
A Language for Generic Programming

Jeremy Siek and Andrew Lumsdaine
{jsiek,lums}@osl.iu.edu

Open Systems Laboratory
Indiana University

Abstract. We present a new programming language, named G, de-
signed to support the style of generic programming in the Standard
Template Library. The past decade of experience has proved that generic
programming is an effective methodology for the design, implementation,
and use of software components. At the heart of generic programming
is a conceptual framework for describing interfaces between components.
Most programming languages have features for describing interfaces, but
none match the conceptual framework used in generic programming. G
is designed to provide first-class language support for this conceptual
framework. We have validated the design of G with an implementation
the Standard Template Library and report here on the results.

The development and use of interchangeable software components has
been going on for a decade and this has stress tested the support for
modularity and encapsulation in today’s programming languages. We
have incorporated many lessons learned from that experience in the de-
sign of G. In particular, G provides support for validating components
in isolation and G prevents many common problems in component inte-
gration.

1 Introduction

In the 1980’s Musser and Stepanov developed a methodology for creating highly
reusable algorithm libraries [1–4], using the term “generic programming” for
their work1. Their approach was novel in that a particular algorithm could inter-
operate with any data-structure that exports iterators with certain capabilities;
so their sequence algorithms could interoperate with linked-lists, arrays, and
even red-black trees (representing ordered sequences). Early versions of their
algorithm libraries were implemented in Scheme, Ada, and C.

In the early 1990’s Musser and Stepanov shifted focus to C++ and took
advantage of templates [5] to construct the Standard Template Library (STL) [6,
7]. The STL became part of the C++ Standard, which brought their style of
1 The term “generic programming” is often used to mean any use of “generics”, that

is, any use of parametric polymorphism or templates. The term is also used in
the functional programming community for the generation of functions based on
algebraic datatypes, also called polytypic programming. In this paper we use the
term “generic programming” solely in the sense of Musser and Stepanov.

generic programming into the mainstream. Since then, the methodology has been
successfully applied to the creation of libraries for numerous domains [8–12].

The ease with which programmers implement and use generic libraries varies
greatly with the programming language features available for expressing poly-
morphism and requirements on type parameters. In [13] we performed a compar-
ative study of modern programming language support for generic programming,
implementing a representative subset of the Boost Graph Library [9] in each lan-
guage. While some languages performed quite well, none were ideal for generic
programming.

This result motivated us to begin the design of a programming language,
named G, explicitly for generic programming. In [14] we laid the foundation
for G, defining a core calculus, named FG, based on System F [15, 16]. In FG

we captured the essential features for generic programming in a small formal
system and proved type safety. The language G applies the ideas from FG to a
full programming language capable of implementing the entire STL.

1.1 Contributions

The contributions of this paper are the design and evaluation of a language for
generic programming:

– We give a high-level and intuitive description of the language G. A formal
description of the idealized core of G, named FG, has already been published
[14]. We leave a formal description of the full language G for future work.

– We evaluate the design of G with respect to implementing the Standard
Template Library. The STL is a large generic library which exercises all
aspects of the generic programming methodology. The STL is therefore a
fitting first test for validating the design of G.

Many elements of G can be found in other programming languages, but G is
unique in providing the right mixture of language features for generic program-
ming. In terms of interface description, the closest relative to G is Haskell’s type
classes. However, G is unique because 1) G’s concept feature integrates ML’s
nested types and type sharing, 2) G’s model definitions obey normal scoping
rules, and 3) G explores the design space of type classes for non-type-inferencing
languages.

1.2 Road Map

In Section 2 we review the essential ideas and terminology of generic program-
ming. In Section 3 we present an overview of the language G. We review the
high-level structure of the Standard Template Library in Section 4 and then de-
scribe the implementation of the STL in G in Section 5. In Section 6 we show how
component development is made easier in G because its type system supports
the independent validation of components and prevents some typical component
integration problems. Related work is discussed in Section 7. We conclude the
paper in Section 8.

2 Generic Programming

The defining characteristics of the generic programming methodology are:

– Algorithms are expressed with minimal assumptions about data abstrac-
tions, and vice versa, making them maximally interoperable.

– Generic algorithms are derived from concrete algorithms by lifting non-
essential requirements. For example, an algorithm on linked-lists becomes
an algorithm on forward iterators.

– Absolute efficiency is required. Algorithms are never lifted to the point where
they lose efficiency.

– When a single generic algorithm can not achieve the best efficiency for all
input types, multiple generic algorithms are implemented and automatic
algorithm selection is provided.

