_LD – signals that control the address counter 

 

PAR_INIT – high on first occurrence of the TRG; passes the default parameter values 

onto the PAR_IO bus. 

 

A_TSB, D_TSB, OE_OUT, WE_OUT – RAM control signals involved in parameter I/O 

to and from the DPRAM. 

 

PAR_SEL0, PAR_SEL1, PAR_SEL2 – parameter selectors; enable latching of the 

corresponding parameter in the appropriate data register in the circuit. 

 

PAR_IO – data bus which carries the parameters. 
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Picture 41: INIT_BOX  ASM 
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Picture 42: FPGA parameters 
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16. THE  IRQ5/PARALLEL PORT  COMPLEX 

A tightly coupled hardware/software subsystem, centered around the Interrupt 5 and the 

parallel port of the MCF5307, coordinates the back-end data flow in the vision system. 

Here we describe that subsystem. 

 

16.1 IRQ5 handler 

Early in the odd field, after the motion vector has been written to the DPRAM, back-end 

FPGA generates an IRQ5, as a hardware signal to the MCF5307.  When the processor 

enters the IRQ5 handler, the interrupt is acknowledged by a handshake on the parallel 

port, via two signals, ACK and RDY (bits 14 and 15).  

 

The motion vector is read from DPRAM (it was written before the IRQ5, so there is no 

access conflict), and it is normalized by dividing by the black pixel count. This operation 

is performed here and not in the front-end FPGA, where the vector is generated, because 

of long integer divisions. 

 

Subject to some size restrictions, the vector is translated into increments in the servo 

cycle's pulse widths, and these increments are used to update the current pulse widths. 

Notice that the desired position of the camera is always known to the vision system (in 

the form of calculated pulse widths), but that the actual position may not be known in real 

time. 
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16.2 Duty-cycle generator 

The generator of the pulse modulated servo signals resides on the back-end FPGA. It 

receives the pulse widths from the IRQ5 handler, and produces the corresponding 

waveforms. Pulse widths are passed as 14-bit numbers on the parallel port, in a protocol 

synchronized by the ACK/RDY signals. 

 

16.3 Servo motion feedback 

When the pulse width changes, the servos start moving into the new position. The servo 

circuit, built around a PIC16F877 microprocessor, detects the pulse change and begins to 

monitor the angle of the servo shaft, as an analog signal. It asserts the servo-move signal, 

which remains high until the servos have stopped.   

 

In this fashion, the instantaneous information about the camera position is decoupled 

from the vision system. The vision merely issues the desired position, and receives 

confirmation when that position is reached. 

 

While the servo motors are moving to their new position, the IRQ5 is not being 

generated, since the motion detector would counteract the displacement motion, leading 

to unsteady movement of the camera.   

 

16.4 Displacement vector 

When it is not communicating with the IRQ5 handler, the duty-cycle generator waits for 

the displacement vector transfer, initiated by the MCF5307.  The displacement vector is 
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being calculated by the Process 2, and when ready, it is transferred to the back-end FPGA 

in the same way as the motion vector. 

 

In this transfer sequence, however, the servo-motion signal (the response to the new 

displacement vector) is passed back to the MCF5307, forcing the Process 2 into a busy 

wait until the servos have stopped moving.  This might appear wasteful at first, but it is 

easy to see that Process 2 really must pause during the servo motion. The snapshot for 

feature recognition must not be taken until the camera has moved to the new location.  

Otherwise, the change in the image would not be registered, and the next cycle of feature 

recognition would end up working with stale data. 

 

16.5 Saccadic blanking 

On the face of it, this suppression of image sampling during camera motion resembles the 

phenomenon of saccadic blanking in human/animal vision.12  It is well known that the 

sensitivity of the optic nerve is suppressed while a saccade (a rapid eye movement) is in 

progress, and it is plausible that the purpose of this suppression is to prevent visual 

confusion in biological systems as well. 

 

Interestingly, there is some question whether the suppression of the optic nerve signal is 

triggered by the blurring of retinal image or by a signal from tension sensors in the eye 

muscles.13  In a robotic system it is much easier to detect servo motion than image blur, 

and the choice of mechanism is obvious. 
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16.6 Description of the IRQ/PP circuit on the back-end FPGA 

The circuit design is contained in the schematic DUTY_CYC_PP.  Control of the process 

is carried out by the ASM component IRQ_PP1, described in the previous section (see 

also ASM chart, Picture 43, and timing diagrams, Pictures 44 and 45). 

 

The data path leads from the parallel port to two 14-bit registers, which hold the current 

pulse-width values. These values are in turn available to the square-pulse generators. 

 

The pulse generator component, CYCLE_GEN, contains a fixed-value counter, which 

measures the 20 ms period of the servo’s duty cycle, and a loadable counter, which 

measures the current pulse width.  A simple two-state ASM switches between high and 

low signal levels. 

 

The servo-move signal passes through the component DIP_FILTER which eliminates the 

short (less than a CLK cycle) dips in the signal (noise). 

