
Quantum Programming

Juliana K. Vizzotto1 and Amr Sabry2

1 Federal University of Rio Grande do Sul

2 IU Computer Science Department

8 November 2004

Yale CS Colloquium Page 1

Quantum mechanics

It is a bizarre place . . . normal laws of physics break

Real Black Magic Calculus, Albert Einstein

If quantum mechanics hasn’t profoundly shocked you, you

haven’t understood it yet, Niels Bohr

I think I can safely say that nobody today understands

quantum mechanics, Richard Feynman

I don’t know what I am talking about, Amr Sabry

Yale CS Colloquium Page 2

The Basics

Yale CS Colloquium Page 3

Bits and qubits

• In a classical computer, a bit is either 0 or 1

• In a quantum computer, a qubit could be both 0 and 1 !

q1 = |0〉 = 587|0〉 same as a bit = 0

q2 = |1〉 = 1.2|1〉 same as a bit = 1

q2 = 1√
2
|0〉 + 1√

2
|1〉 = 8|0〉 + 8|1〉 huh?

q3 = (0.3 + 0.4i)|0〉 + (0.3− 0.4i)|1〉 HUH?

• As soon as you look at the qubit to find out its value, it becomes

either 0 or 1 and never changes after that.

Yale CS Colloquium Page 4

How can a qubit be both true and false?

Yale CS Colloquium Page 5

The double-slit experiment

• Even if we send one photon per second, there is still interference.

• At this rate, a photon cannot be interacting with other photons

to produce the interference pattern.

• Each photon must be interacting with itself.

• The math says that the photon must somehow go through both

slits at the same time:

1√
2
|go to left slit〉 + 1√

2
|go to right slit〉

Yale CS Colloquium Page 6

Can we try to find out which way the photon goes?

•We can try . . .

• Let’s put any measuring device of your choice by one of the slits.

• The interference disappears!

• The measurement changes the behavior of the photons.

• If you look at the quantum value:

1√
2
|go to left slit〉 + 1√

2
|go to right slit〉

you either get |go to left slit〉 or |go to right slit〉 and it never

changes after that.

Yale CS Colloquium Page 7

Maybe photons are weird. Who cares?

Yale CS Colloquium Page 8

Schrödinger’s cat

• After some time the state of one of the radioactive atoms is:
1√
2
|no decay〉 + 1√

2
|decay〉

• Because we are in the state 1√
2
|decay〉, the counter tube dis-

charges, turns the relay on, releases a hammer, shatters the flask
of acid, and kills the cat.

• Because we are in the state 1√
2
|no decay〉 the counter tube does

not discharge, does not turn the relay on, does not release a
hammer, does not shatter the flask of acid, and does not kill the
cat.

• Because we are in a superposition of the two states, the state of
the cat is:

1√
2
|alive〉 + 1√

2
|dead〉

Yale CS Colloquium Page 9

So . . .

if we accept that a small particle can be both true and false, we

must also accept that:

• a cat can be both dead and alive;

• our dinner is both here and not here;

• this door is both open and closed;

• etc;

And that’s the easy part of quantum mechanics!

Yale CS Colloquium Page 10

Entanglement

• Two particles A and B

• A is both true and false

• B is both true and false

• But they are entangled to always have

opposite values:

1√
2
|01〉 + 1√

2
|10〉

Yale CS Colloquium Page 11

The EPR experiment

• Put particle A on a spaceship going to the ∆-quadrant. Keep

particle B in Lindley Hall.

•When particle A reaches the Enterprise in 100 light-years, they

look at it and observe that it is, say false.

• Instantaneously, particle B becomes true.

• Einstein was not happy! This appears to violate special relativity

where nothing can propagate faster than light.

• Einstein called this “spooky action at a distance”

Yale CS Colloquium Page 12

Interpretations

All of what we discussed has been verified experimentally. But what
does it mean? How does it happen?

