Decomposing and Testing
Your Project

Principles for Modular Decomposition
Design for Test
Incremental Construction and Testing

M Young, CS461 guest lecture

Goals of Decomposition

 Incremental development (risk reduction)
 Parallel (team) development
» Evolution

— (may or may not apply to CS461)

M Young, CS461 guest lecture

Incremental Development

e Must have a well-defined build order
— With frequent checkpoints — test as you go
— Chunks of 1 day to 1 week (less for a class project)
* Increments may be by adding modules or by
adding features

— Adding modules is generally better, but not always
practical

— Example: parts (a) and (b) of assignment

M Young, CS461 guest lecture

Team Development

* Minimize required communication
— Simple, precise interfaces, particularly between parts
written by different programmers
* Minimize integration difficulties

— Through precise, complete interface specifications

« especialy interfaces between people, or between different
phases of the project

— Through independent unit testing

* code should be tested before it is given to teammates
— By allowing frequent incremental builds

* the team should “build and smoke” on a regular basis

M Young, CS461 guest lecture

Information Hiding

is to hide a secret
— Hide what may change
» Example: Symbol table

— Secret: Is it a hash table, or
a search tree?

— Provide a compatible
interface HashedSymbolTable TreeSymbolTable

— Minimize and localize
dependence on specific

* The purpose of a module [

SymbolTable }
(abstract)

features . :
The Tree implementation may
have an additional “merge”
operation; its use should be
localized.
M Young, CS461 guest lecture 5

Modularizing Type Checking?

» The “syntax separate from interpretation”
decomposition has already been forced on you

— as well as combining type-checking with intermediate
code generation

 Parts (a) and (b) of assignment are not natural
modules

— we don’t get from (a) to (b) by adding modules, or
replacing some entirely

* The procedural breakdown transVar, transexp,
etc. is probably as good as you can do

M Young, CS461 guest lecture 6

Design for Test

 Build Plan: Testable subsystems
— Frequent incremental builds with observable behavior
— Scaffolding as part of the plan and product
— May be arranged to test riskiest parts first
» Checkable interfaces
— Particularly between individual developers and teams

— May involve adding or “moving” interfaces
» ex: text1/O of critical data structures
* ex: scriptable abstraction below GUI

M Young, CS461 guest lecture

Why Unit Test First?

Testability = Controllability + Observability +
Partitioning
» Controllability & Observability
— It is (usually) easier to drive an individual unit through
all interesting behaviors, and observe the results, at
the unit level
— Sometimes controllability and observability can be

achieved in context; is this the case for the type
checker? How?

* Partitioning

— It is much, much easier to diagnose and fix a fault in
the scope of a small unit that you just wrote

M Young, CS461 guest lecture

Automate the Testing

* Driver: Make re-running the tests mechanical
— At the least: capture your test cases for replay

* Oracle: Make judging the tests mechanical
— Especially for re-running old tests after each addition
to your type checker

— Approaches:

» Recording expected outputs; may require special options to
the application (observability)

 Assertions (structural invariants)

M Young, CS461 guest lecture

Choosing Test Cases

» Devise tests during design and coding, not after
» Devise specification-based tests, then
implementation-based tests

— Example: First tests of “symbol table,” then extra
tests for “hashed symbol table” (like what?)

— Every kind of expression, and each case
(INCLUDING ERRORS) for evaluation

» Emphasize boundary conditions

10
M Young, CS461 guest lecture

Example. ...

ExpTy transExp (Absyn.OpExpe){ .. Ideally, you should start
return new ExpTy(null, INT); analysis for testing (why?).
} _ .
else if (oper == Absyn.OpExpLT|[...){ ... Itis essential that each test
if (left_type.coerceTo(right_type) || ... { | case include expected
if(..){ ; } outcome.
else { Itis VERY helpful if you can
Stringmsg = ... run all tests, and check
}error(e.pos, msg); outcomes, mechanically.
}
else{... (etc)

11
M Young, CS461 guest lecture

Incremental Build & Test

* Establish a “build plan”

— An order, and schedule, for adding pieces to your
project
» Ordered so that each addition can be tested before moving to
the next

* Increments < 1 week

— Including regular build-and-smoke points with
integration of all parts

» Use version control system and/or process to
maintain recoverability
— Roll back from any disaster

12
M Young, CS461 guest lecture

