
Banking Service Example

Preliminaries

• Principals: {Alice,Bob}

• Web services:

w = http://bob.com/BankingService
owner(w) = Bob
class(w) = BankingServiceClass
proxy(w) = BankingServiceProxy

Source Program

class BankingServiceClass
Id CallerId
Num Balance (Num account)

if account=12345 then
if this.CallerId = Alice
then 100
else null

else null

class BankingServiceProxy
Id Id () Bob
Num Balance (Num account)

w:Balance(account)

Main call by Alice:

new BankingServiceProxy().Balance(12345)

Formal Semantics

Transitions

• Goal is to evaluate:

Alice[new BankingServiceProxy().Balance(12345)]

• Steps:

new BankingServiceProxy().Balance(12345)

→Alice w:Balance(12345)

→Alice Bob[new BankingServiceClass(Alice).Balance(12345)]

Transitions (ctd)

• New goal is to evaluate:

Bob[new BankingServiceClass(Alice).Balance(12345)]

• Steps:

new BankingServiceClass(Alice).Balance(12345)]
→Bob if 12345=12345 then

if new BankingServiceClass(Alice).CallerId
= Alice

then 100
else null

else null

→∗
Bob 100

Translation to the spi-calculus

Global Variables

• For each pair of principals, we have a key:

KAB from Alice to Bob
KBA from Bob to Alice

• For each web service w, a public channel w.

• For each class and method we have a public channel:

BSCB method Balance in BankingServiceClass
BSPI method Id in BankingServiceProxy
BSPB method Balance in BankingServiceProxy

Translation of main method

[[new BankingServiceProxy().Balance(12345)]]Alice
topk

= case [[new BankingServiceProxy()]]
is null(y);stop
is BankingServiceProxy(y);

out BSP_B(Alice ,
[[new BankingServiceProxy()]],
12345,
topk)

= out BSP_B(Alice ,
BankingServiceProxy(),
12345,
topk)

Translation of method Id in BankingServiceProxy

repeat inp BSP_I (z);
split z is (p, this, k);
out k Bob

Translation of method Balance in BankingServiceProxy

repeat inp BSP_B (z);
split z is (p, this, account, k);
new (k1,k2,t,np);
out w req(getnonce(),k1);
inp k1 res(getnonce(nq));
out w (p,[req(w,Balance(account),t,nq)]K_pB,np,k2);
inp k2 (q’,bdy);
decrypt bdy is [res(plain)]K_pB;
match plain is (w,rest);
split rest is (r,rest’);
match rest’ is (t,np’);
check np is np’;
case r is Balance(x); out k x

Translation of method Balance in BankingServiceClass

repeat inp BSC_B (z);
split z is (p, this, account, k);
if account=12345 then

new k’;
case this

is null(y);stop
is BankingServiceClass(y);

split y is (CallerId);
out k’ CallerId)

| inp k’ (x);
if x=Alice

then out k 100
else out k null()

else out k null()

Translation of the Web Service

repeat inp w (bdy,k1);
case bdy is req(getnonce());
new (nq);
out k1 (res(getnonce(nq)));
inp w (p’,cipher,np,k2);
if p’=Alice then
decrypt cipher is [req(plain)]K_AB;
match plain is (w,rest);
split rest is (a,t,nq’);
check nq is nq’;
new (k);

case a is Balance(account);
new (k’);

out BSC_B (Bob ,BankingServiceClass(Alice),
account,k’)

| inp k’ (r); out k Balance(r)
| inp k (r);

out k2 (Bob ,[res(w,r,t,np)]K_AB;

Simulation in the spi-calculus

Main method

out BSP_B(Alice ,
BankingServiceProxy(),
12345,
topk)

repeat inp BSP_B (z);
split z is (p, this, account, k);
new (k1,k2,t,np);
out w req(getnonce(),k1);
inp k1 res(getnonce(nq));
out w (p,[req(w,Balance(account),t,nq)]K_pB,np,k2);
inp k2 (q’,bdy);
decrypt bdy is [res(plain)]K_pB;
match plain is (w,rest);
split rest is (r,rest’);
match rest’ is (t,np’);
check np is np’;
case r is Balance(x); out k x

Evaluating in Proxy

out w req(getnonce(),k1);
inp k1 res(getnonce(nq));
out w (Alice ,[req(w,Balance(12345),t,nq)]K_AB,np,k2);
inp k2 (q’,bdy);
decrypt bdy is [res(plain)]K_AB;
match plain is (w,rest);
split rest is (r,rest’);
match rest’ is (t,np’);
check np is np’;
case r is Balance(x); out topk x