• Copenhagen: don’t ask; we can observe the world but it is beyond
comprehension

• Collapse: Particles act sometimes as waves but when you observe
them the wave collapses instantaneously

•Multiple universes: the universe splits all the time; the cat is
alive in one universe and dead in another

• Transactional: Messages send back from the future to the past;
if you see the cat is dead the message is sent back to the particle
to decay

•Many more ideas but just as strange or unhelpful

Yale CS Colloquium Page 13

Programming with this Crazy Model?

Yale CS Colloquium Page 14

Why?

• Understanding Nature

• Hardware is getting smaller and smaller that quantum effects will

become visible

• Efficiency: quantum computing can use massive parallelism and

entanglement to solve problems faster than any classical comput-

ing model.

The two most famous examples are Shor’s algorithm to

factor numbers quickly (breaks RSA) and Grover’s search

algorithm

Yale CS Colloquium Page 15

Deutsch’s algorithm

• There are four functions from booleans to booleans:

f1 F = F

f1 T = F

f2 F = T

f2 T = T

f3 F = F

f3 T = T

f4 F = T

f4 T = F

• Functions f1 and f2 are constant but f3 and f4 are balanced.

• Problem: given one of f1, f2, f3, or f4, is it constant or balanced?

• Classical solution λf.f T == f F requires two calls to f .

• Quantum solution requires one call to f with an argument that

is both true and false: 1√
2
|F 〉 + 1√

2
|T 〉

• Doing such tricks in loops changes the complexity of programs

Yale CS Colloquium Page 16

A Low-Level Programming Model

Yale CS Colloquium Page 17

Classical circuits vs. quantum circuits

• wires carry bits

wires carry qubits

• gates are boolean functions

gates are reversible boolean functions

• registers (memory) are used to build sequential functions

impossible to copy a qubit

• observing the value of a bit does not change anything

observing a qubit collapses its wave function and might affect

every other qubit

• it is always possible not to use a bit that we have access to

not using a qubit is the same as erasing it which is the same as

measuring it

Yale CS Colloquium Page 18

Examples of reversible gates

• Not (obviously reversible)

Not(T) = F

Not(F) = T

Not(|T 〉) = |F 〉
Not(|F 〉) = |T 〉

Not(α|F 〉 + β|T 〉) = β|F 〉 + α|T 〉)
• Hadamard H:

H(α|F 〉 + β|T 〉) = (α + β)|F 〉 + (α− β)|T 〉
For example: H(|F 〉 + |T 〉) = |F 〉
• If we look at the coefficients of α and β in the output, we can

specify Not and H using the matrices:
(

0 1
1 0

) (

1 1
1 −1

)

Yale CS Colloquium Page 19

How about non-reversible classical gates?

• The classic function:

And(F ,F) = F

And(F , T) = F

And(T , F) = F

And(T , T) = T

is not reversible

• Trick. Add garbage outputs to make it reversible:

And-r(F, F) = (F , (F ,F))
And-r(F, T) = (F , (F , T))
And-r(T , F) = (F , (T , F))
And-r(T , T) = (T , (T , T))

Yale CS Colloquium Page 20

Controlled gates

For any function f , a controlled-f gate (Uf):

• takes two inputs: a control qubit c and a value qubit v

• if the control qubit is false, the output is the same as the input

(c, v)

• if the control qubit is true, the output is (c, f v)

• Something like:

Uf(c, v) = if c then (c, f v) else (c, v)

• But the control qubit can be both false and true:

UNot(|F 〉 + |T 〉, |F 〉) = |FF 〉 + |TT 〉
In this case, we get an entangled pair of particles.

Yale CS Colloquium Page 21

Deutsch’s algorithm

measure

True

False

U_f

H

H

H

Tracing with the four possible functions, we find:

• If we are given a constant function the top output is |F 〉
• If we are given a balanced function the top output is |T 〉

with one application of f to a superposition of true and false.