Here we review the standard terminology from [7] for the key elements of
generic programming.

The notion of abstraction is fundamental to generic programming: generic
algorithms are specified in terms of abstract properties of types, not in terms of
particular types. A concept is the a set of requirements on a type (or several
types). We use a sans serif font is used to distinguish names of concepts. The
requirements in a concept may be semantic as well as syntactic. A concept may
incorporate the requirements of another concept, in which case the first concept
is said to refine the second. A type (or list of types) that meets the requirements
of a concept is said to model the concept.

Concepts are used to specify interfaces to generic algorithms by constrain-
ing the type parameters of an algorithm. A generic algorithm may only be used
with type arguments that model its constraining concepts.

A concept consists of operations, associated types, semantic invariants, and
complexity guarantees. The operations specify the functionality that must be
implemented by the modeling type. The associated types of a concept are types
that are needed for the operators and that are determined by the modeling type
but vary from one model of the concept to another.

An example of a concept is Input Iterator. This concept is a refinement of the
Assignable, Copy Constructible, and Equality Comparable concepts. In addition, a
type X is a model of Input Iterator if it

– has increment and dereference operators
– comes with two associates types: the value type, which is the return type of

the dereference operator, and the difference type, which is a suitable integral
type for measuring distances between iterators.

– given objects a and b of type X, a == b implies *a is equivalent to *b.

In C++, the types int* and list<char>::iterator are examples of types
that model Input Iterator. The associated value type for int* is int and the asso-
ciated value type for list<char>::iterator is char. The concept Input Iterator
is directly used as a type requirement in over 28 of the STL algorithms. One
example is the copy algorithm, which requires the first range to be a model of
Input Iterator.

3 Overview of G

G is a statically typed imperative language with syntax and memory model
similar to C++. We have implemented a compiler that translates G to C++,
but G could also be interpreted or compiled to byte-code. Compilation units are
separately compiled and type checked, relying only on forward declarations from
other compilation units, even compilation units containing generic functions and
classes. The languages features of G that support generic programming are:

– Concept and model definitions
– Constrained polymorphic functions, classes, structs, and type-safe unions
– Concept-based function overloading
– Implicit instantiation of polymorphic functions

In addition, G includes the usual basic types and control constructs of a general
purpose programming language.

Concepts are defined using the following syntax:

decl← concept id <id, . . .> { cmem . . . };
cmem← funsig | fundef // operations

| type id; // associated types
| ty == ty; // same-type constraints
| refines id<ty, . . .>; | require id<ty, . . .>;

The identifiers in the <>’s are place holders for the modeling type (or list of
types). The distinction between refines and require is that refinement brings
in the associated types from the “super” concept and also plays a role in function
overloading. The following is the definition of the InputIterator concept in G.

concept InputIterator<X> {
type value;
type difference;
refines EqualityComparable<X>;
refines Regular<X>; /* this includes Assignable and CopyConstructible */
require SignedIntegral<difference>;
fun operator*(X b) -> value@;
fun operator++(X! c) -> X!;

};

The modeling relation between a type and a concept is established with a
model definition using the following syntax.

decl← model [<id, . . .>] [where { constraint, . . . }] id <ty, . . .> { decl . . . };

A model may be parameterized: the identifiers in the <>’s are type parameters
and the where clause introduces concept and same-type constraints:

constraint← id<ty, . . .> | ty == ty

The following model definition says all pointer types are models of InputIterator.

model <T> InputIterator<T*> {
type value = T;
type difference = ptrdiff_t;

};

A model definition must satisfy all requirements of the concept. Requirements
for associated types are satisfied by type definitions. Requirements for operations
may be satisfied by function definitions, by the where clause, or by functions in
the lexical scope preceding the model definition. Refinements and nested require-
ments are satisfied by preceding model definitions.

The following is the syntax for polymorphic functions.

fundef ← fun id [<id, . . .>] [where { constraint, . . . }]
(ty pass [id], . . .) -> ty pass { stmt . . . }

funsig ← fun id [<id, . . .>] [where { constraint, . . . }]
(ty pass [id], . . .) -> ty pass;

decl← fundef | funsig
pass← ! | @ | /* nothing */ | &

The default parameter passing mode in G is read-only pass-by-reference, which
can also be specified with &. Read-write pass-by-reference is indicated by ! and
pass-by-value by @. The body of a polymorphic function is type checked sepa-
rately from any instantiation of the function. The where clause introduces surro-
gate model definitions and signatures (for all required concept operations) into
the scope of the function. The generic distance function is a simple example.

