

DEVELOPMENT OF A REAL-TIME VISION SYSTEM

FOR AN AUTONOMOUS MODEL AIRPLANE

Danko Antolovic

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree
Master of Science

in the Department of Computer Science
Indiana University

October, 2001

 ii

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the

requirements for the degree of Master of Science.

 __

 Prof. Steven D. Johnson, Ph.D.

 __

Thesis committee Prof. Florin Cutzu, Ph.D.

 __

 Prof. Michael E. Gasser, Ph.D.

September 21, 2001.

 iii

Copyright © 2001

Danko Antolovic

ALL RIGHTS RESERVED

 iv

ACKNOWLEDGMENTS

This thesis is a description of a hardware/software system constructed in a series of Y790

independent study courses in the Department of Computer Science at Indiana University.

The work was done under the supervision of Professor Steven D. Johnson, to whom I am

grateful for his support, his interest in the progress of the project, and for his insightful

and critical comments. Professor Johnson constructed the camera gimbal currently in use.

I am happy to have had the help of Mr. Bryce Himebaugh, engineer and pilot

extraordinaire. Beside constructing the A/D converter and the servo circuit, Bryce has

shared his knowledge and skill through many helpful and enjoyable discussions.

I also wish to thank Professor Robert DeVoe of the IU School of Optometry. His

expertise on animal vision has helped me establish a broader context for some of the

problems encountered in robotic perception.

Finally, my thanks go to Laurie, my spouse, for her patience during this, the latest of my

academic stints.

 v

ABSTRACT

Danko Antolovic

DEVELOPMENT OF A REAL-TIME VISION SYSTEM

FOR AN AUTONOMOUS MODEL AIRPLANE

This thesis describes a real-time embedded vision system capable of tracking two-

dimensional objects in a relatively simple (uncluttered) scene, in live video. This vision

system is intended as a component of a robotic flight system, used to keep a model

airplane in a holding pattern above an object on the ground. The system uses a two-

pronged approach to object tracking, taking into account the motion of the scene and the

graphic “signature” of the object. The vision system consists of these main components:

a motion-detection and filtering ASIC, implemented on FPGAs, a scene-analysis program

running on a Motorola ColdFire processor, a dual-port RAM holding the image data, and

a digital camera on a motorized gimbal.

 __

 __

 __

 vi

CONTENTS

 Page

Acknowledgments iv

Abstract v

1. Introduction to the Skeyeball Vision Project 1

1.1 History of the vision system 1

1.2 Structure of this document 4

2. Functional Overview of the Vision System 8

2.1 Vision methodology 8

2.2 Biological parallels 11

3. Project Status 13

3.1 Capabilities and limitations 13

3.2 Measurements of the tracking speed 13

3.3 Summary remarks on the perception problem 16

4. Hardware Architecture 19

4.1 Architectural components 19

4.2 Biomorphic approach to architecture 20

5. Design Summary 24

5.1 XC4010 digital design 24

5.1.1 Front-end FPGA 24

5.1.2 Back-end FPGA 25

5.2 MCF5307 (ColdFire) code 26

 vii

6. NTSC Video Signal 28

6.1 Even field 28

6.2 Odd field 31

7. Formatting the Image Scan 33

7.1 Vertical formatting 34

7.2 Horizontal formatting 37

7.3 Auxiliary components 39

7.4 Signals 40

8. Digitizing and Thresholding 42

8.1 Black-and-white inversion 42

9. Setting the Threshold Automatically 43

9.1 Heuristic procedure 43

9.2 Threshold calculation on the back-end FPGA 45

9.2.1 Data path 45

9.2.2 Control 47

9.2.3 Signals 47

10. Digital Zoom 51

10.1 Zoom implementation on the FPGA 52

11. Round Robin Procedure for Data Sharing 55

11.1 Status byte 57

11.2 Round robin on the front-end FPGA 59

11.3 Round robin on the MCF5307 processor 63

12. Pixel read/write cycle 64

 viii

13. Frame Comparison and the Motion Vector 68

13.1 Methodology 68

13.2 Computation 69

13.3 Design components 69

13.4 Signals 70

14. Writing the Motion Vector to DPRAM 72

15. Parameters of the Front-End FPGA 75

16. IRQ5/Parallel Port Complex 80

16.1 IRQ5 handler 80

16.2 Duty-cycle generator 81

16.3 Servo motion feedback 81

16.4 Displacement vector 81

16.5 Saccadic blanking 82

16.6 IRQ/PP circuit on the back-end FPGA 83

17. Auxiliary Features 88

17.1 Serial communication with the MCF5307 88

17.2 Diagnostic data logging 88

17.3 Soft restart of the vision program 88

17.4 Radio controls 89

17.4.1 Radio decoder’s signals 90

18. Feature Recognition on the MCF5307 Processor 91

18.1 Main data structures in the MCF5307 code 93

19. Initialization of the SBC5307 Board 95

 ix

20. Characteristics of the Camera/Servo System 96

21. Supplementary Diagrams 98

References 101

 1

1. INTRODUCTION TO THE SKEYEBALL VISION PROJECT

Skeyeball is an ongoing project in the Department of Computer Science at Indiana

University. It is centered around a radio-controlled model airplane, which is being

converted into a semi-autonomous vehicle. Its primary perception is a computer vision

system, and it will also be equipped with attitude sensors, digital video and telemetry

downlink, and digital command uplink.

The objective is to give the airplane the autonomy to fly beyond the line of sight,

navigate, and find objects of interest by their visual appearance rather than by location.

The objective of the work described here was to build a vision system that follows an

object in a relatively simple (uncluttered) scene, in live video. This vision system will be

integrated into a larger robotic navigation system used to steer the airplane into holding

pattern above a selected feature on the ground.

1.1 History of the vision system

The Skeyeball vision was first envisioned as a subsystem implemented on a

microcontroller chip. Soon it became obvious that a fast (and not too costly)

implementation of the early processing stages was needed: vision became an ASIC-cum-

microprocessor system, and it is still such a system today.

 2

Picture 1: Aerial view of a target overflight

The development has gone through two distinct phases. The first phase yielded a strictly

laboratory prototype: the hardware was built from proto boards, and the processors were

a Xilinx XC4010 FPGA and a Motorola MC68332. Data were shared through an SRAM

on the common bus. This architecture required considerable data copying, and the 25

MHz MC68332 processor was rather too slow for the task. Nevertheless, the system was

capable of (slow) object tracking, moving a camera on a simple gimbal. Pictures 2 and 3

show the gimbal and the circuitry of the first phase.

We then obtained some realistic footage by flying the airplane with the immobile camera.

The laboratory prototype was capable of detecting target features in overflight sequences,

but tracking an object reliably at flight speeds was very problematic. Picture 1 shows a

 3

typical aerial view: the plane casts its shadow next to the bright square target (a brightly

colored blanket on the grass).

This first phase gave us a fairly good insight into the minimal requirements of such a

system. The second (current) phase is described in the rest of the thesis. Two major

architectural improvements are a faster microprocessor (90 MHz Motorola ColdFire) and

a dual-port RAM for shared data. Elimination of one very cumbersome proto board has

also made the ASIC (application-specific integrated circuit) implementation much easier.

The fundamental vision algorithm has not seen much change over time, except for the

addition of the threshold calculation in the second phase - the improvement has been the

increased speed. Much greater modifications had to be made to the data flow procedures,

to take advantage of the dual-port memory and better bus architecture.

Finally, in the second phase, the system was given the proper startup procedure and radio

controls, and the entire circuitry was built so as to be suitable for mounting inside the

airplane. Pictures 4-7 show the equipment built in the second phase: three circuit boards,

the new camera gimbal and the radio-controlled power switch. Picture 7 also shows the

radio and TV links connected to the vision system.

 4

1.2 Structure of this document

This document serves a dual purpose: it describes the constructed system as a solution to

an engineering/computational problem in broad terms; it also describes it at the level of

detail needed for modification and further development.

The system divides itself naturally into several subsystems. The first five sections of this

document provide an overview, and the remaining sections describe the subsystems

separately, with the level of detail increasing within each subsystem description. We have

tried to make it clear where the broad description ends and the detailed one begins:

typically, detailed descriptions are grouped into specialized subsections.

The ultimate level of detail - schematics, pinout lists and the source code - has been

relegated to electronic form. This document contains summary descriptions of those

materials, as well as passages referring directly to source details. Interested reader should

become familiar with the circuit schematics and the source code.

 5

Picture 2: Gimbal, phase 1 Picture 3: Circuit boards, phase 1 5

 6

Pictures 4,5: Circuit boards and gimbal, phase 2

 7

Pictures 4,5: Circuit boards and gimbal, phase 2

Pictures 6,7: Vision system, radio and TV links, power switch

 8

2. FUNCTIONAL OVERVIEW OF THE VISION SYSTEM

2.1 Vision methodology

As we stated in the introduction, the objective of this work was to build a vision system

that will follow an object in a relatively simple scene, in live video. We have used a two-

pronged approach to object tracking, taking into account the motion of the scene and the

graphic “signature” of the object.

This approach was motivated by the fact that object recognition is computationally

intensive, and impossible to accomplish on a frame-by-frame basis with the available

hardware. Nevertheless, the vision system must operate fast enough not to allow the

object to drift out of the field of vision. Picture 9 illustrates this point.

The objective is to recognize the small dark object as the target, obtain its offset from the

center of the vision field, and move the camera to bring the object to the center.

Obviously, the vision system must take a still frame and base its calculation on it. In the

meantime, the object will change location, perhaps even drift out of the field. By the time

it is calculated, the displacement vector may well be irrelevant.

To avoid this, the motion of the scene is tracked frame by frame, and the camera moves

to compensate for it. The center of the field moves along with the target, and the

displacement vector, when available, will still be meaningful. It should be said, however,

that the importance of the drift compensation decreased as we used a much faster

processor in the second phase of the project (see Section 1.1).

 9

Picture 8: Method overview

Tracking the
selected object

Tracking the overall
motion of the scene.
Shallow, pixel-specific
computation.

Recognizing the tracked
object within the scene.
Deep, object-specific
computation.

Frame-by-frame motion
vector

Object location vector,
as available

Object location overrides
the motion vector

Camera moves to
compensate for scene
motion, or to bring the
object in the center of
vision field.

 10

Object recognition requires several stages by which redundant and non-essential visual

information is parsed out, until we are left with a selection of well-defined objects, also

referred to as the features of the scene. In our case, the stages are: thresholding, edge

detection, segmentation into connected components, clean-up and signature/location

calculation.

Picture 9: Drift compensation

Picture 10 gives a functional overview of the vision system, where the progressively

thinner arrows signify the reduction in bulk of the visual information. This is the typical

“funnel” of the vision problem, leading from simple computations on large volume of

data to complex ones on a small volume, yielding a number or two as the result.*

* At 30 frames per second, 483 lines per frame, and 644 byte-sized pixels per line, raw camera output
amounts to 9.33 Mbytes /sec. The 644 samples per line of continuous signal conform to the 4:3 aspect ratio
prescribed by NTSC, and one byte per pixel is a realistic choice of color depth.

