
Project Description

1 System design with behavior tables

This project investigates behavior tables as a representation for interactive
system design. Behavior tables are a consolidation of notations used tradi-
tionally in engineering, such as register transfer tables and decision tables.
Boolean function tables, look-up tables, and even fuse maps, might be con-
sidered simple instances. Thus, the tables themselves are hardly a new dis-
covery, although we are introducing novel syntactic features. What is new is
the level of supporting automation now available through graphics interface
packages. With this advancing technology, tabular representations are being
recognized as perspicuous in applications ranging from software requirements
specification to hardware description languages (HDLs).

Tables are a natural intermediary between linear text and schematic dia-
grams. With better graphic support, we are convinced that behavior tables
and their variants will assume a dominant role in system specification, ver-
ification, and synthesis. This project seeks to promote their adoption in
practice by building a flexible graphics facility, to be integrated with design
and verification tools.

We will build on results in design derivation, an algebraic formalism for
high-level design based on transformation and refinement. Section 1.1 is a
survey of these results. In case studies, we began using tables to visualize the
transformation process, especially in stages where control and architecture
are contemplated at the same time. We found the tables to be superior to
the underlying formal syntax, even though we intimately understand the for-
malism. Similar experiences are reported elsewhere, as described in Section
1.2. In particular, a tool for decision tables developed by Hoover, Chen, and
others, inspired this project. We could not express the motivation better
than they do [16]:

“. . . we must recognize that many of the methods used in industry are
semi-formal or formal. For these methods, we must develop mathe-
matical theory and software to help analyze specifications, and offer
advice about good methodology. We expect that such efforts will
give impressive near term results, stretch the imagination of formal
methodists, make formal methods accessible and beneficial to system
designers, and help clarify the long-term aims of formal methods re-
search.”

1

As a continuation of formal methods research, this project attacks the
widely acknowledged problem that transfer to practice is impeded by the
unpalatable notation of formal logic. The graphical user interface we develop
will be integrated with our design derivation system to create a tool for high-
assurance design. Provisions for animating analyses will be included, with
the goal of visualizing verification and synthesis processes. Finally, we will
formalize and implement more powerful transformations for higher levels of
design (See Section 1.5).

However, the contributions of this project are broader than just advancing
formal methods in system design. Behavior tables are better than conven-
tional HDLs for specifying many kinds of systems, whether or not they are
supported by a reasoning formalism. To promote their use in practice, we
will integrate the graphic front end with existing simulation and synthesis
tools and explore applications to codesign. Behavior tables offer a common
ground for timely synergy among formal methods research, CAD research
and development, and design practice. This central goal of this project is to
enable that synergy.

1.1 Results from prior NSF support

NSF support for this line of research began in 1987 with the grant Digi-
tal Design Derivation (MIP87-07067, 1987–89, $205,972). Within the last
five years, the work has continued under grants entitled Algebra for Digi-
tal Design Derivation (MIP89-21842, 1990–1992, $203,000) and Decompos-
ing digital-system specifications into interacting sequential processes (MIP92-
08745, 1993–1996, $142,000). This summary is restricted to accomplishments
since 1991. Cited publications are included in the list of references on page
16. Some of them can be accessed through the World Wide Web at URL
http://www.cs.indiana.edu/hmg/hmg.html.

Research contributions. We built a formal foundation for transforma-
tional design by adapting existing software oriented methodology to problems
in digital system design. Theoretical contributions include representations of
behavioral and structural specification in functional algebra [5], adaptation
of algebraic techniques to architectural refinement [42, 43, 41, 45], design
decomposition based on interface specification [34, 32, 33, 31], and formal-
ization of stream semantics [28]. We have done elementary studies comparing
how different formal systems address the same design [24].

2

We implemented our formalism in a tool called DDD [1, 2], which is
used interactively to transform higher descriptions of behavior to synthe-
sizable hardware descriptions. We did several case studies to demonstrate
the approach, and, in particular, to explore and illustrate the thesis that
heterogeneous reasoning is is more effective than a comprehensive logic in
design-critical applications [2, 28, 39, 29, 6, 5, 4, 3].

The subject of this proposal, behavior tables, emerged as a useful rep-
resentation for interactive design derivation. We began using these tables
informally to describe DDD [23] and later for the presentation of case stud-
ies. This prompted us to consider them more seriously as a formal design
notation, and we began exploring features that are appropriate in system
design applications [40, 37, 36, 35, 30].

The work with behavior tables has germinated an interest in the funda-
mental role of diagrams in formal mathematics [10, 20, 11].

Other research products. The DDD system is now under commercial
development, with SBIR funding through NASA, by Derivation Systems,
Inc. [7]. DSI is a start-up company established by graduates of this research
group.

Our case studies have resulted in several design artifacts. A formally
derived version of Hunt’s FM9001 microprocessor is realized in FPGA tech-
nology [2]. A language-specific computer for compiled Scheme, containing a
derived CPU, garbage collector, and allocator [6], is an ongoing case study
relating to contemporary programming methods research. A custom VLSI
realization of a fault-tolerant clock synchronization circuit has been verified
and tested [28, 29]. Miner has also constructed a PVS theory of streams, to
be published as part of his doctoral thesis in early 1997.