Proxy / Service Interaction

repeat inp w (bdy,k1);
case bdy is req(getnonce());
new (nq);
out k1 (res(getnonce(nq)));
inp w (p’,cipher,np,k2);
if p’=Alice then
decrypt cipher is [req(plain)]K_AB;
match plain is (w,rest);
split rest is (a,t,nq’);
check nq is nq’;
new (k);

case a is Balance(account);
new (k’);

out BSC_B (Bob ,BankingServiceClass(Alice),
account,k’)

| inp k’ (r); out k Balance(r)
| inp k (r);

out k2 (Bob ,[res(w,r,t,np)]K_AB;

out w (req(getnonce()),k1);
inp k1 res(getnonce(nq));
out w (Alice ,

[req(w,Balance(12345),t,nq)]K_AB,
np,
k2);

inp k2 (q’,bdy);
decrypt bdy is [res(plain)]K_AB;
match plain is (w,rest);
split rest is (r,rest’);
match rest’ is (t,np’);
check np is np’;
case r is Balance(x); out topk x

Proxy / Service Interaction

out k1 (res(getnonce(nq)));
inp w (p’,cipher,np,k2);
if p’=Alice then
decrypt cipher is [req(plain)]K_AB;
match plain is (w,rest);
split rest is (a,t,nq’);
check nq is nq’;
new (k);

case a is Balance(account);
new (k’);

out BSC_B (Bob ,BankingServiceClass(Alice),
account,k’)

| inp k’ (r); out k Balance(r)
| inp k (r);

out k2 (Bob ,[res(w,r,t,np)]K_AB;

inp k1 res(getnonce(nq));
out w (Alice ,

[req(w,Balance(12345),t,nq)]K_AB,
np,
k2);

inp k2 (q’,bdy);
decrypt bdy is [res(plain)]K_AB;
match plain is (w,rest);
split rest is (r,rest’);
match rest’ is (t,np’);
check np is np’;
case r is Balance(x); out topk x

Proxy / Service Interaction

inp w (p’,cipher,np,k2);
if p’=Alice then
decrypt cipher is [req(plain)]K_AB;
match plain is (w,rest);
split rest is (a,t,nq’);
check nq is nq’;
new (k);

case a is Balance(account);
new (k’);

out BSC_B (Bob ,BankingServiceClass(Alice),
account,k’)

| inp k’ (r); out k Balance(r)
| inp k (r);

out k2 (Bob ,[res(w,r,t,np)]K_AB;

out w (Alice ,
[req(w,Balance(12345),t,nq)]K_AB,
np,
k2);

inp k2 (q’,bdy);
decrypt bdy is [res(plain)]K_AB;
match plain is (w,rest);
split rest is (r,rest’);
match rest’ is (t,np’);
check np is np’;
case r is Balance(x); out topk x

Proxy / Service Interaction

decrypt
[req(w,Balance(12345),t,nq)]K_AB
is [req(plain)]K_AB;

match plain is (w,rest);
split rest is (a,t,nq’);
check nq is nq’;
new (k);

case a is Balance(account);
new (k’);

out BSC_B (Bob ,BankingServiceClass(Alice),
account,k’)

| inp k’ (r); out k Balance(r)
| inp k (r);

out k2 (Bob ,[res(w,r,t,np)]K_AB;

inp k2 (q’,bdy);
decrypt bdy is [res(plain)]K_AB;
match plain is (w,rest);
split rest is (r,rest’);
match rest’ is (t,np’);
check np is np’;
case r is Balance(x); out topk x

Proxy / Service Interaction

match (w,Balance(12345),t,nq)
is (w,rest);

split rest is (a,t,nq’);
check nq is nq’;
new (k);

case a is Balance(account);
new (k’);

out BSC_B (Bob ,BankingServiceClass(Alice),
account,k’)

| inp k’ (r); out k Balance(r)
| inp k (r);

out k2 (Bob ,[res(w,r,t,np)]K_AB;

inp k2 (q’,bdy);
decrypt bdy is [res(plain)]K_AB;
match plain is (w,rest);
split rest is (r,rest’);
match rest’ is (t,np’);
check np is np’;
case r is Balance(x); out topk x

Proxy / Service Interaction

split (Balance(12345),t,nq)
is (a,t,nq’);

check nq is nq’;
new (k);

case a is Balance(account);
new (k’);

out BSC_B (Bob ,BankingServiceClass(Alice),
account,k’)

| inp k’ (r); out k Balance(r)
| inp k (r);

out k2 (Bob ,[res(w,r,t,np)]K_AB;

inp k2 (q’,bdy);
decrypt bdy is [res(plain)]K_AB;
match plain is (w,rest);
split rest is (r,rest’);
match rest’ is (t,np’);
check np is np’;
case r is Balance(x); out topk x

Proxy / Service Interaction

case Balance(12345) is Balance(account);
new (k’);

out BSC_B (Bob ,BankingServiceClass(Alice),
account,k’)

| inp k’ (r); out k Balance(r)
| inp k (r);

out k2 (Bob ,[res(w,r,t,np)]K_AB;

inp k2 (q’,bdy);
decrypt bdy is [res(plain)]K_AB;
match plain is (w,rest);
split rest is (r,rest’);
match rest’ is (t,np’);
check np is np’;
case r is Balance(x); out topk x