End calc.

Start calc.

 11

To identify a target object within the scene, we used the second moments about the

object’s principal axes of inertia as the “signature.” Second moments are invariant under

rotations and translations, fairly easy to calculate, and work well in simple scenes.

2.2 Biological parallels

It is not entirely surprising that certain functional analogies should develop between

robotic perception, such as this real-time vision system, and perception in animals. While

such analogies must not be taken too literally, they provide a glimpse at useful

generalizations to be made about perception problems, and we will sketch them out as

appropriate.

For example, camera motion based on feature recognition bears a similarity to the

(involuntary) saccadic motion of the eyes, the one-shot movement that brings a detail of

interest into the center of the vision field.1 Eyes’ saccades are fast, have large amplitude

(as large as the displacement of the object of interest), and they are ballistic movements,

i.e. they are not corrected along the way. Such a motion is compatible with a need for

speed over precision: if the object identification is computationally intensive, use the

result to full extent, and as fast as possible.

At the end of the process, the vision produces a few dozen bytes every couple of frames – actual rate
depends on the contents of the image.

 12

Picture 10: Functional overview

Servo duty cycles

FPGA’s

Servo duty cycles

Digital camera on
a 2-servo gimbal

Sync separator A/D converter
and sampler

Composite video

Thresholding

8-bit video

Motion detector

Sync. signals

Edge detector

B/W image

Segmentation,
removal of small features;
signature calculation

B/W edge trace

Target
recognition

Target
selection

Feature list

Vector selection
and servo driver

Displacement vector

Motion vector

MCF5307

Current
threshold calc.

Data sharing
(round robin) Servo

motion
Blanking

 13

3. PROJECT STATUS

3.1 Capabilities and limitations

We have tested the lab vision system by manually moving irregular shapes in a vision

field fairly free of random clutter, and also by means of a rotating table (Section 3.2

below).

The recognition system tracks its target reliably under translation and rotation, and in the

presence of several shapes introduced as interference. Excessive skew breaks off the

tracking, since the vision algorithm makes no provision for it, but an oblique view of ca.

20 degrees is still acceptable (Section 3.2). Likewise, occlusion is interpreted as a change

of shape, and the target is lost when partially occluded (e.g. by drifting beyond the edge

of the vision field). These limitations are obvious consequences of the vision

methodology described in Section 2.1 and Picture 10.

The tracking and motion detection work equally well with the zoom engaged. As

expected, zoom makes the system more reliable in tracking small targets, at the expense

of limiting the field of vision to the central one-ninth.

3.2 Measurements of the tracking speed

The Skeyeball airplane flies within certain ranges of speed and altitude; our fixed-

camera flights have ranged from 18 to 60 mph, with a typical speed of ca. 35 mph.

Likewise, target-overflight altitudes have been from 60 to 320 ft. Consequently, the line

of sight to the target feature changes direction relative to the body of the airplane, with

 14

certain angular velocity, and the vision system must be able to keep up with it. In the test

flights, the target passed through the vision field of the fixed camera in time intervals

ranging from 0.8 to 4.2 seconds, depending on the altitude and velocity of the airplane.

In order to obtain some quantitative measure of the vision’s tracking abilities, we have

constructed a test rig - a rotating table with features to track. The vision system locks

successfully onto the (largest) presented feature and the camera turns following the

rotation of the table. The rotation speed is gradually increased, until the tracking breaks

off or target acquisition becomes impossible. Picture 11 shows the experimental setup:

the camera gimbal, the rotating table with two features, and the TV screen showing the

camera’s view.

Picture 12 shows the geometry of the setup. The speed of the table’s motor was regulated

by applying variable voltage, and the angular speed of the table was measured as the time

needed for ten turns. A simple formula relates the table’s angular speed ω to the camera’s

sweeping speed, θ:

2

1 




+

=

r

d

ωθ

 15

Picture 11: Laboratory set-up for the tracking-speed measurements

Picture 12: Table speed vs. the camera’s sweep

d

r

θ

ω

 16

d is the elevation of the camera above the table, and r is the distance of the target feature

from the center of the table.

At d = 26.5 cm, and r = 10 cm, we found that the tracking was still reliable with the

camera sweeping an arc at the maximum speed of:

��PD[��� �����GHJUHHV�VHFRQG��

The camera’s field of vision is ca. 47 degrees high and ca. 60 degrees wide (see Section

20), which puts this vision system within the range of speeds required to keep up with the

overflight speeds that were quoted above.

Of course, tracking speed depends on the complexity of the scene. These measurements

were performed with two or three shapes, plus an intermittently visible edge of the table.

The scene observed in a real flight is richer in features, but at least for grassland and

trees, features tend to have low contrast and disappear below the threshold, which in turn

is set to single out high-contrast targets.

3.3 Summary remarks on the perception problem

Real-time perception can be envisioned as a funnel in which the data volume is reduced,

but the algorithmic complexity increases. Typically, there will be several stages with

fairly different breadth/depth ratio.

This is intrinsically not a problem amenable to single-architecture processing. Of course,

a speed tradeoff is in principle always possible, but engineering considerations such as

 17

power consumption and heat dissipation place a very real limit on that approach. We

believe that it is better to use several processor architectures, each suitable for a different

stage of the perception process. Appearance on the scene of configurable microchips

makes this goal both realistic and appealing.

Robotic perception is also a problem in embedded computing. Requirements imposed by

the small model airplane are a bit on the stringent side, and one can envision a much

more relaxed design for an assembly line or security system. However, the need for

perception is naturally the greatest in mobile robots. In such applications the vision

system will always have to be compact and autonomous, because it bestows autonomy on

a mobile device whose primary function is something other than carrying a vision system

around.

Architecture should follow function, starting at a fairly low level. For example, data

collection in this system is done with a digital camera which serializes the (initially)

parallel image input. This choice was dictated by good practical reasons, but the system

lost a great deal of processing power because of that serialization. Image input should

have been done in parallel, which in turn would have required a specialized device and a

much broader data path in the initial processing stage.

The segmentation stage is better suited for implementation on general-purpose processors

because of the smaller data volume and more "sequential" algorithms. An architectural

alternative may be possible here: segmentation could be attempted on a highly connected

 18

neural net circuit, trading off an exact algorithm for an approximate, but parallelizable,

search procedure. Neural net searches, on the other hand, are usually slow to converge

and may not improve the overall speed.

Animal vision cannot be separated from cognitive functions and motor coordination, and

this must be true for robotic vision as well. How much “intelligence” is built into high-

level processing of visual information depends on the ultimate objectives of Skeyeball:

for example, searching for a 3D shape in a complex panorama is a problem different from

that of hovering above a prominent feature on the ground.

In terms of steering and motor coordination, biological parallels are relevant. It is known

that inertial motion sensors play a large role in the gaze control of mobile animals [1].

Since the input from the motion sensors is simpler, and the processing presumably faster,

this sensory pathway provides the supporting motion information much faster than can be

obtained by visual processing. The airplane may very well benefit from an eventual

integration of its vision and attitude/motion sensors.

Visual perception is an ill-posed problem, and examples of functioning compromises may

be more valuable than exact results. Throughout this document, we point out similarities

with biological systems which strike us as interesting, although we do not pursue them in

depth for lack of expertise on the subject. A few pitfalls notwithstanding, we believe that

a synthesis of computational, physiological and engineering knowledge will be necessary

for the eventual development of reliable and versatile perception systems.

 19

4. HARDWARE ARCHITECTURE

4.1 Architectural components

Picture 13 is an overview of the architecture of the vision system. Picture 14 shows all

the signals pertaining to the flow of data from the camera, through the processors and

back to servo motors, but it omits some peripheral details.

Camera - The “eye” of the system is a small digital camera, producing grayscale (non-

color) NTSC video signal; its other characteristics are largely unknown. The camera is

mounted on a gimbal driven by two servo motors, with a 50-degree range of motion in

each direction, and is permanently focused on infinity.

Sync separator – the NTSC grayscale video signal contains three synchronization signals.

These are extracted by means of video sync separator LM1881 by National

Semiconductor, mounted on a prototyping board along with supporting circuitry.

A/D converter – we use Analog Devices’ AD876, which is a pipelined 10-bit converter. It

is mounted on the same proto board, with supporting circuitry for its reference voltages.

Sampling control, thresholding and threshold calculation, motion detection and zoom are

implemented as digital designs on a synchronous pair of Xilinx XC4010 FPGA's, running

at 33.3 MHz. Start-up configuration is done with two Atmel’s AT17LV config ROMs.

 20

The entire object recognition is implemented as code, running on a 90 MHz Motorola

MCF5307 ColdFire integrated microprocessor. We use a commercial evaluation board,

SBC5307, with 8 megabytes of DRAM, start-up flash ROM, expansion bus and

communication ports.

The two processors share image data through a 32K dual-port SRAM, CY7C007AV by

Cypress Semiconductor. Data access is implemented as a round-robin procedure, with the

objective of speeding up high-volume data transfer in the early stages of the vision

process.

The driver for the servo motors that move the camera is implemented on one of the two

FPGA’s. Motion feedback from the servos is generated by a PIC16F877 microprocessor,

on the basis of servos’ analog position signals.

4.2 Biomorphic approach to architecture

Nervous systems of animals utilize specialized hardware almost by definition. There is

much evidence that biological architecture follows function: for example, the retina, with

its layers of many specialized types of cells, is apparently a structure which has evolved

to deal with the initial stages of the vision funnel, from the cellular level up.

Architecture of this robotic system follows the same “biomorphic” principle as much as

possible. In order to increase overall speed and throughput, we have opted for ASICs and

dedicated data paths, even at the cost of under-utilizing some components. Multitasking

 21

and time-multiplexing are systematically avoided. Biological systems follow this

principle because of evolutionary constraints, but they solve the real-time perception

problem well, and the trade-offs they make appear to be the right ones.

 22

15
enable
sigs.

4

addr

7

4

2
16

8

8

15

8

XC4010
FPGA

back end

sampling clk.

digitized video

sync signals

LM1881

AD876
Camera

video
XC4010

FPGA
front end

CY7C007AV
DPRAM(32K)

Servos

Servo duty
cycles

B/W threshold

MCF5307

Serial
port

IRQ5

diagnostics
Parallel
port

8

duty cycles

servo motion

addr

data

data

video &
threshold

servo data

 PIC16F877

Servo position
(analog)

4

2

controls

enable
sigs.