Educational activities and human resource development. Supported
participants include graduate assistants Zheng Zhu (PhD, 1992), Bhaskar
Bose (PhD, 1994, also a NASA Fellow), Kamlesh Rath (PhD, 1995), Mustafa
Esen Tuna (ABD), Shyamsundar Pullela (inactive), Jeanette Calvert-Coffren
(inactive), Lowell Vaughn (inactive), and John Zuckerman (active pre-candidate).
Unsupported participants included Kathryn Fisler (AT&T Fellow, PhD 1996)
Paul Miner (on educational leave from NASA, ABD), Bob Burger (NSF Fel-
low, ABD), William Hunt (IU/CS member of technical staff) and Ingo Cyliax
(IU/CS member of technical staff).

3

Graduate seminars on this research were conducted in 1992 and 1993.
Many of the CAD tools first acquired for this work have migrated to instruc-
tional laboratories. The FM9001 microprocessor mentioned earlier is used in
a continuing project to develop an instructional vehicle for a first undergrad-
uate course in computer organization. Two undergraduate students, Derek
Kern and Lisa Hatchett, have done independent-study projects developing
this system.

1.2 Other related research

The work on decision tables by Hoover, Chen, and others [17, 16] inspired
us to think more seriously about behavior tables as a natural representation
for design. Their Tablewise specification tool was developed for avionics
software development, but clearly applies to reactive systems in general. In
addition to a graphical front end, there are functions for verifying exclusivity
and completeness of decision tables and for performing structural analyses to
aid in obtaining these properties. Planned enhancements are described for
introducing behaviors and assertions.

All of this work seems to integrate with the proposed project quite well.
Future topics mentioned in [17] include connections to state-machine and
statechart based specification. This connection is the focus of the proposed
work, and we are also interested in safety-critical applications. Even if we can
only unify at the notational level, the combined functionality would enhance
practical interest in this research area.

Li and Gupta introduce timed decision tables as an HDL [27, 26]. Their
results on optimizations exploiting don’t care entries are directly applicable
to the proposed research. Their work is also evidence of the utility of a
tabular specification language for CAD tool development. Behavior tables
have also been proposed as an interchange format by Gajski, Dutt, et. al.
[12, 8]. We find it very encouraging that research in high-level synthesis and
formal methods finds common ground in these tabular representations; it
represents a new opportunity for synergy.

Both Tablewise and TDTs have provisions for assertions that are not yet
found in our behavior tables, but will be added. TDTs contain time measures
used for automatic optimization. In Tablewise the primary intent seems to
be the verification of invariant properties, but assertions could also be used
to state constraints and measures.

Leveson’s Requirements State Machine Language [25]. is based on Harel’s

4

state charts [14], but uses decision tables to specify hyper-edges. She echos
Hoover’s observation that decision tables are readily accepted and used by
practicing engineers.

In formal methods research, interest in specialized notation is rising. The
LAMBDA system uses a schematic editor to drive a proof assistant [9]. More
recently, the FORMAT project employs a timing diagram tool for specifica-
tion and verification tasks [38, 13]. Hunt’s formalization of an HDL semantics
in Nqthm [18], was related directly to the DDD algebra by Bose [3, 2]. The
proposed project establishes rigorous mathematical semantics for behavior
tables, laying the groundwork for a mechanized formalization. We do not
plan to construct such a formalization during the proposed period, however.

1.3 Syntax of behavior tables

The technicalities presented in this section are not essential to understanding
the more intuitive material in Section 1.4. The process semantics developed
here is at odds with that of the languages mentioned in Section 1.2, but
the differences are reconcilable. The variations are by no means peculiar to
tabular notation.

We think of behavior tables as denoting persistent, communicating pro-
cesses rather than procedures to be invoked. The substance of the difference
is that behavior tables cannot themselves be entries in other behavior tables.
Instead, they are composed by connecting their I/O ports.1 The underlying
communication model (globally synchronous, self-timed, etc.) creates still
more semantic veriations.

Behavior tables are arrays of terms over an amalgamated abstract type,
which gives ground syntax for constants and operations, and equational laws
for reasoning about them. Our examples will involve commonly understood
types, but a type system is intended to allow conceptual hierarchies, parame-
terization, and other structuring capabilities. A useful tool must have built-in
reasoning for concrete types, but must also have facilities for reasoning about
and between user specified type complexes.

The value of a term, t, is written [[t]]σ, where σ is an assignment or asso-
ciation of variables to values. The notion of term evaluation is the standard
one. A generic don’t-care constant, written as ‘\’, denotes an undetermined

1Converting invokations to interactions is central to our treatment to decomposition,
as illustrated in Section 1.4 and discussed in Section 1.5

5

value.
A finite extension of propositional logic is assumed—Hoover calls it finite

logic [16]. Arbitrary collections of enumerated values, or tokens, can be
formed. These finite sets come with a polymorphic selection operation. A
behavior table can be thought of as an iterated composition of selection
expressions.