fun distance<Iter> where { InputIterator<Iter> }
(Iter@ first, Iter last) -> InputIterator<Iter>.difference@ {

let n = zero();
while (first != last) { ++first; ++n; }
return n;

}

The dot notation used in the return type refers to an associated type, in this
case the difference type of the iterator.

assoc← id<ty, . . .>.id | id<ty, . . .>.assoc
ty ← assoc

Multiple functions with the same name may be defined, and static overload
resolution is performed by G to decide which function to invoke at a particular
call site depending on the argument types and also depending on which model
definitions are in scope. When more than one overload is callable, the more
specific overload is called if there is one (“more specific” is a partial order). The
where clause and the concept refinement hierarchy are a factor in the partial
ordering.

The syntax for polymorphic classes, structs, and unions is defined below.

decl← class id polyhdr { classmem . . . };
decl← struct id polyhdr { mem . . . };
decl← union id polyhdr { mem . . . };
mem← ty id;
classmem← mem

| polyhdr id(ty pass [id], . . .) { stmt . . . }
| ~id() { stmt . . . }

polyhdr ← [<id, . . .>] [where { constraint, . . . }]

Classes consist of data members, constructors, and a destructor. There are
no member functions; normal functions are used instead. Data encapsulation

(public/private) is specified at the module level instead of inside the class.
Class, struct, and unions are used as types using the syntax below. Such a type
is well-formed if the type arguments are well-types and if the requirements in its
where clause are satisfied.

ty ← id[<ty, . . .>]

The syntax for calling functions (or polymorphic functions) is the usual C-
style notation:

expr ← expr(expr, . . .)

Arguments for the type parameters of a polymorphic function need not be sup-
plied at the call site: G will deduce the type arguments by unifying the types
of the arguments with the types of the parameters and implicitly instantiate
the polymorphic function. All of the requirements in the where clause must be
satisfied by model definitions in the lexical scope preceding the function call. The
following is a program that calls the distance function, applying it to iterators
of type int*.

fun main() -> int@ {
let p = new int[8];
let d = distance(p, p + 4);
return d == 4 ? 0 : -1;

}

A polymorphic function may be explicitly instantiated using this syntax:

expr ← expr<|ty, . . .|>

4 Overview of the STL

The high-level structure of the STL is shown in Figure 1. The STL contains
over fifty generic algorithms. Traditionally these algorithms were implemented
in terms of concrete data structures such as linked-lists and arrays. The STL
generic algorithms abstract away from the non-essential characteristics of these
data-structures, implementing them in terms of a family of iterator abstractions.
As a result, the STL algorithms may be used with an infinite set of concrete
data-structures: any data-structure that exports iterators with the required ca-
pabilities.

Figure 2 shows the hierarchy of STL’s iterator concepts. An arrow indicates
that the source concept is a refinement of the target. The iterator concepts arose
from the requirements of algorithms: the need to express the minimal require-
ments for each algorithm. For example, the merge algorithm passes through the
sequence once, so it only requires the basic requirements of Input Iterator. On the
other hand, sort_heap requires iterators that can jump backwards and forwards
arbitrary distances, so it requires Random Access Iterator.

The STL includes a handful of common data-structures. When one of these
data-structures does not fulfill some specialized purpose, the programmer is en-
couraged to implement the appropriate specialized data-structure. All of the

Iterator InterfacesAlgorithms Containers

partition

merge

stable_sort

sort_heap

binary_search

Forward
Bidirectional
Random Access

list

vector

map

set

T[]

AdaptorsFunction Objects

multiplies

binder1st

mem_fun

reverse_iterator
back_insert_iterator
stack
priority_queue

Fig. 1. High-level structure of the STL

Random Access Bidirectional Forward

Input

Output

Fig. 2. Iterator concept hierarchy

STL algorithms can then be made available for the new data-structure at the
small cost of implementing iterators for the specialized data-structure.

Many of the STL algorithms are higher-order: they take functions as param-
eters, allowing the user to customize the algorithm to their own needs. The STL
defines over 25 function objects for creating and composing functions.

The STL also contains a collection of adaptor classes. For example, the
back_insert_iterator adaptor can be used to create an output iterator from a
list which can in turn be used for the result in a call to copy. Adaptors play an
important role in the plug-and-play nature of the STL and enable a high degree
of reuse. For example, the find_last_subsequence function is implemented
using find_subsequence and the reverse_iterator adaptor.