Unified cache
(DRAM only)

DRAM(8M)

Picture 13: Architectural overview

 23

Gimbal
board

SWM

H. SYNC.

V. SYNC.

OE
BWE0

CS4
CS5

PP 15

PP 0-13

IRQ5

OE_L

R/W_L

SEM_L

CE_L

THR RDY

LATE CLK

EVEN/ODD

addr

14

8 8 15

15

8

XC4010 FPGA
back end

XC4010 FPGA
front end

Servo duty
cycles

B/W threshold

MCF5307

Serial
port

Parallel
port

addr

data

data

video &
threshold

servo highs

IRQTRG

Right
port

Left
port

CE_R

SEM_R

R/W_R

OE_R

BUSY_R

BUSY_L

M/S

 J9

A

8 15

D

 J8

ACK

RDY

J8

PP 14

IRQ5

CY7C007AV
DPRAM

Shared image

data
sampling
clk.

dig. video

LM1881
Sync.sep.

AD876
converter

video

8

RCA
jack

J4
PWM_1

PWM_2
J1

 J4 J5

PIC16F877

Servo motion
signal

2 2

from
camera

to/from servo motors

SBC5307 evaluation board FPGA board

Picture 14: Architectural
overview – detailed

p. 23

Feature tracking

 24

5. DESIGN SUMMARY

This section provides a top-level summary of the schematics and code modules which

comprise the functional configuration of the hardware described in Section 4.

5.1 XC4010 digital design

Configuration of the two FPGA processors is implemented with the Xilinx Foundation

development tool, either as schematics or as Abel HDL code.2 This list gives an

overview of the functionalities contained in the highest-level modules. Design

components and signals are described throughout the text and in the schematics

themselves.

5.1.1 Front-end FPGA

This design consists of seven top-level schematics and a number of macros. It utilizes

about 60% of the logical blocks (CLBs) of the XC4010 FPGA.

VISION_IN – contains the entry point for the video sync signals, vertical and horizontal

image framing and sampling, and the zoom.

ANALOG_IN – input from the A/D converter, normalization to black reference level,

black-and-white thresholding.

FIELD_END – placeholder schematic, invoking macros for vector output, run-time

parameters and the round robin.

 25

VISION_OUT – input/output to the DPRAM.

RR_ADDRESS – address counters for image buffers, round-robin address multiplexer.

MOTION_VECT – invokes the pixel read/write cycle, calculation of the motion vector.

CLOCKS – entry point for the external clock and reset signal, generation of internal

clocks.

5.1.2 Back-end FPGA

The design consists of five top-level schematics and a number of macros. It utilizes 96%

of the CLBs of the XC4010 FPGA.

DUTY_CYC_PP – IRQ5/parallel port communication, duty cycle generator, servo-

motion signal.

HIST_DP – data path for the threshold search in the histogram.

HIST_IO_RAM – histogram storage and management.

HIST_MINMAX – comparison logic for the threshold search, control ASM.

HIST_INTEGRAL – calculation of the histogram and features area.

 26

5.2 MCF5307 (ColdFire) code

Programs running on the MCF5307 ColdFire processor are written in C and ColdFire

assembler,3 and compiled/assembled with GNU “gcc” and “as.” This list groups the code

modules by system function; further description is provided in the text and in the source

comments.

 main.c - initialization and main loop for feature recognition

Configuration and startup:

 cache.s - cache initialization

 ConfigRegs.s - MCF5307 configuration, running from flash

 ConfigRegs2.s - MCF5307 configuration, running from DRAM

 crt0.s - setup for the C language

 globals.c - init. of global variables for functional code

 glue.c - heap setup and other book-keeping

 start.s - processor startup sequence

 vector.s - vector table

Feature recognition:

 ConnectedComponents.c - segmentation algorithm

 Diagnostics.c - vision system’s error reporting

 FeatureDetector.c - feature “signatures”

 FeaturePoints.c - maintenance of heap data structures

 Features.c - driver modules for acquisition and tracking

 27

 GraphDFS.c - depth-first graph traversal

 SimpleEdge.c - edge detector

Inter-process communication:

 CyclesPP.s - communication through the parallel port

 IRQHandler.s - handler for the Interrupt 5 (Process 1)

 roundRobin.s - round-robin DPRAM access

Servo motion:

 servo.s - translating displacements to servo duty cycles

Auxiliary:

 Datalog.c - interface library for the diagnostic data log

 DataOutput.c - diagnostic data output

 serial.c - communication library for the serial port(s)

 SerialHandler.s - UART interrupt handler

 IRQ7Handler.s - handler for the Interrupt 7 (soft restart)

 TermInput.c - stub for the terminal command input

 28

6. NTSC AND THE EVENTS SYNCHRONOUS WITH THE VIDEO SIGNAL

Frames of the NTSC television signal4 consist of two interleaved fields, marked by an

even/odd synchronization signal. At the beginning of each field there is a period of time

when the beam retraces back to the top of the image (at low intensity), a period marked

by the vertical synchronization signal. Also, horizontal retracing between video lines is

marked by the horizontal sync.5 Pictures 15 to 18 show some details of the operations

synchronous with the video signal.†

We sample the content of the video signal during the even field of each frame, and at

variable resolution – every third line in the absence of zooming, every line when the

zoom is engaged. Motion detection, which compares adjacent video frames, is performed

simultaneously with the sampling, between the pixels, as it were. An early fraction of the

odd field is used for communication between processes and for the threshold calculation.

6.1 Even field

Picture 15 shows the beginning of the even field, the synchronization signals, the A/D

sampling clock, and the composite analog video signal. Notice the long vertical blanking

period before the beginning of the actual image transmission.

† Pictures 15-18, 27, 28, 32, 35, 38 and 42 are screen shots from a Hewlett-Packard
16500B logic analyzer.

 29

Picture 15: The even field

The sampling clock operates in bursts, during the sampled portion of the even field (see

Pictures 15, 16, 19 and 26). First sample of each line is taken during the so-called back

porch of the horizontal sync, at the black reference intensity. We use the first sample as

the zero reference for the remaining grayscale values in that line: there is quite a bit of

intensity wobble in the camera signal, and this referencing makes the image steadier.

Picture 16 shows the video content of one line, the sampling clock and the thresholded

digital data obtained from the video signal. The values of one (black pixels) in the middle

of the line correspond to the dip in the video signal, which was in turn caused by a dark

object at the top of camera’s vision field.

Blanking period Image transmission

 30

Picture 16: Video signal carrying one line

Picture 17, at 1.7 MHz sampling rate, shows the delay between the sampling clock and

the return of digital data. The A/D converter is pipelined,6 introducing a delay of four

clock periods, which we account for by delaying the beginning of pixel read/write cycles.

The I/O at the end of the line extends past the sampling clock by the same amount.

The field AR is the pixel’s address in the DPRAM (right port), VID is the converter’s

output. First tick of the AD clock occurs at the end of back porch, and the resulting black

reference value is latched four ticks later, as 0x31 in the VID signal. HD is the

normalized grayscale value: notice that VID – HD = 0x31 past the black reference.

Back porch

 31

 DR is the thresholded signal, showing in this case a black object in the first line. OE_R,

WE_R and CE_R are the memory control signals of the DPRAMs right port.

Picture 17: A/D pipeline delay

Motion vector calculations and storage of the digital image are described in Section 12,

dealing with the pixel read/write cycle (p. 64).

6.2 Odd field

Picture 18 shows the beginning of the odd field and the DPRAM I/O associated with it.

At this time, parameters are updated, the motion vector has been calculated and is written

 32

out (notice the twelve dips in the WE signal), and Process 1 updates the status byte

(notice that the semaphore operation SEM_R brackets the status byte read and write).

IRQ5 is asserted, triggering the handler on MCF5307 and starting the parallel-port

communication (see Section 16, on IRQ/PP).

Picture 18: The odd field

Param Motion vector Status byte

 33

7. FORMATTING THE IMAGE SCAN

The design receives the sync signals already separated from the total video signal. It uses

the syncs to control the digitization and framing, to assign coordinates to pixels, and to

count total numbers of pixels and black pixels in the image. For convenience in

analyzing the VCR video signal, which does not have the even/odd sync, this sync signal

is being generated internally.

Deciding at which points to sample the video signal, i.e. generating a sampling clock for

the A/D converter, is the main functionality derived from the synchronization signals.

Vertical formatting means the selection of video lines, while the horizontal formatting

means a selection of discrete sampling points on the continuous video signal. The two

formats differ in details, and are made somewhat more complex by the presence of the

zoom (see Section 10, on the digital zoom). Also, in this system, sampling is limited to

the even field of the frame.

Picture 19 shows the formatting geometry and the signals involved, in the absence of

zooming. Zoom geometry is shown in Picture 26.

 34

Picture 19: Formatting and sampling

7.1 Vertical formatting

Briefly, the vertical formatting circuit (in the schematic VISION_IN) determines three

things:

- at which line in the even field to start sampling

- at what line density to scan (how many lines to skip between scans, if any)

- how many lines to scan (i.e. when to stop)

Black reference
sample; BP_END

Li
ne

 s
yn

c

Vertical blanking VERT_SYNC

Scanned lines
per field
(fixed)

DLY_END = 0 Samples per line
(fixed)

Scanned line density;
SCAN_LINE

Sampling rate 1.83 MHz;
signal 1_7_MHZ

Area of the video signal;
even field = digitized area

 35

7.1.1 Starting line

Obviously, sampling must be suppressed during the vertical retrace (vertical blanking),

and when the 3X zoom is engaged, over the top third of the image as well. This is

accomplished by extending the duration of the vertical sync to the first scanned line,

counting the requisite number of lines. A loadable counter and a small ASM, triggered

by the signal VSNC and clocked by LINE_SYNC, produce the signal VERT_SYNC,

which extends to the first scanned line.

Picture 20: VERT_SYNC ASM

7.1.2 Line density

Component LOAD_CNT2 is a counter which reloads an external value D_IN whenever it

runs out, then continues running to that value. It has a provision for the zero count, and

two term count signals, full period and half period. It runs while its TRG input is high.

This component is used to set the line density, by clocking it with LINE_SYNC.

W 0

 VERT_SYNC = 0

VSNC

 TC_LD

R 1

 TC_EN
VERT_SYNC = 1

TC_VS

0

0

1

 36

Picture 21: LOAD_CNT2 ASM

TRG

 LOAD_CNT
 CNT_EN

0

1

TRG

1

 TC

0

LOAD_CNT

1

0

W (A=0)

R (A=1)

 CNT_EN

 37

7.1.3 Line count

Component SCAN_LPF is a stopping counter which is reset asynchronously on the rising

edge of its TRG input. Its output GATE remains high for the duration of the count;

afterwards the counter sleeps until the next reset. This component is used to count the

scanned lines in the even field.