Behavior tables are closed expressions whose terms contain variables from
three disjoint sets: I (inputs), S (data state), and C (combinational signals).
Fix these sets for the remainder of this section. We will write ISC for I∪S∪C
and SC for S∪C. We use the term ‘register’ for an element of S, but this is a
euphemism that should be interpreted very abstractly. There is no assmption
that these variables denote finite values. Although our example in Section
1.4 may not show it, behavior tables are intended for levels of description
much higher than register transfer. The form of a behavior table is

Inputs → Outputs

Conditions Registers and Signals
...

...
Guard Computation Step

...
...

Inputs is a list of input variables and Outputs is a set of terms over ISC; for
simplicity, assume O ⊆ ISC. Conditions is a set P of predicates over ISC,
that is, terms ranging over finite types, such as truth values, token sets, etc.
A guard is a set of constants indexed by the condition set P : g = {cp}p∈P .
We say g holds for an assignment σ to ISC when, for each p ∈ P , either
cp = \ or [[p]]σ = cp.

A decision table D = [P,G], consists of a condition set and a list of guards.
Following [17], we say a decision table is functional when G describes a proper
partitioning of the possible assignments to ISC. In other words, the guards
are “exclusive and exhaustive.” A computation step or action is a set of
terms, one for each register and signal: a = {tv}v∈SC . An action table is an
indexed set of actions.

A behavior table for I → O consists of a decision table, D, with guards
G = {g1, . . . gn}, and an action table indexed by G A = {tv,k | v ∈
SC and gk ∈ G}.

6

Synchronous-process semantics. A behavior table [D,A] for O ⊆ ISC
denotes a relation between input and output streams, a stream being an infi-
nite sequence of values. In our prior work we get a semantics by interpreting
a table as a recursive system of stream-defining equations [21]. More directly,
suppose we are given a set of initial values for the registers, {xs}s∈S and a
stream for each input variable in I. Construct a sequence of assignments,
〈σ0, σ1 . . .〉 for ISC as follows:

(a) σn(i) is given for all i ∈ I and all n.

(b) For each s ∈ S, σ0(s) = xs.

(c) σn+1(s) = [[ts,k]]σn if guard gk holds for σn.

(d) For each c ∈ C, σn(c) = [[tc,j]]σn if guard gk holds for σn.

The stream associated with each o ∈ O is 〈σ0(o), σ1(o), . . .〉. This semantic
relation is well defined if there are no circular dependencies among the com-
binational actions {tc,k | c ∈ C, gk ∈ G}. The relation is deterministic if
decision table D is functional.

This semantics is at odds with both TDTs and Tablewise (Section 1.2),
but the differences are reconcilable, and are by no means special to tabular
notations. We think of behavior tables as denoting persistent, communicat-
ing processes rather than procedures to be invoked. The substance of the
difference is that, under the semantics just defined, behavior tables cannot
themselves be entries in other behavior tables. Instead, they are composed
by connecting their I/O ports. However, coercing abstract operations to be-
havior tables is central to our approach to decomposition, as discussed in
Section 1.5

Changing from a synchronous to an asynchronous communication model
results in still another semantic variation. In fact, behavior tables will ac-
quire a range of semantics, depending on their applications, just as HDLs and
programming languages to. Their structure should help reduce the mathe-
matical bookkeeping that often obscures semantic definitions.

Example of a behavior table. The behavior table shown in Figure 1
describes a process that computes the Fibonacci function. The inputs are
control signal go and data input in; the outputs are control signal done*
and the data signal v. The ‘*’ is a notational convention for distinguishing
signals from registers. Three other representations in Figure 1 depict various
spects of the design. The labeled transition diagram is keyed to the table’s
rows; its labels consist of a condition under which the transition is taken, the

7

waitwait

work

31

4

2

(go, in) → (done*, v)

now go u=0 now done* u v w

1 wait true \ work false in 0 1

2 " false \ wait true \ \ \

3 work \ true wait true \ v \

4 " \ false work false u-1 w v+w

await go;
u, v, w := input(in), 0, 1;

while (u 6= 0) do

u, v, w := u− 1, w, v + w;
output(v);
assert done*

go

done

in

t0 t1

n

fib(n)out

Figure 1: A behavior table and related diagrams

outputs associated with the transition, and an update to the data state; the
same information as a row of the table. A textual expression of the algorithm
describes the computation of fib(n). A timing diagram shows the external
handshake protocol.

The behavior table in Figure 2 (page 12) describes the garbage collector
of a list processing computer [6]. It is more representative of the tables we
work with in our case studies. Its level of specification is more abstract, with
two of the registers of type memory. An implementation of this table was
realized in about 5,000 ACTEL FPGA cells, of which 1,500 4-input mux

elements compute the behavior. A behavior table for the same computer’s
CPU is about twice as big, at a level of description where garbage collection
is an abstract operation. A table closer the the register transfer level would
be more than ten times larger, but even at that scale the tables are useful
and would be much more so with better display automation.