5 Implementation of the STL in G

The concept feature of G enables the direct expression of the STL iterator
concepts. Figure 3 shows the entire STL iterator hierarchy as represented in G.

The STL algorithms are implemented in G using polymorphic functions.
Figure 4 depicts a few simple STL algorithms. The STL provides two versions of
most algorithms, such as the two overloads for find in Figure 4. The first version
is higher-order, taking a predicate function as its third parameter. Functions are
first-class in G, so a function type is used for the third parameter. The second
version takes a value and uses operator== as the predicate. As is typical in the
STL, there is a high-degree of internal reuse: remove uses remove_copy and and
find. The calls to these functions type check because MutableForwardIterator
is a refinement of InputIterator and OutputIterator.

concept InputIter<X> {
type value;
type difference;
refines EqualityComparable<X>;
refines Regular<X>;
require SignedIntegral<difference>;
fun operator*(X b) -> value@;
fun operator++(X! c) -> X!;

};
concept OutputIter<X,T> {

refines Regular<X>;
fun operator<<(X! c, T t) -> X!;

};
concept ForwardIter<X> {

refines DefaultConstructible<X>;
refines InputIter<X>;
fun operator*(X b) -> value;

};
concept MutableForwardIter<X> {

refines ForwardIter<X>;
refines OutputIter<X,value>;
require Regular<value>;
fun operator*(X b) -> value!;

};

concept BidirectionalIter<X> {
refines ForwardIter<X>;
fun operator--(X!) -> X!;

};
concept MutableBidirectionalIter<X> {

refines BidirectionalIter<X>;
refines MutableForwardIter<X>;

};
concept RandomAccessIter<X> {

refines BidirectionalIter<X>;
refines LessThanComparable<X>;
fun operator+(X, difference) -> X@;
fun operator-(X i, difference n) -> X@;
fun operator-(X, X) -> difference@;

};
concept MutableRandomAccessIter<X> {

refines RandomAccessIter<X>;
refines MutableBidirectionalIter<X>;

};

Fig. 3. The STL Iterator Concepts in G (Iterator has been abbreviated to Iter).

fun find<Iter> where { InputIterator<Iter> }
(Iter@ first, Iter last,
fun(InputIterator<Iter>.value)->bool@ pred) -> Iter@ {
while (first != last and not pred(*first)) ++first;
return first;

}
fun find<Iter> where { InputIterator<Iter>,

EqualityComparable<InputIterator<Iter>.value> }
(Iter@ first, Iter last, InputIterator<Iter>.value value) -> Iter@ {

while (first != last and not (*first == value)) ++first;
return first;

}
fun remove<Iter> where { MutableForwardIterator<Iter>,

EqualityComparable<InputIterator<Iter>.value> }
(Iter@ first, Iter last, InputIterator<Iter>.value value) -> Iter@ {

first = find(first, last, value);
let i = @Iter(first);
return first == last ? first : remove_copy(++i, last, first, value);

}

Fig. 4. Some STL Algorithms in G

One of the main goals of generic programming is efficiency. When no single
generic algorithm is best for all input types, multiple algorithms are implemented
and automatic dispatching provided. An example of such an algorithm is STL’s
copy. The following code shows two overloads for copy. (We omit the third
overload to save space.) The first version is for input iterators and the second
for random access, which uses an integer counter for the loop thereby allowing
some compilers to better optimize the loop. The two signatures are the same
except for the where clause. We call this as concept-based overloading .

fun copy<Iter1,Iter2> where { InputIterator<Iter1>,
OutputIterator<Iter2, InputIterator<Iter1>.value> }

(Iter1@ first, Iter1 last, Iter2@ result) -> Iter2@ {
for (; first != last; ++first) result << *first;
return result;

}
fun copy<Iter1,Iter2> where { RandomAccessIterator<Iter1>,

OutputIterator<Iter2, InputIterator<Iter1>.value> }
(Iter1@ first, Iter1 last, Iter2@ result) -> Iter2@ {

for (n = last - first; n > zero(); --n, ++first) result << *first;
return result;

}

The use of dispatching algorithms such as copy inside other generic algo-
rithms brings up an interesting issue. Consider the following implementation of
STL’s merge. The Iter1 and Iter2 types are required to model InputIterator
and in the body of merge are two calls to copy.

fun merge<Iter1,Iter2,Iter3>
where { InputIterator<Iter1>, InputIterator<Iter2>,

LessThanComparable<InputIterator<Iter1>.value>,
InputIterator<Iter1>.value == InputIterator<Iter2>.value,
OutputIterator<Iter3, InputIterator<Iter1>.value> }

(Iter1@ first1, Iter1 last1, Iter2@ first2, Iter2 last2, Iter3@ result)
-> Iter3@ {

...
return copy(first2, last2, copy(first1, last1, result));

}

One of the main advantages of G, separate type checking, is a problem in
this situation. Overload resolution occurs during type checking, before the actual
types of the iterators is known. Thus, the above merge function always calls the
slow version of copy, even though the actual iterators may be random access.
In C++, with tag dispatching, the fast version of copy is called because the
overload resolution occurs after template instantiation. However, C++ does not
have separate type checking for templates.