Yale CS Colloquium Page 22

Is this a “good” programming model

• It is accurate and correct but it is low-level (at the level of gates)
and exposes physical properties of information.

•We usually think of information as abstract but it is in reality a
form of energy

•When erasing information (like formatting your hard disk), the
energy representing information must dissipate somehow (cf. First
law of thermodynamics which is a statement about the conser-
vation of energy)

• If the energy dissipates as entropy (heat) then the process is
irreversible

• Reversible functions preserve energy

We don’t want to think about information as a form of energy. We
want to have an abstract view of computers.

Yale CS Colloquium Page 23

A Compiler

Yale CS Colloquium Page 24

Hide some of the physical properties

The general problem is hard. Let’s focus on something simple:

• Quantum circuits are built from reversible functions

• High-level languages should not be restricted to reversible func-

tions

Yale CS Colloquium Page 25

Reversible functions in Scheme

(define f1-f

(lambda (x)

x))

(define f1-r

(lambda (x)

x))

(define f2-f

(lambda (x)

(+ x 4)))

(define f2-r

(lambda (y)

(- y 4)))

(define f3-f

(lambda (x)

5))

(define f3-r

(lambda (y)

???))

Yale CS Colloquium Page 26

Adding garbage output

(define f3-f

(lambda (x)

(cons 5 x)))

(define f3-r

(lambda (y)

(cdr y)))

x←→ f3-f

f3-r
←→ (cons 5 x)

• The compiler can do that. We can write any function we want
and the compiler can make it reversible by adding garbage out-
puts.

• You can run your program forward for a little, then rewind, then
continue, etc.

Yale CS Colloquium Page 27

Reversible Computing

• Reversible computing makes sense even in classical (non-quantum)

computing. (In principle you can use it to control how much en-

ergy your computer consumes)

• Similar to computation done by enzymes. For example, copy-

ing the genetic information in DNA genes to an RNA transcript

proceeds forwards and backwards. At equilibrium nothing gets

copied and no energy is spent. To drive the computation in one

way, the concentration of some phosphate reactants is varied.

• DNA computing, biocomputing, etc

• Fascinating subject but not for today . . .

Yale CS Colloquium Page 28

A High-Level Programming Model

Yale CS Colloquium Page 29

Many proposals

• qGCL [J. W. Sanders and P. Zuliani, 2000] Extended version of

Dijkstra’s guarded-command language including three high-level

quantum commands: initialization, evolution, and finalization

• QCL [B. Omer, 2001] Procedural quantum programming lan-

guage

• QPL [P. Selinger, 2003] Functional quantum programming lan-

guage based on the slogan “quantum data, classical control” con-

trol state is always classical

• QML [T. Altenkirch and J. Grattage, 2004] Functional quantum

language based on the slogan “quantum data, quantum control”

Yale CS Colloquium Page 30

QML Classical Core

• Basic expressions:

e : : = x | let x=e1 in e2

| (e1, e2) | let (x1, x2)=e in e′

| qTrue | qFalse | if e1 then e2 else e3

• Compiler can take care of making things reversible

• No dynamic data structures (no higher-order procedures, lists,

etc): the model of quantum computing usually assumes data

structures of fixed size; relaxing this constraint is possible but

quite a challenge

Yale CS Colloquium Page 31

QML extension I: superpositions

• Need a syntax for values that are both true and false

• {(α)e1 | (β)e2} are α and β are any expressions that evaluate to

complex numbers

• But e1 and e2 cannot be arbitrary expressions. They must be

orthogonal

• Examples:

{qTrue | qFalse}
{(qTrue, qTrue) | (qFalse, qFalse)}
{{qFalse | (−1)qTrue} | {qFalse | qTrue}}

• Non-example {qTrue | qTrue}

Yale CS Colloquium Page 32

QML extension II: quantum control operators

• Given a value v which corresponds to a superposition like:

{qTrue | qFalse}
• The expression qif v then e1 else e2 produces {e1 | e2} as fol-

lows: v is partly qTrue so the true-branch is evaluated; v is

partly qFalse so the false-branch is evaluated; the results of both

branches are combined using the appropriate probability ampli-

tudes.