Picture 22: SCAN_LPF ASM

7.2 Horizontal formatting

The horizontal formatting circuit (also in VISION_IN) does these four things:

- decides at what pixel density to sample

- produces the sampling signal for the black reference at a fixed position in line

- decides where in the scanned line to start sampling pixels

- and how many pixels to sample per line (i.e. when to stop)

 TC

 (BA)

0

1

The asynchronous reset state

W1 00

SYNC_LD
CNT_EN

R 01

GATE
CNT_EN

W2 10

 38

7.2.1 Pixel density

An ASM and a loadable counter, identical to those in LOAD_CNT2, generate a clock

signal at the pixel sampling frequency, by reducing the system clock by a factor

dependent on the zoom.

7.2.2 Black reference sampling

Component LOAD_CNS is a counter which synchronously loads an external value D_IN,

runs to that value and stops. It has a provision for the zero count, and two term count

signals, full period and half period. It starts when its SYNC_LOAD input goes high.

This component is used to generate the black ref. sampling signal (BPE), by counting off

the length of the back porch in the intervals of the sampling clock.

7.2.3 Starting pixel

A second LOAD_CNS counts off the delay from BPE to the first pixel (zero, or one third

of the line for the 3X zoom). It raises the signal EN_SAMP, during which pixel sampling

is enabled.

7.2.4 Pixel count

An ordinary counter counts the sampled pixels in the line, and lowers the EN_SAMP

when the full number of pixels is reached.

 39

7.3 Auxiliary components

CLK_DELAY – this component creates bursts of its input clock CLK, for the duration of

the input CTRL, only delayed by a fixed number of clock periods. CLK is assumed to be

a continuous clock This component is used to create a clock burst delayed by four clock

periods, which is needed to latch the output from the A/D converter’s pipeline.

HCP (half-clock pulse) – passes to Q the first high half-period of CLK, following the

rising edge of its input D, and only that. It is used to convert the term-count signals

(which last a full clock period) into half-period pulses. The component is asynchronous,

and uses three FF’s (A,B and C) which mutually clear each other, according to this

timing diagram:

Picture 23: HCP timing diagram

 Q

 CLK

 D

 A

 B

 C

signifies a flip-flop in continuous clear

 40

7.4 Signals

Sync signals are active low, inverted and used as active high through the design. In order

to process still-frame output from VCRs, which lacks the odd/even signal, this signal is

generated internally.

LINE_SYNC - active high delimiter between video lines, typically 4.7 microseconds.

Suppressed during the odd field.

VSNC - active high delimiter between fields, typically 230 microseconds. Suppressed

during the odd field.

VERT_SYNC - derivative of VSNC. Extends from the beginning of VSNC to the first

sampled line in the field, covering vertical retrace and vertical zooming delay. Covers up

unused synchronization interval in LINE_SYNC.

SCAN_LINE – active high during each scanned line; reflects the vertical sampling

density (every line or every third line, set by the zoom level). Its derivative SCAN_L1 is

low during horizontal syncs. Both signals are active only during even fields.

EN_SAMP - when this signal is high, pixel sampling of the video line is permitted. This

signal is high in every n-th video line, as set by SCAN_LINE, and covers either the entire

line or the middle third of it, as set by the zoom level.

 41

1_7_MHZ - clock which controls the density of pixel sampling of the video lines. At 108

pixels per line, this clock runs at 1.83 MHz or 5.49 MHz, depending on the zoom level

(see clock-reducing counter).

BP_END - the single pulse indicating the end of back porch. Its delayed derivative,

LATE_BPE, is used to latch the black reference level. Unlike the rest of the sampling

signals, these are not affected by the zoom.

AD_CLK - triggering signal sent to the A/D converter. It comprises BP_END and the

1_7_MHZ line sampling burst covered by EN_SAMP.

LATE_CLK – line sampling burst, delayed by several periods (4) of the sampling clock,

to allow for pipeline delay in the A/D converter. This signal clocks the utilization of the

digitized signal.

DLY_END – single pulse indicating the end of horizontal zooming delay.

 42

8. DIGITIZING AND THRESHOLDING (schematic ANALOG_IN)

Video signal from the camera is digitized with the AD876 converter chip. The circuit

generates the sampling trigger for the converter, AD_CLK, and receives 8-bit grayscale

signal, VIDEO, in return.

Video signal is corrected for the intensity fluctuations by subtracting the black reference

value from it. The corrected video is thresholded to a strictly black and white signal,

C_BIT, which is both stored in the RAM and passed to frame comparators.

The corrected video is also passed to the back-end FPGA for histogram/threshold

calculation, during the even field. In the odd field, the signal THR_RDY from back-end

latches the calculated threshold into a data register, to be used in the next frame.

Presently, the sampling is done on 81 lines of every even field of the video signal, at 108

pixels per line. This yields a 108x81 b/w digitized image frame, at the correct NTSC

width-to-height ratio of 4:3.

8.1 Black-and-white inversion

Which side of the threshold is considered active, or a feature, is a matter of convention,

and can be set by a run-time parameter. The choice does not affect the edge detection,

although it affects the sensitivity of the motion detector somewhat.

 43

9. SETTING THE THRESHOLD AUTOMATICALLY

9.1 Heuristic procedure

This vision system operates on the assumption that the scene consists of relatively

luminous target feature(s) and relatively dark uninteresting background (or the reverse).

An early and important step is to set a black-and-white threshold that will separate the

features from the background, greatly reducing the complexity of the scene.

Setting this threshold manually is a delicate task. The selection is guided by the apparent

simplicity of the b/w image, and once set, the threshold usually works well for a range of

similar images. It would be difficult for the navigator to adjust the threshold in flight, and

small errors in the threshold can alter the result dramatically. Automatic thresholding

was implemented to make the vision more robust.

Finding the threshold follows this heuristic procedure:

a) Construct the grayscale histogram of the image. This is a straightforward pixel count,

accumulated in an array of 256 grayscale levels.

b) Find the highest maximum in the histogram and assume that it is located in the middle

of a large "hump" representing the background.

c) Find the lowest minimum on one side of the highest maximum (in this case, the

brighter side). Set the threshold to that grayscale level: the area opposite (brighter than)

the background hump represents features.

 44

d) Disregard threshold choices which define a very small feature area in the histogram,

since they typically have no visual significance.

e) If the search for a meaningful minimum fails, reverse the grayscale and look for

features on the opposite end of the histogram in the next video frame

f) Clear the histogram.

The assumption here is that the lowest minimum gives best separation of the histogram

into background and features of interest, and the success ultimately depends on the

grayscale separability of the image. Picture 24 gives an illustration of the procedure.

The grayscale version of the image is not currently used in the later vision stages; neither

is the value of the threshold. For that reason, the histogram/threshold process is

implemented in hardware, on the back-end XC4010 connected to the front-end vision

processor via a dedicated data bus. While the histogram/threshold algorithm is well

suited for implementation in code, running it on the ColdFire processor would have

complicated the data flow and slowed down the feature recognition.

 45

Picture 24: Sample histogram

9.2 Description of the threshold calculation on the back-end FPGA

9.2.1 Data path

The histogram is stored in a synchronous RAM component, SYNC_RAM, which is

contained in the schematic HIST_IO_RAM, along with elements which build (and clear)

the histogram. There are 256 word-sized locations in SYNC_RAM; the histogram is

maintained by presenting the grayscale value to the RAM as the address, and

incrementing the corresponding location by one (or setting it to zero).

During the histogram build (even field), histogram addresses are the video data coming

from the front-end FPGA through the bus HIST_IO. Depending on the nature of the

image, these grayscale values may be inverted by subtracting them from 255. During the

threshold calculation (odd field), HIST_ADDR is generated internally by a counter, and

histogram values appear on the bus HIST_OUT.

0 255background features

threshold

 46

The threshold calculation sweeps the histogram twice, by convention in downward

direction (255 to 0, white to black). The sweep of histogram addresses is generated by

the counter C(P); specific count values are latched in MIN_LOC and MAX_LOC

registers, as the locations of histogram extrema (schematic HIST_DP).

Minima and maxima are detected by comparing three adjacent histogram values, which

flow through the comparison registers PL, P and PR during the sweep. These are the

relevant comparisons, with black dots representing relative heights of the adjacent bars of

the histogram:

We use the left-biased comparisons. Current extremes are latched into registers

CUR_MIN and CUR_MAX. Since we are interested in the global extremes, locally

found extremal values must be compared with current largest/smallest values. All the

comparison logic is contained in the schematic HIST_MINMAX.

PL P PR

or (P > PR) • (P < PL) left-biased maximum

or (P > PL) • (P < PR) right-biased maximum

or (P < PL) • (P > PR) left-biased minimum

or (P < PR) • (P > PL) right-biased minimum

PL P PR

 47

Step d) from previous section is implemented in the schematic HIST_INTEGRAL.

Histogram integral and the features integral are accumulated in registered adders, and the

features integral is compared with an appropriate fraction of the total histogram integral.

Since the search for a meaningful minimum can fail, the success/failure is recorded in the

flip-flop MIN_FOUND and passed to the control ASM.

9.2.2 Control

Control ASM is implemented in the Abel code component HIST_ASM, shown in Picture

25 (two pages). The algorithm is by its nature sequential, and can be roughly divided into

these six steps: initialize the address and the comp registers, search for the maximum, re-

initialize, search for the minimum, notify front end or invert the grayscale, clear the

histogram. Individual states and logic are explained in the ASM chart.

9.2.3 Signals

CP_SYNC_LD – synchronously load the value 255 into the address counter C(P).

CLR_REG – synchronously clear registers PR, CUR_MAX, MAX_LOC.

PL_LD, P_LD, PR_LD – enable loading of comp registers PL, P and PR.

 48

CUR_MAX_LD, MAX_LOC_LD, CUR_MIN_LD, MIN_LOC_LD – enable loading of

maximum/minimum registers.

PR_ASYNC_LD – asynchronously set registers PR and CUR_MIN to “infinite” value.

THR_RDY – notify the front end that the threshold is ready.

INV_GRAY – set the grayscale inversion for the next frame.

CLR_WE – enable writing zeros into the histogram.

NORM_EN, FT_EN – enable the accumulation of histogram and feature integrals.

FFR – feature integral is meaningful relative to the entire histogram area.

 49

Picture 25: Control ASM for the histogram/threshold calculation, p.1

TRG

WAIT 000

 (CBA)

0

1

CP_SYNC_LD

IN11 001

CLR_REG
PL_LD

IN12 011

P_LD
PL_LD
NORM_EN

S1 010

NORM_EN

CP_TC

P_MAX &
NEW_MAX

CUR_MAX_LD
MAX_LOC_LD

PR_LD
P_LD
PL_LD

0

0

1

TO STATE
IN21

1

Keep the histogram location at
255 [C(P) = 255]

Start the threshold calculation

Clear registers CUR_MAX,
MAX_LOC, PR.
Load histogram data at location 255

PL -> P; DATA(255) -> PL
Completed initialization of PL, P,
PR for max. search.
Calculate the area of the
histogram.