8

1.4 Basic algebra of behavior tables

Let us explore some basic transformations, starting with the table in Figure
1. As in any derivation, the order of presentation is not necessarily the order
in which the transformations were conceived. In practice, backtracking is
involved as the architectural goals develop and concrete representations are
introduced. The final derivation is just a proof of the design.

The now and done* columns suggest a assignment of concrete values 0 to
work and 1 to wait. To reduce clutter, let us also assign 1 to true and 0 to
false.

(go, in) → (done*, v)

now go u=0 now done* u v w

1 1 \ done* ¬go in 0 1

" 0 \ " ¬go \ \ \

0 \ 1 " u=0 \ v \

" \ 0 " u=0 u-1 w v+w

With these changes, the first and second rows have become identical up to
don’t-cares, so we can merge them to obtain

(go, in) → (done*, v)

now go u=0 now done* u v w

1 \ \ done* ¬go in 0 1

0 \ 1 " u=0 \ v \

" \ 0 " u=0 u-1 w v+w

The predicate go has become irrelevant will be removed. We note in passing
that the last two rows could be merged by replacing the term for v with
select(u=0,v,w). Behavior tables seem especially useful for this kind of
interplay between control and computation—all the more so with the provi-
sions for indirection discussed in Section 1.5.

Next is a scheduling transformation on the third row that puts the arith-
metic terms u-1 and v+w into different computation steps. The goal is to
assign these operations to a single arithmetic component.

go, in → done*, v

now u=0 now done* u v w

1 \ done* ¬go in 0 1

0 1 " u=0 \ v \

0 0 2 false u-1 v w

2 \ done* u=0 u w v+w

9

The newly created control token, ‘2’, induces a type mismatch with boolean
done* in the now column. This is a problem to be resolved by underlying
type inference system. In addition to implicit coercions, this transformation’s
validity depends both on the fact that the sequence of two steps preserves
the original computation and the fact that the surrounding synchronization
protocol is preserved. Verifying the latter of these conditions is not auto-
matic, in general, but is reducible to a transformation in cases where the
synchronization context is known.

The next table is a simple example of system factorization, a decomposi-
tion technique that is central to the derivation formalism. As desired, terms
u-1 and v+w are allocated to a single combinational arithmetic component,
called ALU.

FIB: (go, in, ao) → (done*, v, ai1*, ai2*, aop*)

now u=0 now done* u v w aop* ai1* ai2*

1 \ done* ¬go in 0 1 \ \ \

0 1 " u=0 \ v \ \ \ \

0 0 2 false ao v w sub u 1

2 \ done* u=0 u w ao add v w

ALU:(aop,ai1,ai2) → ao*

aop ao*

add ai1+ai2

sub ai1-ai2

go in

v ao
ai2
ai1

aiop

ao
ai2
ai1

aiop

done*

FIB ALU

A system factorization encapsulates a set of subject terms in a new table
and generates residual interface signals [19]. Here, the interface signal aop
generates instruction tokens, sub and add, telling ALU which operation to
perform. The table manipulation tool keeps track of the connectivity.

To finish the example, we make some assignments to the don’t-care entries
whose ultimate effect is to isolate control. As a second example of system
factorization, we decompose into a control process generating an encoded
command signal, cmd, to the data path DP:

10

CTL: (go, u) → (done*, cmd*, aop*)

now u=0 now done* cmd* aop*

1 \ done* ¬go 0 \

0 1 " u=0 1 sub

0 0 2 false 1 sub

2 \ done* " 2 add

DP: (cmd, in, ao)

→ (u, v, ai1*, ai2*)

cmd u v w ai1* ai2*

0 in 0 1 \ \

1 ao v w v w

2 u w ao u 1

ALU:(aop,ai1,ai2) → ao*

aop ao*

add ai1+ai2

sub ai1-ai2

0

U V

1

W

1

VU W

ai1 ai2

in

cmd

aop

ALU

ao

Discussion of the example. The preceeding example was carried out by
hand, but all the transformations involved have already been mechanized
in the DDD transformation system. Currently, DDD manipulates recursive
systems of stream equations. The advantage of this approach has been that
the DDD forms are directly executable expressions in a general purpose mod-
eling language (Scheme, with extensions for streams). Thus, DDD system
is using a “shallow” semantic embedding, for which the tables are simply a
visual representation [22, 2, 37].

One problem with this approach is that as the visual representation be-
comes sophisticated, its relation to the underlying semantic expressions be-
comes correspondingly more difficult to sustain. It is a problem for the user,
who is interacting with the syntax, as well as for the tool implementor, who
is striving to support the user’s interpretation. A more direct internal rep-
resentation of behavior tables within DDD would be simpler and better.

In practice, system factorization is a goal-directed activity. Consider a
pipelined ALU that takes operands sequentially.