Proxy / Service Interaction

repeat inp BSC_B (z);
split z is (p, this, account, k);
if account=12345 then

new k’;
case this

is null(y);stop
is BankingServiceClass(y);

split y is (CallerId);
out k’ CallerId)

| inp k’ (x);
if x=Alice

then out k 100
else out k null()

else out k null()

out BSC_B (Bob ,BankingServiceClass(Alice),12345,k’)
| inp k’ (r); out k Balance(r)
| inp k (r); out k2 (Bob ,[res(w,r,t,np)]K_AB;

inp k2 (q’,bdy);
decrypt bdy is [res(plain)]K_AB;
match plain is (w,rest);
split rest is (r,rest’);
match rest’ is (t,np’);
check np is np’;
case r is Balance(x); out topk x

Proxy / Service Interaction

if 12345=12345 then
new k’’;

case BankingServiceClass(Alice)
is null(y);stop
is BankingServiceClass(y);

split y is (CallerId);
out k’’ CallerId)

| inp k’’ (x);
if x=Alice

then out k’ 100
else out k’ null()

else out k’ null()

inp k’ (r); out k Balance(r)
| inp k (r); out k2 (Bob ,[res(w,r,t,np)]K_AB;

inp k2 (q’,bdy);
decrypt bdy is [res(plain)]K_AB;
match plain is (w,rest);
split rest is (r,rest’);
match rest’ is (t,np’);
check np is np’;
case r is Balance(x); out topk x

Proxy / Service Interaction

case BankingServiceClass(Alice)
is null(y);stop
is BankingServiceClass(y);

split y is (CallerId);
out k’’ CallerId)

| inp k’’ (x);
if x=Alice

then out k’ 100
else out k’ null()

inp k’ (r); out k Balance(r)
| inp k (r); out k2 (Bob ,[res(w,r,t,np)]K_AB;

inp k2 (q’,bdy);
decrypt bdy is [res(plain)]K_AB;
match plain is (w,rest);
split rest is (r,rest’);
match rest’ is (t,np’);
check np is np’;
case r is Balance(x); out topk x

Proxy / Service Interaction

split Alice is (CallerId);
out k’’ CallerId)

| inp k’’ (x);
if x=Alice

then out k’ 100
else out k’ null()

inp k’ (r); out k Balance(r)
| inp k (r); out k2 (Bob ,[res(w,r,t,np)]K_AB;

inp k2 (q’,bdy);
decrypt bdy is [res(plain)]K_AB;
match plain is (w,rest);
split rest is (r,rest’);
match rest’ is (t,np’);
check np is np’;
case r is Balance(x); out topk x

Proxy / Service Interaction

out k’’ Alice)
| inp k’’ (x);

if x=Alice
then out k’ 100
else out k’ null()

inp k’ (r); out k Balance(r)
| inp k (r); out k2 (Bob ,[res(w,r,t,np)]K_AB;

inp k2 (q’,bdy);
decrypt bdy is [res(plain)]K_AB;
match plain is (w,rest);
split rest is (r,rest’);
match rest’ is (t,np’);
check np is np’;
case r is Balance(x); out topk x

Proxy / Service Interaction

out k’ 100

inp k’ (r); out k Balance(r)
| inp k (r); out k2 (Bob ,[res(w,r,t,np)]K_AB;

inp k2 (q’,bdy);
decrypt bdy is [res(plain)]K_AB;
match plain is (w,rest);
split rest is (r,rest’);
match rest’ is (t,np’);
check np is np’;
case r is Balance(x); out topk x

Proxy / Service Interaction

out k Balance(100)
| inp k (r); out k2 (Bob ,[res(w,r,t,np)]K_AB;

inp k2 (q’,bdy);
decrypt bdy is [res(plain)]K_AB;
match plain is (w,rest);
split rest is (r,rest’);
match rest’ is (t,np’);
check np is np’;
case r is Balance(x); out topk x

Proxy / Service Interaction

out k2 (Bob ,[res(w,Balance(100),t,np)]K_AB;

inp k2 (q’,bdy);
decrypt bdy is [res(plain)]K_AB;
match plain is (w,rest);
split rest is (r,rest’);
match rest’ is (t,np’);
check np is np’;
case r is Balance(x); out topk x

Proxy / Service Interaction

decrypt [res(w,Balance(100),t,np)]K_AB is [res(plain)]K_AB;
match plain is (w,rest);
split rest is (r,rest’);
match rest’ is (t,np’);
check np is np’;
case r is Balance(x); out topk x

Proxy / Service Interaction

match (w,Balance(100),t,np) is (w,rest);
split rest is (r,rest’);
match rest’ is (t,np’);
check np is np’;
case r is Balance(x); out topk x

split (Balance(100),t,np) is (r,rest’);
match rest’ is (t,np’);
check np is np’;
case r is Balance(x); out topk x

check np is np;
case Balance(100) is Balance(x); out topk x

out topk 100

Conclusion

• The execution of the example in the spi-calculus corresponds to

the specification. The proof shows that every possible execu-

tion, even in the presence of attackers, still corresponds to the

specification.

• Extend the above to deal with authentication. (Last appendix

in the paper.)