Decrement hist. location until C(P) = 0,
i.e. count down until CP_TC = 1

Check if current value is a maximum
(P_MAX true), and if it is larger than
earlier maxima (NEW_MAX true).
Save current maximum value and its
histogram location.

Shift DATA[C(P)] -> PL -> P -> PR
simultaneously

Search for the maximum finished;
start the minimum search.

 50

IN21 110

PL_LD
PR_ASYNC_LD

IN22 111

P_LD
PL_LD
FT_EN

S2 101

FT_EN

CP_FIN

P_MIN &
NEW_MIN

CUR_MIN_LD
MIN_LOC_LD

PR_LD
P_LD
PL_LD

0

0

1

CP_SYNC_L

CLR 100

CLR_WE

CP_TC
0

FROM STATE
S1

TO STATE
WAIT

1

1

Reset histogram location to 255

Load histogram data at location 255
into PL. Initialize PR to infinity, clear
MIN_FOUND

PL -> P; DATA(254) -> PL
Completed initialization of PL, P, PR
for min. search.
Calculate the histogram area of the
features.

Decrement hist. location until
C(P) = MAX_LOC, i.e. CP_FIN = 1

Save current minimum
and its histogram location

Shift DATA[C(P)] -> PL -> P -> PR
simultaneously Reset histogram

location to 255.

Reset entire
histogram to
zero.

MIN_FOUND

0

1

INV_GRAY

CP_SYNC_LD

THR_RDY

Note: if a minimum was
found, signal that the
threshold is ready for the
front-end.

If the search failed, invert
the grayscale to try the
opposite search in the next
frame.

See note below

Picture 25, p.2

 51

10. DIGITAL ZOOM

It became very obvious during test flights that the human navigator and the vision

steering system need two different perspectives on the ground scene. At altitudes of 200-

300 ft, view through the wide-angle camera was adequate for general orientation, but the

target was impractically small for the vision system to handle. Using a narrow-field (f=16

mm) lens, or equivalently, flying close to the ground, produced good target images if and

when the target was ever located. The camera was fixed to the body of the plane, but

even with an independently movable camera the navigator would have difficulties

spotting areas of interest through the narrow field.

A camera with the zoom lens, or even two different cameras on the same gimbal, would

solve this difficulty at the cost of additional mechanical equipment. However, since the

vision system originally used only one sixth of the total image information (sampling

every third line of the even field), there was room for electronic, instead of optical,

zooming. Only the vision system sees the effect of the zoom, since the navigator

currently receives no digitized image feedback.

The digital zoom, as implemented, is a 3X zoom. It amounts to using the full line density

of the even field, sampling pixels at three times the "no zoom" rate. In order to maintain

the same data volume, only the central one-ninth of the video image is actually digitized

and passed to the vision system. A 6X zoom could be implemented by using the lines in

the odd field also, but some care would have to be exercised regarding the end-of-field

communication between processes.

 52

10.1 Zoom implementation on the FPGA

The zoom has been implemented on the front-end FPGA, as part of the overall digitizing

circuit. The zoom level is passed to the FPGA as a run-time parameter, and a selection is

made between two sets of five constants. These five constants define the resolution and

framing of the image.

In order to cope with high sampling frequency, the FPGA's clock rate is set to 33.3 MHz,

and the pixel read/write cycle was made as short and pipelined as feasible (see

description in Section 12). Picture 26 shows the zoom’s geometry and the signals

involved. Refer back to Section 7, Formatting the image scan, for details (p. 33).

Pictures 27 and 28 give an overview of the formatting, modified by the zoom. Picture 27

shows the sampling clock active in the central one-third of the lines of the even field.

Greater magnification shows the sampling clock also limited to the central one-third of

one line, with the black reference sample following the horizontal sync (Picture 28). The

non-zero data signal (DR) is due to a dark object in the camera’s field of vision.

When the zoom is engaged, rotations of the camera produce larger displacements in the

image. Therefore, the procedure that calculates servo duty cycles must also take the zoom

into account and turn the camera by smaller angles (see the program module Servo.s).

 53

Picture 26: Formatting and zoom

Black reference
sample; BP_END

Li
ne

 s
yn

c

Vertical blanking

Digitized
area

VERT_SYNC

Scanned lines
per field
(fixed)

DLY_END Samples per line
(fixed)

Scanned line
density;
SCAN_LINE

Sampling rate 5.49 MHz;
signal 1_7_MHZ

Area of the video signal
(even field)

 54

Picture 27: Vertical formatting (zoom)

Picture 28: Horizontal formatting (zoom)

ref. sampled

 55

11. ROUND ROBIN PROCEDURE FOR DATA SHARING

Presence of two processes (motion detection and feature recognition), running on

separate processors, makes heavy demands on the memory containing the image data. In

this system, access conflicts and bus logjams are avoided by using a dual-port SRAM

chip and a round-robin data access procedure.

The RAM chip used is CY7C007AV,7 an asynchronous 32K x 8 part by Cypress

Semiconductor. It has two address/data ports, which can read simultaneously from the

same memory location. The part arbitrates read/write access conflicts in hardware,

although that feature is not used here. The chip also has a bank of hardware semaphores,

with their own chip-select signals and arbitration logic. This feature was essential in

implementing the round robin procedure.8

In this scheme, the motion detection (process P1) reads from one memory area, say M1,

and writes into another (M2). It swaps these areas on each new video frame.

Feature recognition (P2) takes a few frames' time to complete one calculation. When P2

needs an update, it reads the P1's read frame, say M1 (P2 never writes). On the next

video frame, P1 reads M2 and writes to M3, then swaps M2 and M3 until P2 claims

whichever of these is P1's read frame at the moment (see Picture 29).

 56

Picture 29: Round robin

Picture 30: DPRAM’s memory buffers

Buffers M1-M3 are implemented as distinct memory areas on the dual-port memory

chip, and waiting is eliminated completely. P2 can start reading the P1's read frame

through its own bus, and the round-robin motion is performed by switching the starting

addresses of M1-M3 (see Picture 30). Read/write conflicts cannot occur on buffer

access, only double reads, which are permitted by the DPRAM.

M1 M2

M3

M1 M2

M3

M1 M2

M3

P1

P1 P1

P2

P2 P2

M1

P1 P2 M2

M3

Addr 1

Addr 2

Addr 3

 57

At any moment, each buffer is assigned to one of these three states: P1 writes, P1 reads,

P2 reads; any buffer can be in any of them, and no two buffers are ever the same. The

record of the current state is maintained in a dedicated location, the status byte, which is

updated by P1 and P2 on every turn of the round robin.

Since P1 and P2 are mutually asynchronous, genuine access conflicts will occur on the

status byte. These are avoided by protecting the status byte with the semaphore: only one

port can hold the semaphore (this is arbitrated by the memory chip), and that port updates

the status before releasing the semaphore. The other process stays in a polling loop until

access is granted, but the duration of the busy wait is no more than a one-byte I/O

operation, which is insignificant on either processor.

11.1 Status byte

The status byte, at the DPRAM address 0x08, contains three two-bit fields corresponding

to the buffer states P1W, P1R and P2R, and the value in each field is the number of the

buffer assigned to that state.

Maintenance of the status byte is very simple. On reset, its value is set to 0b00100100

(0x24), which means that:

- buffer zero is P1's write buffer

- buffer one is P1's read buffer

- buffer two is P2's read buffer

 0 0 P1R P1W 0x08 P2R

 58

Process 1 swaps the contents of fields P1W and P1R (interchanges its working buffers).

Process 2 swaps the contents of fields P1R and P2R (releases the buffer it just read and

takes up the reading buffer of the Process 1). Between updates, each process maintains a

private copy of the status information; otherwise, its working buffer(s) could change in

mid-cycle, with disagreeable results. Picture 31 shows the allowed swaps of the status

byte values.

Picture 31: Status byte values

0x24 0x21

0x12 0x06

0x09 0x18

P1

P1 P1

P2

P2 P2

 59

11.2 Round Robin on the front-end FPGA

The procedure by which the two processes share buffers of image data in the DPRAM

has already been described earlier. This section deals with the implementation of the

round robin on the FPGA side, as the component ROUND_ROBIN.

The private copy of the status byte resides in the register SBYTE_REG, which is read

from and written to the DPRAM address 0x08. Notice the peculiar ordering of input bus

leads, which accomplishes the swapping of fields P1R and P1W.

Current addresses for the three image buffers reside in three counters driven by the

LATE_CLK (see schematic RR_ADDRESS). Fields P1R and P1W are used to operate

the multiplexer which selects the current buffer for read or write operations.

The ASM (see picture 33) is straightforward: it polls the semaphore for access, reads and

writes the status byte, then releases the semaphore. Picture 34 shows the timing diagram.

SEM_IN – read value of the semaphore.

SEM_OUT – written value of the semaphore.

RR_SE – semaphore enable (the semaphore’s chip select).

SEM_WE, SEM_OE, SEM_D_TSB – control signals for the semaphore I/O.

RR_CE – chip enable for the regular RAM area.

SB_WE, SB_OE - control signals for the RAM I/O.

STAT_A_TSB – address TSB control for the entire round robin sequence.

 60

Picture 32: Semaphore-protected update of the status byte

 61

TRG

SEM_WE
RR_SE
SEM_OUT=0

WSEM 001

SEM_OE
RR_SE

RSEM 011

SEM_IN

WAIT 000

WR 111

SB_OE
RR_CE

RSB 101

SB_WE
RR_CE

WSB 100

WW 110

SEM_WE
RR_SE
SEM_OUT=1
DONE

QSEM 010

(CBA)

0

1

0

1

Start the update of the status byte

Tentatively write zero into the
semaphore

Read back the semaphore, to check if
the write succeeded

Poll semaphore until zero is read back

Pause one clock period to avoid a
glitch on the OE signal

Read the status byte

Write back the status byte with fields
P1R and P1W swapped

Pause one clock period to avoid a
gli tch on the WE signal

Release the semaphore by writing one
into it

Picture 33: Round-robin ASM

 62

 0 / 1 0 1 new SB valid SB 0 / 1 0

 SEM SB SEM

 WSEM RSEM WAIT - - WSEM RSEM - - WR RSB WSB WW QSEM WAIT

 TRG

 ADDR

 DATA

 SB_OE_

 SB_WE_

 RR_SE_

 RR_CE_

Pull the ASM out of wait

Data bus

Address bus

Address TSB

Semaphore enable & controls

RAM enable & controls

Semaphore value on write

Picture 34: Round-robin
timing

p. 62

 63

11.3 Round Robin on the MCF5307 processor

Implementation of the round robin procedure in code is straightforward: the flowchart is

almost identical to the ASM chart in Picture 33. The procedure is invoked once in each

pass of the feature recognition loop (see module main.c). It polls the semaphore for

access and reads the status byte when the access is granted; swaps the fields P1R and

P2R, updates the status byte and releases the semaphore. The new P2R (in the local copy

of the status byte!) is used to select the starting address of the read buffer, and that

address is made available to the vision code in the global variable IMAGE_FRAME.