11

NOW R
Q

(
=

U
A
)

(
p
o
i
n
t
e
r
?

H
)

(
b
v
e
c
-
h
?

H
)

(
e
q
?

’
f
o
r
w
a
r
d

(
t
a
g

d
)
)

(
t
a
g

H
)

(
=

C
0
)

(
=

C
1
)

NOW OLD:mem NEW:mem H:cont D:cont C:addr U:cont A:addr AK

1 idle 1 \ \ \ \ \ \ \ driver OLD NEW H D C (rd OLD H) 0 0

2 " 0 \ \ \ \ \ \ \ idle OLD NEW H \ \ \ \ 1

3 driver \ 1 \ \ \ \ \ \ idle NEW OLD 0 D C U A 1

4 " \ 0 \ \ \ \ \ \ nextobj OLD NEW (rd NEW U) D C U A 0

5 nextobj \ \ 1 \ \ \ \ \ objtype OLD
(wt NEW U

(cell H A))
H (rd OLD H) C U A 0

6 " \ \ 0 1 \ \ \ \ driver OLD NEW H (rd OLD H) C

(+ U

(btow-u

(pr-pt H))

(cin 1))

A 0

7 " \ \ 0 0 \ \ \ \ driver OLD NEW H (rd OLD H) C
(+ U (const

0) (cin 1))
A 0

8 objtype \ \ \ \ 1 \ \ \ driver OLD
(wt NEW U

(cell H d))
H D C

(+ U (const

0) (cin 1))
A 0

9 " \ \ \ \ 0 fixed \ \ copy
(wt OLD

H (cell

forward A))

NEW

(cell H

(add1-ptr

(pr-pt H)))

D
(add1-2

(fixed-size

H))

U A 0

10 " \ \ \ \ 0 vec \ \ vec
(wt OLD

H (cell

forward A))

NEW

(cell H

(add1-ptr

(pr-pt H)))

D
(btow-c

(pr-pt d))
U A 0

11 " \ \ \ \ 0 bvec \ \ vec
(wt OLD

H (cell

forward A))

NEW

(cell H

(add1-ptr

(pr-pt H)))

D
(btow-c

(pr-pt d))
U A 0

12 vec \ \ \ \ \ \ 1 \ driver OLD
(wt NEW A

d)

(cell H

(add1-ptr

(pr-pt H)))

D C
(+ U (const

0) (cin 1))
(add1-a A) 0

13 " \ \ \ \ \ \ 1 \ copy OLD
(wt NEW A

d)

(cell H

(add1-ptr

(pr-pt H)))
(rd OLD H) C U (add1-a A) 0

14 copy \ \ \ \ \ \ \ 1 driver OLD
(wt NEW A

d)
H D C

(+ U (const

0) (cin 1))
(add1-a A) 0

15 " \ \ \ \ \ \ \ 0 copy OLD
(wt NEW A

d)

(cell H

(add1-ptr

(pr-pt H)))
(rd OLD H) (sub1 C) U (add1-a A) 0

Figure 2. Behavior Table for a Garbage Collector

12

ALU:(op,in) → (phase, out*)

phase op phase hold out*

1 \ 2 in \
2 add 1 in hold + in

2 sub 1 in hold - in

A still more general notion of factorization is needed to instantiate this se-
quential behavior in FIB. This topic is discussed further in the next section.

Generally, we are interested in levels of design at which human interaction
is used. In numerous case studies, we have found behavior tables to be a
valuable aid in forming tactical design goals and managing the abstractions
of higher levels of specification. However, we do not promote them as the sole
visual representation needed in interactive design. We used several graphic
representations of control, architecture, and interface in presenting of our
example. Behavior tables are a fusion of control and structural aspects,
not ideal for describing either, but highly useful in when the designer must
address both.

1.5 Research topics and project goals

The design derivation tools we have already developed are cost-effective in
cases requiring a high assurance of correctness. Our goal is to expand the
range of applicability by creating better reasoning tools, and in particular, a
better user interface . This project achieves that goal by supporting a more
concise notation and developing more robust transformations.

Even if formal reasoning is not involved, behavior tables are highly ef-
fective for describing reactive processes. While we do have specific research
objectives in formal methods, this project is designed to contribute to more
widespread adoption of tabular notation in hardware design, embedded de-
sign, codesign, and even software.

A behavior-table widget. We will implement a prototype graphical ob-
ject for manipulating behavior tables. Display software is needed to organize
the text arrays; perform windowing, abbreviation, and navigation; animate
analysis; and generate diagrams. We hope to conduct this work coopera-
tively, incorporating ideas and software from existing systems like Tablewise,

13

DTDs, and RSML [Section 1.2]. In return, we will develop display objects
with more general capabilities than our local needs require.

The first year of the proposed period will be exploratory. In preliminary
investigations we have looked at Motif, Tk/Tcl, Emacs, Latex and various
Scheme based libraries (UT’s MrEd, Stk, and, IU’s SDL). We have found
neither a consensus on graphics infrastructure, nor much satisfaction with
what is presently available. Many people are pinning their hopes on Java
as a possible common ground, and we intend to look at this prospect very
seriously.