 

ACK, RDY – handshake signals on the parallel port:  

ACK - pin 14, output 

RDY - pin 15, input 

 

IRQTRG – signal from the front-end FPGA to start the IRQ5 communication at the start 

of odd field (see Picture 18). 
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IRQ – hardware request for Interrupt 5 on ColdFire. 

 

SERVO_MOVE – the cleaned-up servo motion signal; also sent out to pin 0 on the 

parallel port. 

 

PIN0_TSB – signal which reverses the sense of pin 0: output when high, input when low. 

Pins 1-13 are all input pins 

 

LATCH1, LATCH2 – register-enable signals to capture the pulse width values. 

 

PWM1, PWM2 – generated servo duty waveforms. 
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Corresponding 
events on 
MCF5307: 
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Corresponding 
events on 
MCF5307: 

       P3        P3                 P2       TSB      TSB      SVS       SVS       SVS      SVM            SVM        P4      SVM        P4    IDLE2    IDLE2        P2 

 RDY 

 ACK 
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1)     PIN0_TSB reverses the sense of  pin 0 on the PP.  When low, pin 0 is the input bit zero.  When high, pin 0 outputs the SM (servo move) signal to C.F. 

2)     SM is the filtered and synchronized input from the camera servo board.  When high, at least one servo motor is in motion. 

While IRQTRG=0, 
poll RDY=1,  
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Picture 45: Communication with Process 2 
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17. AUXILIARY FEATURES 

The system has several auxiliary features, which do not pertain to its main function, but 

which are necessary for the deployment on a flying airplane. 

 

17.1 Serial communication with the MCF5307 

The ColdFire processor has two built-in UARTs, and the SBC5307 board has two serial 

ports.  One port is configured and active, and the other can be easily made so as well.  

There is a small I/O utility library, which allows transmission of byte strings, and 

transmission/reception of individual bytes. 

 

17.2 Diagnostic data logging 

Lower bank of the SBC5307's DRAM is organized as a four-megabyte circular buffer, to 

be used for logging data during the system's operation. This buffer is initialized upon 

board reset, so the system should not be casually reset (or turned off!) before the 

diagnostic data are retrieved.  A utility library allows for recording of bytes and strings of 

bytes, and for dumping the buffer's contents to the serial port. Data should be captured to 

a file using a terminal software.  Note: press the “D” key to start the data dump to the 

terminal. 

 

17.3 Soft restart of the vision program 

The non-maskable Interrupt 7 is used to implement a soft restart of the vision program on 

the MCF5307.  When IRQ7 is received (as a hardware signal), the corresponding handler 

cleans up the cache and the parallel port, releases all heap allocations, resets the stack and 
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returns to the main entry point. In this way, the vision algorithm can be pulled out of 

some confused state without resetting the entire ColdFire board. 

 

17.4 Radio controls 

The system contains a decoder (implemented on an XC9572 CPLD) which accepts four 

PWM signals from a radio receiver, and converts them into four logic signals. The 

decoder uses the flight control's power supply and receives no input from the rest of the 

system.  Its purpose is to implement radio control over the following functions: 

 

- power on/off: circuitry unrelated to manual controls of the plane can be shut off from 

the ground in an emergency.  An electronic switch is attached to the battery pack for that 

purpose. 

 

- reset: vision boards (and possibly other components, in the future) can be reset to a 

clean state in case of irreparable malfunction. 

 

- soft restart: the vision system can be brought back to its clean state without reset and the 

consequent loss of diagnostic data.  The FPGA part of the system is reset without harm. 

The vision can also be held in restart continuously, in which case the camera's gaze is 

fixed, the tracking is stopped and no data are logged. This is useful to keep the camera 

from turning around aimlessly during takeoff and landing. 

 

- zoom: the zoom of the vision system can be turned on or off by the operator. 
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Picture 46: Radio decoder ASM (module CHANNEL) 
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18. FEATURE RECOGNITION ON THE MCF5307 PROCESSOR 

Functioning of the programs running on the ColdFire processor is best understood in 

terms of the time periods involved. One component, centered around the motion vector, 

runs in response to IRQ5, which is issued by the FPGA once per video frame. It has 

already been described earlier, in Section 16 on the IRQ5/parallel port subsystem. 

 

The other component, feature recognition, runs in the background relative to the 

interrupts. It has no time requirements imposed on it by the input signal, only the general 

consideration that faster processing leads to better tracking.  Here we describe that 

procedure. 

 

The feature recognition consists of the following computations: 

 

- the thresholded black-and-white image is scanned for edges. A pixel is defined as an 

edge point if it is black in color, and has between 2 and 7 black neighbors. The output 

of edge detection is another b/w image: edges are traced in black, and the redundant 

interior of the features has been removed. 

 

- segmentation: edge points are logically grouped into connected threads or loops, and 

each connected component is assumed to represent a distinct feature (object) in the 

scene. The output is a collection of arrays, each containing the edge coordinates of 

one feature.  We use a two-pass algorithm described by Lumia et al.14  (Algorithm 3 

in the reference). For each line, adjacent points in that and the previous line are 
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labeled as belonging to the same component, and the labeling equivalences are 

resolved by means of  a depth-first graph search. Here is a simple example: 

 

At the pixel X, the equivalence of labels a and b will be recognized, and changes in 

labeling carried out in the second (bottom up) pass. The procedure works well for 

simple scenes, but the connectedness problem is combinatorial in nature, and the 

equivalence search will eventually get bogged down in complex images. 