The subroutine round_robin is contained in the program module RoundRobin.s, along

with the subroutine config_cs, which configures the left port (ColdFire side) of the

DPRAM.

Note on the DPRAM addresses on MCF5307: The hardware is configured so that the

ColdFire processor uses its chip select 4 for the semaphore bank of the DPRAM, and the

chip select 5 for the regular storage area. ColdFire chip selects are assigned blocks of

address space 2 MB in size;9 consequently, the base addresses for the semaphores and

the regular RAM become 0xFF800000 and 0xFFA00000 respectively, even though they

are contiguous in the DPRAM’s address space (see Picture 48 on p. 98). ColdFire

generates the proper address in the lower 15 bits, and the high bits serve only to activate

the right chip select.

 64

12. THE PIXEL READ/WRITE CYCLE

The pixel read/write cycle is central to the early vision processing: it stores the digitized

B/W image and performs the motion detector's frame comparison. This section describes

the cycle suitable for the 33.3 MHz system clock and the 5.4 MHz pixel sampling rate.

Events within the cycle are sequenced by the state machine PIXEL_CYCLE, which is

clocked by the system clock and runs one full sequence per period of the sampling clock.

The pixel cycle accesses two memory buffers, P1R and P1W; corresponding addresses of

the pixel in these two buffers are determined by the round robin algorithm. Pixel

calculation is triggered by the delayed sampling clock, LATE_CLK, which also

increments the buffer addresses.

The pixel's read address is calculated during the high time of the sampling clock, and the

value is stable on the signal M_BIT one clock period later; this is the pixel's value from

the previous frame. The thresholded signal, C_BIT, becomes available around the same

time. Both bits are presented to the comparator/accumulator (see Section 13.3, the

description of the FPGA design, p.70, for details) and the incremented value of the

motion vector is clocked in one period later.

The address is now switched to the pixel's write address, and on the rising edge of WE,

one clock after the address switch, the new pixel value is written to the write buffer. The

 65

entire read/write cycle takes five clock cycles: at 33.3 MHz, this is sufficiently fast to

complete all pixel processing at the sampling rate.

In addition, there are RAM-controlling signals in the cycle: output enable, write enable

and the three-state output buffer on the zero bit of the data line. All of these are active

low. Picture 37 shows the timing diagram of the read/write cycle, one column per state.

Picture 35 shows the read/write cycle driven by the 33.3 MHz clock, and running at the

full sampling rate of the 3X zoom.

Picture 35: Pixel cycle

 66

Picture 36: PIXEL_CYCLE ASM

WAIT 000

TRG

ZB_OE_
ZB_CS_

CALC 001

CALC_EN
ZB_OE_
ZB_CS_

SW 011

CALC_EN
ZB_WR_BUF
ZB_CS_

WR 111

ZB_WR_BUF
ZB_WE_
ZB_CS_

DONE 110

 (CBA)

1

0

 67

 WAIT CALC SW WR DONE WAIT

 TRG

 C-BIT

 ADDR

 M-BIT

 ZB_OE_

CALC_EN

ZB_WR_BUF

 ZB_WE_

ZB_TSB_

 ZB_CS_

 READ WRITE READ

Pull the ASM out of wait

Data bit from video stream

Data bit from memory

OE to read M-BIT

Enable the bit comparison

Open TSB to write C-BIT

WE to write C-BIT

CS for the pixel cycle I/O

0-access P1R;1-access P1W

Picture 37: Pixel cycle timing

 68

13. FRAME COMPARISON AND THE MOTION VECTOR

13.1 Methodology

Motion detection in this system is limited to linear displacements of the entire scene,

since we are interested only in detecting changes due to the movements of the plane (ego-

motion). Drift detection would perhaps be a more accurate term.

Formula used to calculate the motion vector is as follows:

∑
∑ ∆

=∆
j

ii

pix

pixx)(

This is essentially the formula for the dipole moment of the displacement, with the

previous frame’s pixels counting as the negative charge, and the current frame as

positive. Summations are over the entire image, pix is the pixel value (zero or one), ∆pix

is the difference between consecutive frames, and ix is the i-th pixel’s position. The

normalization constant in the denominator is simply the number of black pixels in the

image.

Motion detection in the vision of insects with composite eyes utilizes the principle of

consecutive activation/deactivation of receptors; direction of motion is determined by the

pattern of neural wiring between adjacent receptors (eyelets in the composite eye).10 11

Our detector has no pixel adjacency information, and cannot detect local motion within

the image. Instead, it obtains an integrated value of spatial distances between

activated/deactivated pixels. For simple drift motion, this is an adequate motion vector,

 69

with the caveat that the detector is sensitive to appearance of new objects in the

periphery, which it interprets as motion.

13.2 Computation

Pixels are processed in real time, and each pixel cycle contains the following steps:

- corresponding pixel from previous frame is read from the DPRAM buffer P1R;

- current and previous pixel are presented to two comparators, which calculate the

components of the motion vector;

- current pixel is stored in the DPRAM buffer P1W.

Each b/w pixel is stored in the zero-th bit of a byte, which makes addressing simpler and

faster. Higher bits of these bytes are not used.

13.3 Design components

line-in-frame counter - counts scanned video lines within one frame. Used as the vertical

(Y) coordinate of the current pixel.

pixel-in-line counter - counts the sampling clock (LATE_CLK), starting at the beginning

of each video line. Used as the horizontal (X) coordinate of the current pixel.

pixel-in-frame counter - counts the sampling clock (LATE_CLK), starting at the

beginning of a frame. It resets to the starting address of the frame in the SRAM, and its

value is used as the address of the SRAM byte that contains the current pixel.

 70

COMP_ACCUM - comparator/accumulator; this component adds/subtracts the value on

the input bus NUM[31:0] to/from the current value in its internal register. The current

value is always available on the output bus SUM[31:0]. The sign of the operation

depends on the values of CBIT and MEM, as follows:

CBIT MEM operation

0 0 none

1 0 add

0 1 sub

1 1 none

This operation is designed to capture the differences in pixels of adjacent frames. It is

enabled by the EN signal. ASYNC_CTRL resets the register value to zero

asynchronously, and no operations take place while ASYNC_CTRL is high.

black pixel counter - counts the sampling clock (LATE_CLK), starting at the beginning

of a frame, only if C_BIT is high on the rising edge of the clock. Count of black pixels in

one frame.

13.4 Signals

C_BIT – single-bit output of the digitizing/thresholding circuit ANALOG_IN. This is

the current pixel of the current frame.

 71

M_BIT - current pixel of the previous frame, retrieved from DPRAM and compared with

the C_BIT to detect motion.

CALC_EN – enable signal for the comparison; output of the PIXEL_CYCLE sequencing

ASM.

 72

14. WRITING THE MOTION VECTOR TO DPRAM

At the beginning of the odd field, vector components and the normalization constant are

written in DPRAM, at the address 0x0C, as three longwords in the big endian order.

Component VECT_OUT handles that procedure.

VECT_OUT has an address counter, a word counter and a byte-in-word counter. The

latter two counters operate the multiplexers which select the proper byte for output, and

the whole procedure consists of a straightforward double loop, corresponding to three

words and four bytes per word. The ASM chart is shown in Picture 39.

TRG – the trigger signal.

…_CNT_EN, …_CNT_LD – control signals for the counters

WE_OUT, TSB - DPRAM control signals

DONE – ending signal; signal to the next stage to proceed.

 73

Picture 38: Vector output

 74

Picture 39: VECT_OUT ASM

TRG

WAIT 00

WORD_CNT_EN
BYTE_CNT_LD

W 01

WE_OUT

B1 11

ADDR_CNT_EN
BYTE_CNT_EN

B2 10

BYTE_TC

WORD_TC

DONE

ADDR_CNT_EN
ADDR_CNT_LD
WORD_CNT_LD

Initialize the address and
word counters

Count the word, restart the
byte count

Put out a byte

Increment the byte’s address,
count the byte in the word

Finished with one word?

Finished with all the words?

Start the vector output

 (BA)

0

0

0

1

1

1

 75

15. PARAMETERS OF THE FRONT-END FPGA

The component PAR_IO1 handles the parameter logistic. Currently, there are three byte-

size parameters allocated to the front-end FPGA, starting at the DPRAM address 0x09:

- b/w threshold, (0 – 255)

- one byte of bitwise parameters:

o bit 0 - b/w inversion; zero stands for dark features, one for bright features

o bit 1 - zoom level: zero for no zoom, one for 3X zoom

- mailbox, written to DPRAM on each frame:

o bit 0 – zoom level indicator: zero for no zoom, one for 3X zoom

Parameters can be added as needed, by a fairly straightforward extension of this

component.

Default values of the parameters are contained in the circuit, as byte-size constants. On

the first high TRG after power-up, that is on the first odd field, default parameters are

written to DPRAM at consecutive addresses. On subsequent TRGs, each parameter’s

address is presented on the bus ADDR_OUT, and the corresponding parameter selection

signal goes high, for the duration of two clocks. This allows the current parameter values

to be read from DPRAM and latched into parameter registers in the circuit. The mailbox

parameter is written to DPRAM on each frame, to be read by the microprocessor.

The ColdFire program updates the parameters in the DPRAM during the IRQ5 handler,

and reads the mailbox. This mechanism allows for changes in the parameters to be made

 76

at run time, e.g. by operator commands, as well as for the FPGA to send signals to the

ColdFire. Currently, the mailbox is used to notify the ColdFire when the zoom command

has been radioed to the front-end FPGA.

Sequencer ASM for PAR_IO1 is shown in Picture 40. Its subcomponent, INIT_BOX,

raises PAR_INIT once after the power-up, and its ASM is shown in Picture 41.

TRG – the trigger signal; high once per frame, at the start of odd field

TRG_MACH – derivative trigger, produced by the initialization component INIT_BOX.

ADDR_CNT_EN, ADDR_CNT_LD – signals that control the address counter

PAR_INIT – high on first occurrence of the TRG; passes the default parameter values

onto the PAR_IO bus.

A_TSB, D_TSB, OE_OUT, WE_OUT – RAM control signals involved in parameter I/O

to and from the DPRAM.

PAR_SEL0, PAR_SEL1, PAR_SEL2 – parameter selectors; enable latching of the

corresponding parameter in the appropriate data register in the circuit.

PAR_IO – data bus which carries the parameters.