By the end of the first year we will have established core requirements and
chosen a software infrastructure for implementing a behavior table display
tool. In the second year we will finish a prototype suitable for published
demonstrations of the ideas and ready for integration with other reasoning
and design tools.

Design derivation with behavior tables. DDD will be re-implemented
to operate directly on symbolic tabular representations. We will be able to
display formal derivations with behavior tables by the half-way point in the
project, and will go on to develop facilities to interact with DDD through
the graphical front end.

System design decomposition. System factorization in conjunction with
data abstraction is the basis of decomposition in our formalization. The
notion is more general than the examples show, having evolved over several
years of research [31, 33, 39, 45, 32, 44, 34, 19].

The ALU factorization in Section 1.4 is trivial factorization because it
doesn’t involve state. The CTL factorization did involve state but was still
trivial because the time granularity was fixed. Another step in complexity
was suggested by the pipelined ALU, shown in the discussion.

The behavior table on page 12 has registers OLD and NEW of type memory.
A simple factorization would decompose it into tables representing the data
path and two synchronous memory components [19].

However, suppose we intend to implement the memory abstraction with
a conventional DRAM, and so introduce sequential read, write, and refresh
protocols. The coordination may be subsumed in the timing discipline (e.g.
mutually interacting clocks, or self timed communication), involve a physical
interface (e.g. multiplexing the address and data signals), or be explicitly

14

instantiated in the collector’s behavior. A general notion of factorization
accommodating these choices, developed [33, 32], was done with behavior
tables in mind, and will be implemented during this project.

Indirection We have added syntax for bounded indirection which often
significantly reduces the size of behavior tables [35]. We believe this notation
to be novel for hardware description languages. If r is a signal or register,
then #r denotes a token referring to r. If register s contains such a token,
then @s denotes the entity to which s refers; that is,

@s ≡ case s of . . . #r: r. . .

In [40] we show how a behavior table describing a bus reduces to one line
when indirection is used to specify sources and destinations. In [39] we
explore control indirection. These features will be incorporated in both the
graphic table object and the underlying transformation system.

Abstraction. Providing a type system to support behavior table manipu-
lation is an important subproject. Unfortunately, we have yet to find every-
thing we need in a single existing type system. In addition to finite logic, we
want provisions for first-order inference with transparent coercions, a logical
notion of implementation support factorization, and an embedded theory of
streams. We have investigated some of these issues using PVS [28], but inte-
grating the graphics with this theorem prover would be too difficult. A more
likely path is to refine a locally developed type inference system for Scheme
[15].

In summary, this project will result in two disseminable software arti-
facts. The first is an autonomous graphic front end for manipulating behav-
ior tables, with provisions for animating analysis and synthesis algorithms
obtained from contemporary work.

Second, a descendent of the DDD transformation system will be inte-
grated with the GUI, and its type system enhanced to better support system
factorization.

As we have always done in the past, we will integrate these products with
CAD tools so that the realistic examples of the approch can be demonstrated
and meaningful case studies can be conducted.

15

D References cited

[1] Bhaskar Bose. DDD - a transformation system for digital design derivation.
Technical Report 331, Indiana University, Computer Science Department,
May 1991.

[2] Bhaskar Bose. DDD-FM9001: Derivation of a Verified Microprocessor. PhD
thesis, Computer Science Department, Indiana University, USA, 1994. Tech-
nical Report No. 456, 155 pages.

[3] Bhaskar Bose and Steven D. Johnson. DDD-FM9001: Derivation of a verified
microprocessor. In G. Milne and L. Pierre, editors, Proceedings of IFIP Con-
ference on Correct Hardware Design and Verification Methods, volume 683 of
LNCS, pages 191–202. Springer, 1993.

[4] Bhaskar Bose, Steven D. Johnson, and Shyam Pullela. Integrating boolean
verification with formal derivation. In D. Agnew, L. Claesen, and R. Cam-
posano, editors, Proceedings of IFIP Conference on Hardware Description
Languages and their Applications, pages 127–134. Elsevier, April 1993.

[5] Bhaskar Bose, M. Esen Tuna, and Steven D. Johnson. System factorization in
codesign: A case study of the use of formal gechniques to achieve hardware-
software decomposition. In Proceedings of the International Conference on
Computer Design, pages 458–461. IEEE, October 1993.

[6] Robert G. Burger. The scheme machine. Technical Report 413, Indiana
University, Computer Science Department, August 1994. 59 pages.

[7] Derivation Systems, Inc., Carlsbad, California. DRS: Derivational Reasoning
System, 1.2.1 edition, December 1995. Contact drs@derivation.com.

[8] Nikil D. Dutt and Daniel D. Gajski. Exel: A language for interactive behav-
ioral synthesis. In John A. Darringer and Franz J. Rammig, editors, Computer
Hardware Description Languages and their Applications, pages 3–18, 1989.