• if v then e1 else e2 is very different from qif v then e1 else e2

• if v then e1 else e2 is a classical control operator which operates

on classical values: it first measures v to produces either true or

false, and then selects the appropriate branch.

Yale CS Colloquium Page 33

Examples

• Not(b) = qif b then qFalse else qTrue

• Z(b) = qif b then (−1)qTrue else qFalse

• Hadamard:

H(x) = qif x then {qFalse | (−1)qTrue} else {qFalse | qTrue}

• Controlled not:

UNot(p) = let (x, y)=p in qif x then (x,Not(y)) else (x, y)

Yale CS Colloquium Page 34

Ignoring values

•What if we had written:

F (p) = let (x, y)=p in x

•What happens to y ? In a classical language, y becomes garbage.

In a quantum language, this is a measurement.

• Ok so we measure y and throw away the result

• But x and y may be entangled; measuring y might change the

value of x

Yale CS Colloquium Page 35

Explicit control of variables

• F1(y) = let x=y in x is the identity function

• F2(y) = let x=y in let z=y in x measures z (and hence y)

• For example F1({qFalse | qTrue}) = ({qFalse | qTrue})
• But

F2({qFalse | qTrue}) = qFalse or

F2({qFalse | qTrue}) = qTrue with equal probability.

• Can I measure y without having to introduce a new name z and

then ignore it?

• New syntax for explicit measurement:

F2(y) = let x=y in x{y}

Yale CS Colloquium Page 36

Examples

• Swapping two (possibly entangled) quantum values:

S(p) = let (x, y)=p in (y{}, x{})

•Measure the two qubits, and then swap the resulting classical

values:

MS(p) = let (x, y)=p in (y{p}, x{p})

• Need a type system to keep track of all that.

Yale CS Colloquium Page 37

Type system

• Keep track of all variables in scope

• If variables x, y, and z are in scope and we want to type (e1, e2),

we can pass all three variables to both e1 and e2. If e1 only uses

x then y and z will be measured.

• Alternatively we could pass only x to e1 and pass y and z to

e2 and perhaps avoid measurements not explicitly given by the

programmer.

Yale CS Colloquium Page 38

Summary of programmer’s model

• Classical functional language (with no dynamic data-structures)

• Superpositions

• Quantum control operators

• Explicit measurement and specialized type system

Yale CS Colloquium Page 39

Example: Teleportation of qubit q

let epr={(qFalse, qFalse) | (qTrue, qTrue)} in

let (x, y)=epr in

let msg=alice(q, x) in

bob(msg, y)

• Alice and Bob each have one of two entangled qubits

• Alice has a qubit q that she wants to “teleport” to Bob

• Alice cannot measure q as this will destroy it

• Alice does a small computation using q and her half of the en-

tangled pair and then sends a message with classical bits to Bob

• Bob uses the message and his half of the entangled pair to recon-

stitute q which “apparates” at his site.

Yale CS Colloquium Page 40

Example: Teleportating qubit q

Code for Alice:

alice(q, x) =

let (a, b)=UNot(x, q) in

let c=H(a) in

(c{b,c}, b{b,c})

Code for Bob:

bob((m1,m2), y) =

if m1

then if m2 then Z(Not(y)) else Z(y)

else if m2 then Not(y) else y

Yale CS Colloquium Page 41

or using circuits

M1

M2

Qubit H .
.

{
X Z

EPR

Yale CS Colloquium Page 42

Conclusion

Yale CS Colloquium Page 43

We have a programming model.

Where is the computer?

• Quantum computers exist today!

• They can find the prime factors of a given number

• But only if the input number is less than fifteen

• The λ-calculus (the foundation of functional languages) was dis-

covered at least twenty years before electronic computers.

Yale CS Colloquium Page 44