 77

TRG_MACH

WAIT 000

PAR_SEL0
A_TSB

W1 001

ADDR_CNT_EN
ADDR_CNT_LD

A_TSB

A1 011

PAR_SEL1
A_TSB

W2 010

A_TSB

A2 110

PAR_SEL2
WE
A_TSB
D_TSB

W3 111

A_TSB
D_TSB
DONE

A3 101

 (CBA)

0

1

 PAR_INIT
0

 WE, D_TSB

1

OE

 PAR_INIT
0

 D_TSB

1

OE

 PAR_INIT
0

 WE, D_TSB

1

OE

 PAR_INIT
0

 D_TSB

1

OE

TO STATE
WAIT

FROM
STATE A3

Picture 40: PAR_IO1 ASM

 78

Picture 41: INIT_BOX ASM

TRG

SLEEP 00

PAR_INIT_SET

WAKE 01

 TRIG_MACH

DONE

WAIT 10

NEXT 11

 PAR_INIT_CLR TRG

 (BA)

0

0

0

1

1

1

The reset state

Raise the PAR_INIT signal
once after the reset

Trigger one cycle of parameter
updates

Receive the signal that the
parameter update is finished

Lower the
PAR_INIT signal
and wait for next
TRG

Wait for the 1st TRG

 79

Picture 42: FPGA parameters

 80

16. THE IRQ5/PARALLEL PORT COMPLEX

A tightly coupled hardware/software subsystem, centered around the Interrupt 5 and the

parallel port of the MCF5307, coordinates the back-end data flow in the vision system.

Here we describe that subsystem.

16.1 IRQ5 handler

Early in the odd field, after the motion vector has been written to the DPRAM, back-end

FPGA generates an IRQ5, as a hardware signal to the MCF5307. When the processor

enters the IRQ5 handler, the interrupt is acknowledged by a handshake on the parallel

port, via two signals, ACK and RDY (bits 14 and 15).

The motion vector is read from DPRAM (it was written before the IRQ5, so there is no

access conflict), and it is normalized by dividing by the black pixel count. This operation

is performed here and not in the front-end FPGA, where the vector is generated, because

of long integer divisions.

Subject to some size restrictions, the vector is translated into increments in the servo

cycle's pulse widths, and these increments are used to update the current pulse widths.

Notice that the desired position of the camera is always known to the vision system (in

the form of calculated pulse widths), but that the actual position may not be known in real

time.

 81

16.2 Duty-cycle generator

The generator of the pulse modulated servo signals resides on the back-end FPGA. It

receives the pulse widths from the IRQ5 handler, and produces the corresponding

waveforms. Pulse widths are passed as 14-bit numbers on the parallel port, in a protocol

synchronized by the ACK/RDY signals.

16.3 Servo motion feedback

When the pulse width changes, the servos start moving into the new position. The servo

circuit, built around a PIC16F877 microprocessor, detects the pulse change and begins to

monitor the angle of the servo shaft, as an analog signal. It asserts the servo-move signal,

which remains high until the servos have stopped.

In this fashion, the instantaneous information about the camera position is decoupled

from the vision system. The vision merely issues the desired position, and receives

confirmation when that position is reached.

While the servo motors are moving to their new position, the IRQ5 is not being

generated, since the motion detector would counteract the displacement motion, leading

to unsteady movement of the camera.

16.4 Displacement vector

When it is not communicating with the IRQ5 handler, the duty-cycle generator waits for

the displacement vector transfer, initiated by the MCF5307. The displacement vector is

 82

being calculated by the Process 2, and when ready, it is transferred to the back-end FPGA

in the same way as the motion vector.

In this transfer sequence, however, the servo-motion signal (the response to the new

displacement vector) is passed back to the MCF5307, forcing the Process 2 into a busy

wait until the servos have stopped moving. This might appear wasteful at first, but it is

easy to see that Process 2 really must pause during the servo motion. The snapshot for

feature recognition must not be taken until the camera has moved to the new location.

Otherwise, the change in the image would not be registered, and the next cycle of feature

recognition would end up working with stale data.

16.5 Saccadic blanking

On the face of it, this suppression of image sampling during camera motion resembles the

phenomenon of saccadic blanking in human/animal vision.12 It is well known that the

sensitivity of the optic nerve is suppressed while a saccade (a rapid eye movement) is in

progress, and it is plausible that the purpose of this suppression is to prevent visual

confusion in biological systems as well.

Interestingly, there is some question whether the suppression of the optic nerve signal is

triggered by the blurring of retinal image or by a signal from tension sensors in the eye

muscles.13 In a robotic system it is much easier to detect servo motion than image blur,

and the choice of mechanism is obvious.

 83

16.6 Description of the IRQ/PP circuit on the back-end FPGA

The circuit design is contained in the schematic DUTY_CYC_PP. Control of the process

is carried out by the ASM component IRQ_PP1, described in the previous section (see

also ASM chart, Picture 43, and timing diagrams, Pictures 44 and 45).

The data path leads from the parallel port to two 14-bit registers, which hold the current

pulse-width values. These values are in turn available to the square-pulse generators.

The pulse generator component, CYCLE_GEN, contains a fixed-value counter, which

measures the 20 ms period of the servo’s duty cycle, and a loadable counter, which

measures the current pulse width. A simple two-state ASM switches between high and

low signal levels.

The servo-move signal passes through the component DIP_FILTER which eliminates the

short (less than a CLK cycle) dips in the signal (noise).

ACK, RDY – handshake signals on the parallel port:

ACK - pin 14, output

RDY - pin 15, input

IRQTRG – signal from the front-end FPGA to start the IRQ5 communication at the start

of odd field (see Picture 18).

 84

IRQ – hardware request for Interrupt 5 on ColdFire.

SERVO_MOVE – the cleaned-up servo motion signal; also sent out to pin 0 on the

parallel port.

PIN0_TSB – signal which reverses the sense of pin 0: output when high, input when low.

Pins 1-13 are all input pins

LATCH1, LATCH2 – register-enable signals to capture the pulse width values.

PWM1, PWM2 – generated servo duty waveforms.

 85

P2 0000

(DCBA)

RDY IRQTR G

LATCH

P3 1000
 ACK

RDY

LATCH

TSB 1100
 PIN0_TSB

RDY

SVS 1110

SM

SVM 1111

SM

P4 1101
 PIN0_TSB

ACK

RDY

IDLE2 1001

RDY

IRQ 0010

RDY

IDLE1 0110

RDY

P0 0111

RDY

LATCH

P1 0011
 ACK

RDY

LATCH

0

1 1

1

0

0

0

0

0

1

1

1

0

0

0

0

1

1

1

1

1

1

0

0

Comm. with
handler:

Acknowledge
handler and
terminate IRQ5
signal.

Latch pulse
widths into data
registers.

Comm with Proc.2:

Latch pulse widths
into data registers.

Poll the servo
motion signal until
it goes high, then
low again. Idle
during that time.

Picture 43:
IRQ_PP1 ASM

 IRQ5_
 ACK

 PIN0_TSB
 ACK

 PIN0_TSB
 ACK

 86

Corresponding
events on
MCF5307:

 IRQ IRQ IRQ IDLE1 IDLE1 P0 P0 P1 P1 P2

 IRQTRG

 IRQ5

 ACK

 RDY

 LATCH 1

 LATCH 2

Signal to start the IRQ5 exchange,
once per frame

IRQ5, throws ColdFire into the
handler routine

Acknowledgment signal generated
by the ASM

Latch the value on parallel port
into register 1

Latch the value on parallel port
into register 2

Poll for RDY = 1; C.F.
acknowledges IRQ5

Drop IRQ5,
poll RDY=0

Poll RDY=1,
latch value 1

Poll RDY=0,
latch value 2

While RDY=0, poll
IRQTRG=1; start

Enter IRQ5
handler

Assert RDY,
poll ACK=0

Deassert
RDY

Assert RDY,
value 1 to PP,
poll ACK=1

Deassert RDY,
value 2 to PP,
poll ACK=0

Exit handler

 P2 P2

Picture 44:
Communication with the
IRQ5 handler

 87

Corresponding
events on
MCF5307:

 P3 P3 P2 TSB TSB SVS SVS SVS SVM SVM P4 SVM P4 IDLE2 IDLE2 P2

 RDY

 ACK

 LATCH 1

 LATCH 2

PIN0_TSB

 SM

1) PIN0_TSB reverses the sense of pin 0 on the PP. When low, pin 0 is the input bit zero. When high, pin 0 outputs the SM (servo move) signal to C.F.

2) SM is the filtered and synchronized input from the camera servo board. When high, at least one servo motor is in motion.

While IRQTRG=0,
poll RDY=1,
latch value 1

Poll RDY=0,
latch value 2

Poll RDY=1;
servo motion

Poll SM=1, servos are
moving

Poll SM=0, end of servo
motion (usually a long interval)

Poll RDY=1 Poll RDY=0,
end transfer

Assert RDY,
poll ACK=0

Deassert RDY
Poll SM=1

Assert RDY,
value 1 to PP,
poll ACK=1

Deassert
RDY, value 2
to PP,
poll ACK=0

Assert RDY,
poll ACK=1

Poll SM=0 Deassert RDY,
exit routine

Notes:

Picture 45: Communication with Process 2

 88

17. AUXILIARY FEATURES

The system has several auxiliary features, which do not pertain to its main function, but

which are necessary for the deployment on a flying airplane.

17.1 Serial communication with the MCF5307

The ColdFire processor has two built-in UARTs, and the SBC5307 board has two serial

ports. One port is configured and active, and the other can be easily made so as well.

There is a small I/O utility library, which allows transmission of byte strings, and

transmission/reception of individual bytes.

17.2 Diagnostic data logging

Lower bank of the SBC5307's DRAM is organized as a four-megabyte circular buffer, to

be used for logging data during the system's operation. This buffer is initialized upon

board reset, so the system should not be casually reset (or turned off!) before the

diagnostic data are retrieved. A utility library allows for recording of bytes and strings of

bytes, and for dumping the buffer's contents to the serial port. Data should be captured to

a file using a terminal software. Note: press the “D” key to start the data dump to the

terminal.

17.3 Soft restart of the vision program

The non-maskable Interrupt 7 is used to implement a soft restart of the vision program on

the MCF5307. When IRQ7 is received (as a hardware signal), the corresponding handler

cleans up the cache and the parallel port, releases all heap allocations, resets the stack and

 89

returns to the main entry point. In this way, the vision algorithm can be pulled out of

some confused state without resetting the entire ColdFire board.

17.4 Radio controls

The system contains a decoder (implemented on an XC9572 CPLD) which accepts four

PWM signals from a radio receiver, and converts them into four logic signals. The

decoder uses the flight control's power supply and receives no input from the rest of the

system. Its purpose is to implement radio control over the following functions:

- power on/off: circuitry unrelated to manual controls of the plane can be shut off from

the ground in an emergency. An electronic switch is attached to the battery pack for that

purpose.

- reset: vision boards (and possibly other components, in the future) can be reset to a

clean state in case of irreparable malfunction.

- soft restart: the vision system can be brought back to its clean state without reset and the

consequent loss of diagnostic data. The FPGA part of the system is reset without harm.