[9] Simon Finn, Michael P. Fourman, Micheal Francis, and Robert Harris. For-
mal system design: interactive synthesis based on computer-assisted formal
reasoning. In Claesen, editor, Formal VLSI Specification and Synthesis: VLSI
Design Methodds–I. North-Holland, 1989.

[10] Kathryn Fisler. A Unified Approach to Hardware Verification Through a Het-
erogenious Logic of Design Diagrams. PhD thesis, Computer Science Depart-
ment, Indiana University, USA, 1996.

16

[11] Kathryn Fisler and Steven D. Johnson. Integrating design and verification en-
vrionments through a logic supprting hardware diagrams. In ACV’95, pages
669–674, 1995. Proceedings of the ASP-DAC’95, CHDL’95, VLSI’95 Interna-
tional Conference, Chiba, Japan; IEEE Cat. No. 95TH8102.

[12] D. Gajski, N. Dutt, A. Wu, and S. Lin. High-level Synthesis: Introduction to
Chip and System Design. Kluwer Academic Publishers, 1992.

[13] Werner Grass, Cristian Grobe, Sefan Lenk, Wolf-Dieter Tiedemann, Car-
los Delgado Kloos, Andrés Maŕin, and Tomaás Robles. Transformation of
timing diagram specifications into VHDL code. In ACV’95, pages 643–650,
1995. Proceedings of the ASP-DAC’95, CHDL’95, VLSI’95 International Con-
ference, Chiba, Japan; IEEE Cat. No. 95TH8102.

[14] D. Harel. Statecharts: a visual formalism for complex systems. The Science
of Computer Programming, 8:231–274, 1987.

[15] Christopher T. Haynes. Infer: A statically-typed dialect of Scheme. Technical
Report 367, Indiana University Computer Science Department, March 1993.

[16] D. N. Hoover and Zewei Chen. Tbell: A mathematical tool for analyzing
decision tables. Contractor Report 195027, National Aeronautics and Space
Administration, Hampton VA 23681-0001, November 1994. Authors’ affilia-
tion: Odyssey Research Associates, Inc., Ithaca NY.

[17] D. N. Hoover, David Guaspari, and Polar Humenn. Applications of formal
methods to specification and safety of avionics software. Contractor Report
4723, National Aeronautics and Space Administration Langley Research Cen-
ter (NASA/LRC), Hampton VA 23681-0001, November 1994. Authors affilia-
tion: Odyssey Research Associates, Inc., Ithaca NY. Printed copies available
from NASA Center for AeroSpace Information, 800 Elkridge Landing Road,
Linthicum Heights MD 21090-2934.

[18] Warren A Hunt Jr. and Bishop C. Brock. The DUAL-EVAL hardware de-
scription language and its use in the formal specification and verification of
the FM9001 microprocessor. Formal Methods in System Design, 1997. To ap-
pear. Invited presentation at ACV’95, Chiba, Japan. Contact hunt@cli.com
for a draft copy.

[19] Steven D. Johnson. Manipulating logical organization with system factor-
izations. In Leeser and Brown, editors, Hardware Specification, Verification
and Synthesis: Mathematical Aspects, volume 408 of LNCS, pages 260–281.
Springer, 1989. Proceedings of Mathematical Sciences Institute Workshop,
Cornell University, 1989.

17

[20] Steven D. Johnson, Gerard Allwein, and K. Jon Barwise. Toward the rigorous
use of diagrams in reasoning about hardware. In Gerard Allwein and Jon
Barwise, editors, Logical Reasoning with Diagrams. Oxford University Press,
1996.

[21] Steven D. Johnson and B. Bose. A system for digital design derivation. Tech-
nical Report 289, Indiana University, Computer Science Department, Indiana
University, August 1989. Summary presented at the 1989 IEEE High Level
Synthesis Workshop, Kennebunkport, Maine.

[22] Steven D. Johnson, B. Bose, and C.D. Boyer. A tactical framework for digital
design. In Birtwistle and Subramanyam, editors, VLSI Specification, Verifi-
cation and Synthesis, pages 349–383. Kluwer, Boston, 1988.

[23] Steven D. Johnson and Bhaskar Bose. A system for mechanized digital design
derivation. In Subramanyam, editor, ACM/SIGDA International Workshop
on Formal Methods in VLSI Design, 1991. Meeting held in Miama, Florida in
1990; proceedings remain unpublished. A copy can be obtained through URL
http://www.cs.indiana.edu/hmg/hmg.html.

[24] Steven D. Johnson, Paul S. Miner, and Albert Camilleri. Studies of the single-
pulser in various reasoning systems. In Ramayya Kumar and Thomas Kropf,
editors, Theorem Provers in Circuit Design, volume 901 of LNCS, pages 209–
227. Springer, 1995. Proceedings of the Second International Conference,
TPCD’94.

[25] Nancy G. Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and Jon Damon
Reese. Requirements specifiation for process-control systems. IEEE Transac-
tions on Software Engineering, 20(9):684–707, September 1994.