To enable dispatching for copy we must carry the information available at the
instantiation of merge (suppose it is instantiated with a random access iterator)
into the body of merge. This can be accomplished using a combination of concept
and model declarations. First, define a concept with a single operation that
corresponds to the algorithm.

concept CopyRange<I1,I2> {

fun copy_range(I1,I1,I2) -> I2@;
};

Next, add a requirement for this concept to the type requirements of merge and
replace the calls to copy with the concept operation copy_range.

fun merge<Iter1,Iter2,Iter3>
where { ..., CopyRange<Iter2,Iter3>, CopyRange<Iter1,Iter3> }
(Iter1@ first1, Iter1 last1, Iter2@ first2, Iter2 last2, Iter3@ result)

-> Iter3@ { ...
return copy_range(first2, last2, copy_range(first1, last1, result));

}

The last part of the this idiom is to create parameterized model declarations for
CopyRange. The where clauses of the model definitions match the where clauses
of the respective overloads for copy. In the body of each copy_range there is a
call to copy which will resolve to the appropriate overload.

model <Iter1,Iter2> where { InputIterator<Iter1>,
OutputIterator<Iter2, InputIterator<Iter1>.value> }

CopyRange<Iter1,Iter2> {
fun copy_range(Iter1 first, Iter1 last, Iter2 result) -> Iter2@

{ return copy(first, last, result); }
};
model <Iter1,Iter2> where { RandomAccessIterator<Iter1>,

OutputIterator<Iter2, InputIterator<Iter1>.value> }
CopyRange<Iter1,Iter2> {

fun copy_range(Iter1 first, Iter1 last, Iter2 result) -> Iter2@
{ return copy(first, last, result); }

};

With the above model definitions in place, when the user calls merge with a
random access iterator, the second model for CopyRange will be used to satisfy
the requirement for CopyRange. Thus, when copy_range is invoked inside merge,
the fast version of copy is called. A nice property of this idiom is that calls to
generic algorithms need not change.

The containers of the STL are implemented in G using polymorphic types.
Figure 5 shows an excerpt of the doubly-linked list container in G. As usual,
a dummy sentinel node is used in the implementation. With each STL con-
tainer comes iterator types that translate between the uniform iterator interface
and data-structure specific operations. Figure 5 shows the list_iterator which
translates operator* to x.node->data and operator++ to x.node = x.node->next.

Not shown in Figure 5 is the implementation of the mutable iterator for
list (the list_iterator provides read-only access). The definitions of the two
iterator types are nearly identical, the only difference is that operator* returns
by read-only reference for the constant iterator whereas it returns by read-write
reference for the mutable iterator. The code for these two iterators should be
reused but G does not yet have a language mechanism for this kind of reuse.

In C++ this kind of reuse can be expressed using the Curiously Recurring
Template Pattern (CRTP) and by parameterizing the base iterator class on the
return type of operator*. CRTP can not be used in G because the parameter

struct list_node<T> where { Regular<T>, DefaultConstructible<T> } {
list_node<T>* next; list_node<T>* prev; T data;

};
class list<T> where { Regular<T>, DefaultConstructible<T> } {

list() : n(new list_node<T>()) { n->next = n; n->prev = n; }
~list() { ... }
list_node<T>* n;

};
class list_iterator<T> where { Regular<T>, DefaultConstructible<T> } {

... list_node<T>* node;
};
fun operator*<T> where { Regular<T>, DefaultConstructible<T> }
(list_iterator<T> x) -> T { return x.node->data; }

fun operator++<T> where { Regular<T>, DefaultConstructible<T> }
(list_iterator<T>! x) -> list_iterator<T>!