 

- insignificantly small features are removed, and an invariant signature is calculated, 

which is used for actual recognition of the object in the scene.  We use the second 

moments about the principal axes of inertia, which are invariant under rotation and 

translation and relatively easy to obtain. The calculation involves one square root per 

feature, but requires no adjacency information about the feature points.  As a 

preliminary, this step also calculates the feature’s center of mass. 

 

- target recognition: signatures of the objects in the scene are compared to those of a 

selected target feature. If the target is found, the displacement vector is the difference 

between its center of mass and the centerpoint of the image. If the target is lost, an 

error is returned. 
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18.1 Main  data structures in the MCF5307 code 

Digitized Image: 

IMAGE_FRAME  starting address of the read buffer P2R on DPRAM 

FRAME_WIDTH  image dimensions in pixels 

FRAME_HEIGHT 

 

Motion/Displacement Vectors: 

XS_VECT_ADDR  DPRAM address of the vector components 

X_MVECT, Y_MVECT local copy of the motion vector 

NORM_MVECT  normalization constant of the motion vector 

X_DVECT, Y_DVECT the displacement vector 

 

Semaphores: 

These variables carry messages between (and within) the two main processes on the 

MCF5307. They are integers, set to one and cleared to zero. 

DISP_VECT_AVAIL feature recognition announces that a new 

displacement vector is available 

TARGET_AVAIL main process announces that a target feature has 

been selected for tracking 

 

Post-Segmentation Description of Image Features: 

Each individual connected edge is stored in a structure of the type Fpoint. The structure 

contains the point count, arrays of coordinate values, center of mass and the second 
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moments. These structures are allocated dynamically as the features emerge from image 

analysis. 

 

compResult  - a structure of the type ComponentList*, holds the overall result of 

the image segmentation.  It contains the feature count, and an array of pointers to 

structures of type Fpoint, which contain the details of each feature. 

 

targetFeature  - the feature that is being tracked is stored in this Fpoint structure. 

 

Fpoint and ComponentList data types are specified in the header file FeaturePoints.h 

 

Parameters of the Servo Duty Cycles: 

See the data section of the program module Servo.s for description and current values. 
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19. INITIALIZATION OF THE SBC5307 BOARD 

Pre-initialization conditions: 

The entire code (init and functional, ca. 45K in size) resides in flash ROM, and the flash 

ROM is associated with the global chip select. Vector table and initialization code are 

linked to, and reside at, zero address; vector base register (VBR) points to zero. 

Functional code is linked to the upper bank of DRAM, and resides in the flash, just above 

the init code.  See the linker script sbc5307vis.ld for the details of the linking procedure. 

 

Initialization sequence: 

- on reset exception, initial PC and SP are loaded from ROM, as longwords at addresses 

zero and four.  PC points to start-up code in ROM. 

- ColdFire processor is configured: cache is disabled and turned off; SIM and upper bank 

of DRAM are configured; chip selects are configured and the system is pulled out of the 

global chip select 

- contents of the flash ROM are copied to upper DRAM, VBR is set to the base of upper 

DRAM 

- program control jumps to DRAM starting point 

- chip select zero is reconfigured to the top of address space (to get the flash memory out 

of the way)  

- lower bank of DRAM is configured 

- control jumps to main and starts running functional code 
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20. CHARACTERISTICS OF THE CAMERA/SERVO SYSTEM  (GIMBAL) 

A technical description of the camera  is not available, but by measuring the screen image 

of an object of known size, we have determined the following: 

 

- the angle corresponding to a one-pixel displacement (the camera ratio) is 0.62 

degrees/pixel, at our given image resolution, 

- the camera’s field is ca. 60 degrees wide and ca. 47 degrees high. 

 

The servo motors which move the camera have an angular motion range of ca. 90 

degrees. Their duty cycle is 20 milliseconds, with the recommended high time ranging 

from 1 to 2 ms.  These duty cycles are generated by the back-end FPGA.  

 

The camera’s platform is driven by a lever mechanism (see Picture 47), and its angular 

motion is not entirely linear relative to the motion of the servos. However, within the 

above high-time range the relationship is reasonably linear, and the platform covers an 

angle of ca. 46 degrees in each coordinate direction.  

 

In the current circuit design, the 1 to 2 ms range corresponds to the range of 2048 clock 

ticks of high time, or 45.3 ticks per degree of platform motion. Combined with the above 

camera ratio, this yields 28.3 ticks per one pixel of displacement, the constant of 

proportionality between motion/displacement vectors and the motor movement. 
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Picture 47:  View of the camera gimbal
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Memory map of the ColdFire board FPGA/DPRAM memory map 
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Picture 48: Memory maps 
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Picture 49: Layout of the FPGA board 
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