[26] Jian Li. Timed decision tables: A behavioral model for embedded system
specification and optimization. Technical Report UIUCDCS-R-96-1971, Uni-
veristy of Illinois Department of Computer Science, 1304 West Springfield
Ave, Urbana IL 61801, 1996. Ph. D. dissertation.

[27] Jian Li and Rejash K. Gupta. HDL optimization using timed decision tables.
In 33rd ACM/IEEE Design Automation Conference, 1996.

[28] Paul S. Miner and Steven D. Johnson. Verification of an optimized fault-
tolerant clock synchronization circuit: A case study exploring the bound-
ary between formal reasoning systems. In Satnam Singh, Mary Sheeran,
and Geraint Jones, editors, Third Workshop on Designing Correct Circuits.
Springer, 1996.

18

[29] Paul S. Miner, Shyamsundar Pullela, and Steven D. Johnson. Interaction
of formal design systems in the development of a fault-tolerant clock syn-
chronization circuit. In 13th Symposium on Reliable Distributed Systems,
pages 128–137, 1994. Proceedings of SRDS 94 held at Dana Point, California,
October 1994.

[30] K. Rath, I. Celis, and R. M. Wehrmeister. RTBA: A generic bit-sliced bus
architecture for datapath synthesis. Technical Report 321, Department of
Computer Science, Indiana University, December 1990.

[31] Kamlesh Rath. Sequential System Decomposition. PhD thesis, Computer
Science Department, Indiana University, USA, 1995. Technical Report No.
457, 90 pages.

[32] Kamlesh Rath, Bhaskar Bose, and Steven D. Johnson. Derivation of a DRAM
memory interface by sequential decomposition. In Proceedings of the Interna-
tional Conference on Computer Design (ICCD), pages 438–441. IEEE, Octo-
ber 1993.

[33] Kamlesh Rath, Venkatesh Choppella, and Steven D. Johnson. Decomposi-
tion of sequential behavior using interface specification and complementation.
VLSI Design Journal, 3(3-4):347–358, 1995.

[34] Kamlesh Rath and Steven D. Johnson. Toward a basis for protocol specifica-
tion and process decomposition. In D. Agnew, L. Claesen, and R. Camposano,
editors, Proceedings of IFIP Conference on Hardware Description Languages
and their Applications, pages 157–174. Elsevier, April 1993.

[35] Kamlesh Rath, M. Esen Tuna, and Steven D. Johnson. Behavior tables: A
basis for system representation and transformational system synthesis. In
Proceedings of the International Conference on Computer Aided Design (IC-
CAD), pages 736–740. IEEE, November 1993.

[36] Kamlesh Rath, M. Esen Tuna, and Steven D. Johnson. An introduction to
behavior tables. Technical Report 392, Indiana University Computer Science
Department, December 1993.

[37] Kamlesh Rath, M. Esen Tuna, and Steven D. Johnson. Specification and
synthesis of bounded indirection. Technical Report 398, Indiana University,
Computer Science Department, February 1994.

[38] Rainer Schlör. A prover for VHDL-based hardware design. In ACV’95, pages
643–650, 1995. Proceedings of the ASP-DAC’95, CHDL’95, VLSI’95 Interna-
tional Conference, Chiba, Japan; IEEE Cat. No. 95TH8102.

19

[39] M. Esen Tuna, Steven D. Johnson, and Bob Burger. Continuations in
hardware-software codesign. In Proceedings of the International Conference
on Computer Design (ICCD), pages 264–269. IEEE, October 1994.

[40] M. Esen Tuna, Kamlesh Rath, and Steven D. Johnson. Specification and
synthesis of bounded indirection. In Proceedings of the Fifth Great Lakes
Symposium on VLSI, pages 86–89. IEEE, March 1995.

[41] Zheng Zhu. Structured Hardware Design Transformations. PhD thesis, Com-
puter Science Department, Indiana University, USA, 1992.

[42] Zheng Zhu and Steven D. Johnson. An algebraic framework for data abstrac-
tion in hardware description. In Jones and Sheeran, editors, Proceedings of
The Oxford Workshop on Designing Correct Circuits. Springer, 1990.

[43] Zheng Zhu and Steven D. Johnson. An example of interactive hardware trans-
formation. In Subramanyam, editor, Proceedings of ACM International Work-
shop on Formal Methods in VLSI Design, January 1991. available as Techical
Report 383, Computer Science Department, Indiana University.

[44] Zheng Zhu and Steven D. Johnson. Automatic synthesis of sequential synchro-
nizations. In D. Agnew, L. Claesen, and R. Camposano, editors, Proceedings
of IFIP Conference on Hardware Description Languages and their Applica-
tions, pages 285–301. Elsevier, April 1993.

[45] Zheng Zhu and Steven D. Johnson. Capturing synchronization specifications
for sequential compositions. In Proceedings of the 1994 IEEE International
Conference on Computer Design (ICCD 94), pages 117–121. IEEE, October
1994.

20