The vision can also be held in restart continuously, in which case the camera's gaze is

fixed, the tracking is stopped and no data are logged. This is useful to keep the camera

from turning around aimlessly during takeoff and landing.

- zoom: the zoom of the vision system can be turned on or off by the operator.

 90

Picture 46: Radio decoder ASM (module CHANNEL)

17.4.1 Radio decoder’s signals in the schematic CHANNEL

CHNL – pulse-width modulated signal from the radio receiver.

LD – synchronous load signal for the 1.5 ms counter.

TCN – the counter’s expiration signal (term count).

ZERO/ONE – clear/set the logic output.

CHNL

WAIT 00

 (BA)

0

1

 LD

RUN 01

CHNL & TCN

CHNL ZERO

ONE

CHNL

WCH 11

0

0

0

1

1

1

Wait for the rise of the
radio signal

Load the 1.5 ms counter

If the counter expires
while signal is up, decode
to logic 1

If the signal drops while
counter is still running,
decode to logic 0

Wait for the signal to
drop before resetting for
the next cycle

 91

18. FEATURE RECOGNITION ON THE MCF5307 PROCESSOR

Functioning of the programs running on the ColdFire processor is best understood in

terms of the time periods involved. One component, centered around the motion vector,

runs in response to IRQ5, which is issued by the FPGA once per video frame. It has

already been described earlier, in Section 16 on the IRQ5/parallel port subsystem.

The other component, feature recognition, runs in the background relative to the

interrupts. It has no time requirements imposed on it by the input signal, only the general

consideration that faster processing leads to better tracking. Here we describe that

procedure.

The feature recognition consists of the following computations:

- the thresholded black-and-white image is scanned for edges. A pixel is defined as an

edge point if it is black in color, and has between 2 and 7 black neighbors. The output

of edge detection is another b/w image: edges are traced in black, and the redundant

interior of the features has been removed.

- segmentation: edge points are logically grouped into connected threads or loops, and

each connected component is assumed to represent a distinct feature (object) in the

scene. The output is a collection of arrays, each containing the edge coordinates of

one feature. We use a two-pass algorithm described by Lumia et al.14 (Algorithm 3

in the reference). For each line, adjacent points in that and the previous line are

 92

labeled as belonging to the same component, and the labeling equivalences are

resolved by means of a depth-first graph search. Here is a simple example:

At the pixel X, the equivalence of labels a and b will be recognized, and changes in

labeling carried out in the second (bottom up) pass. The procedure works well for

simple scenes, but the connectedness problem is combinatorial in nature, and the

equivalence search will eventually get bogged down in complex images.

- insignificantly small features are removed, and an invariant signature is calculated,

which is used for actual recognition of the object in the scene. We use the second

moments about the principal axes of inertia, which are invariant under rotation and

translation and relatively easy to obtain. The calculation involves one square root per

feature, but requires no adjacency information about the feature points. As a

preliminary, this step also calculates the feature’s center of mass.

- target recognition: signatures of the objects in the scene are compared to those of a

selected target feature. If the target is found, the displacement vector is the difference

between its center of mass and the centerpoint of the image. If the target is lost, an

error is returned.

 93

18.1 Main data structures in the MCF5307 code

Digitized Image:

IMAGE_FRAME starting address of the read buffer P2R on DPRAM

FRAME_WIDTH image dimensions in pixels

FRAME_HEIGHT

Motion/Displacement Vectors:

XS_VECT_ADDR DPRAM address of the vector components

X_MVECT, Y_MVECT local copy of the motion vector

NORM_MVECT normalization constant of the motion vector

X_DVECT, Y_DVECT the displacement vector

Semaphores:

These variables carry messages between (and within) the two main processes on the

MCF5307. They are integers, set to one and cleared to zero.

DISP_VECT_AVAIL feature recognition announces that a new

displacement vector is available

TARGET_AVAIL main process announces that a target feature has

been selected for tracking

Post-Segmentation Description of Image Features:

Each individual connected edge is stored in a structure of the type Fpoint. The structure

contains the point count, arrays of coordinate values, center of mass and the second

 94

moments. These structures are allocated dynamically as the features emerge from image

analysis.

compResult - a structure of the type ComponentList*, holds the overall result of

the image segmentation. It contains the feature count, and an array of pointers to

structures of type Fpoint, which contain the details of each feature.

targetFeature - the feature that is being tracked is stored in this Fpoint structure.

Fpoint and ComponentList data types are specified in the header file FeaturePoints.h

Parameters of the Servo Duty Cycles:

See the data section of the program module Servo.s for description and current values.

 95

19. INITIALIZATION OF THE SBC5307 BOARD

Pre-initialization conditions:

The entire code (init and functional, ca. 45K in size) resides in flash ROM, and the flash

ROM is associated with the global chip select. Vector table and initialization code are

linked to, and reside at, zero address; vector base register (VBR) points to zero.

Functional code is linked to the upper bank of DRAM, and resides in the flash, just above

the init code. See the linker script sbc5307vis.ld for the details of the linking procedure.

Initialization sequence:

- on reset exception, initial PC and SP are loaded from ROM, as longwords at addresses

zero and four. PC points to start-up code in ROM.

- ColdFire processor is configured: cache is disabled and turned off; SIM and upper bank

of DRAM are configured; chip selects are configured and the system is pulled out of the

global chip select

- contents of the flash ROM are copied to upper DRAM, VBR is set to the base of upper

DRAM

- program control jumps to DRAM starting point

- chip select zero is reconfigured to the top of address space (to get the flash memory out

of the way)

- lower bank of DRAM is configured

- control jumps to main and starts running functional code

 96

20. CHARACTERISTICS OF THE CAMERA/SERVO SYSTEM (GIMBAL)

A technical description of the camera is not available, but by measuring the screen image

of an object of known size, we have determined the following:

- the angle corresponding to a one-pixel displacement (the camera ratio) is 0.62

degrees/pixel, at our given image resolution,

- the camera’s field is ca. 60 degrees wide and ca. 47 degrees high.

The servo motors which move the camera have an angular motion range of ca. 90

degrees. Their duty cycle is 20 milliseconds, with the recommended high time ranging

from 1 to 2 ms. These duty cycles are generated by the back-end FPGA.

The camera’s platform is driven by a lever mechanism (see Picture 47), and its angular

motion is not entirely linear relative to the motion of the servos. However, within the

above high-time range the relationship is reasonably linear, and the platform covers an

angle of ca. 46 degrees in each coordinate direction.

In the current circuit design, the 1 to 2 ms range corresponds to the range of 2048 clock

ticks of high time, or 45.3 ticks per degree of platform motion. Combined with the above

camera ratio, this yields 28.3 ticks per one pixel of displacement, the constant of

proportionality between motion/displacement vectors and the motor movement.

 97

Picture 47: View of the camera gimbal

 98

Memory map of the ColdFire board FPGA/DPRAM memory map

0x00
ROM

0x400000
Code and data

Stack

Heap

0x800000

Config. 0x10000000

High ROM
0xFFE00000

0xFF800000

DPRAM 0xFFA00000

Semaphores

0x00

0x08

0x09

0x0C

0x20

0x2710

0x4E20

Semaphores

Status byte

FPGA parameters

Motion vectors

Buffer M0

Buffer M1

Buffer M2

Low
DRAM

High
DRAM

Picture 48: Memory maps

 99

CY7C007AV
DPRAM

XC4010 FPGA
back end

XC4010 FPGA
front end

J8 J9

J1

J2

J3 J4 J5

33.333 MHz

2.4576
MHz

XC9572

AD876AR

AT17LV
front

AT17LV
back

LM1881
 NMI

RESET

ZOOM

POWER

SW

LM317T
(3.3V)

LM317T

(5V)

AU2904

MAX622
5ACPA

RCA video
jack

RST

Picture 49: Layout of the FPGA board

J11

J10

J6

J7

 100

GND

5

3
3

3
3

2

4

4

4

Battery
pack

+12V

+7.5V
+12V
+7.5V

GND

Switch

Camera and
gimbal

TV
transmitter

Radio
receiver

Servo board

FPGA board SBC5307

+12V

+7.5V

+7.5V +7.5V

+7.5V

Radio

Video signal from the camera

Power on/off logic

Duty cycles and
servo positions

Duty cycles and
servo-move

Diagnostic serial
comm.

Picture 50: Airplane
system’s overview

 101

REFERENCES

1 R.W. Rodieck, “The First Steps in Seeing,” Sinauer, 1998.

2 David Van den Bout, “The Practical Xilinx Designer Lab Book, Version 1.5,”
Prentice-Hall, 1999.

3 “ColdFire Microprocessor Family Programmer’s Reference Manual,” Motorola, 1997
(MCF5200PRM/AD)

4 Leon W. Couch, “Digital and Analog Communication Systems,” third edition,
MacMillan, 1990, Chapter 5-9.

5 Data sheet for the video sync separator LM1881, National Semiconductor, February
1995.

6 Data sheet for the A/D converter AD876, Analog Devices, December 1997.

7 Data sheet for the CY7CnnnAV Dual-Port Static RAM, Cypress Semiconductor,
December 7, 2000.

8 “Understanding Asynchronous Dual-Port RAMs,” technical note, Cypress
Semiconductor, rev. November 7, 1997.

9 MCF5307 User’s Manual, Motorola, 1998 (MCF5307UM/AD)

10 Nicolas Franceschini, “Early Processing of Colour and Motion in a Mosaic Visual
System,” Neuroscience Research, Supplement 2, pp. S17-S49, Elsevier, 1985.

11 Jean-Marc Pichon, Christian Blanes, Nicolas Franceschini, “Visual Guidance of a
Mobile Robot,” SPIE, v.1195, 1989.

12 Brian A. Wandell, “Foundations of Vision,” Sinauer, 1995.

13 S. Yu and T.S. Lee, "What Do V1 Neurons Tell Us about Saccadic Suppression?,"
Journal of Neural Computing, 2000.

14 Ronald Lumia, Linda Shapiro, Oscar Zuniga, “A New Connected Components
Algorithm for Virtual Memory Computers,” Computer Vision, Graphics and Image
Processing, 22, 287-300 (1983).

 102

CURRICULUM VITAE

Danko Antolovic

Born in 1955, in Zagreb, Croatia

Education:

• B.S. Chemistry, University of Zagreb, Croatia (1978)

• M.S. Chemistry, Johns Hopkins University, Baltimore, MD (1981)

• Ph.D. Chemistry, Johns Hopkins University, Baltimore, MD (1983)

• M.S. Computer Science, Indiana University, Bloomington, IN (2001)

Work experience:

• 25 years in systems analysis and computer software development

Platforms: desktop, servers, mainframes and supercomputers

Applications: Robotics, Computer Vision, Industrial Programming, Solar and

Gas Combustion Modeling, Quantum Chemical Modeling, Molecular

Modeling

• 10 years in scientific research

• 5 years in teaching at the undergraduate level

• 5 years in running a software development business