{ x.node = x.node->next; return x; }

fun begin<T> where { Regular<T>, DefaultConstructible<T> }
(list<T> l) -> list_iterator<T>@

{ return @list_iterator<T>(l.n->next); }

fun end<T> where { Regular<T>, DefaultConstructible<T> }
(list<T> l) -> list_iterator<T>@ { return @list_iterator<T>(l.n); }

Fig. 5. Excerpt from Doubly-Linked List Container in G

passing mode is separate from the parameter type and may not itself be pa-
rameterized. Further, the semantics of polymorphism in G does not match the
intended use here, we want to generate code for the two iterator types at library
construction time. What is needed is some separate generative mechanism to
compliment the generic mechanisms in G. As a temporary solution, we used the
m4 macro system to factor the common code from the iterators. The following
is an excerpt from the implementation of the iterator operators.

define(‘forward_iter_ops’,
‘fun operator*<T> where { Regular<T>, DefaultConstructible<T> }
($1<T> x) -> T $2 { return x.node->data; }
...’)
forward_iter_ops(list_iterator, &) /* read-only */
forward_iter_ops(mutable_list_iter, !) /* read-write */

Another category of STL components is adaptors. The reverse_iterator
adaptor is a good representative example.

class reverse_iterator<Iter>
where { Regular<Iter>, DefaultConstructible<Iter> } {
reverse_iterator(Iter base) : curr(base) { }
reverse_iterator(reverse_iterator<Iter> other) : curr(other.curr) { }
Iter curr;

};

The Regular requirement on the underlying iterator is needed for the copy con-
structor and DefaultConstructible for the default constructor. This adaptor
flips the direction of traversal of the underlying iterator, which is accomplished
with the following operator* and operator++. There is a call to operator-- on
the underlying Iter type so BidirectionalIterator is required.

fun operator*<Iter> where { BidirectionalIterator<Iter> }
(reverse_iterator<Iter> r) -> BidirectionalIterator<Iter>.value

{ let tmp = @Iter(r.curr); return *--tmp; }

fun operator++<Iter> where { BidirectionalIterator<Iter> }
(reverse_iterator<Iter>! r) -> reverse_iterator<Iter>!

{ --r.curr; return r; }

Polymorphic model definitions are used to establish that reverse_iterator is
a model of the iterator concepts. The following says that reverse_iterator
is a model of InputIterator whenever the underlying iterator is a model of
BidirectionalIterator.

model <Iter> where { BidirectionalIterator<Iter> }
InputIterator< reverse_iterator<Iter> > {

type value = BidirectionalIterator<Iter>.value;
type difference = BidirectionalIterator<Iter>.difference;

};

6 Component Development Benefits

Generic programming has enabled programmers from all over the world to con-
struct and share interchangeable components. A good example of this is the
Boost collection of C++ libraries [17]. While this has benefited programmer pro-
ductivity, there is room to improve: the cost of reuse is still too high. Program-
mers routinely run into many kinds of component integration problems such as
namespace pollution, libraries with type errors, documentation inconsistencies,
long compile times, and hard to understand error messages.

Namespace pollution issues related to cpp macros are an old story, but generic
programming brings with it new and subtle issues. For example, in C++, argu-
ment dependent lookup (ADL) [18] is relied on in function templates to access
user-defined operations, but ADL breaks namespace modularity. There is ten-
sion in generic programming between the need to allow for rich interfaces and
user-supplied operations while at the same time ensuring modularity. In G this
problem is solved by concepts and where clauses which provide the language
for specifying rich interfaces while at the same time separating library and user
namespaces.

Users of generic libraries in C++ are plagued by long compile times and hard
to understand error messages. The reason is C++’s lack of separate compilation
and separate type checking. G solves both of these problems. In G, generic
libraries can be compiled to object code so the user need only link them to the
executable. Also, calls to generic functions are type checked with respect to their

declared signature. The following G program misuses stable_sort: it requires
a random access iterator but list only provides bidirectional.

4 fun main() -> int@{
5 let v = @list<int>();
6 stable_sort(begin(v), end(v));
7 return 0;
8 }

In C++ this would evoke pages of error messages with line numbers pointing deep
inside the implementation of stable_sort. In contrast, the G compiler prints
the following:

test/stable_sort_error.hic:6:
In application stable_sort(begin(v), end(v)),
Model MutableRandomAccessIterator<mutable_list_iter<int>>
needed to satisfy requirement, but it is not defined.

Another problem that plagues generic C++ libraries is that type errors often
go unnoticed during library development. This is because type checking of tem-
plates is delayed until instantiation. A related problem is that the documented
type requirements for a template may not be consistent with the implementation,
which can result in unexpected compiler errors for the user.

These problems are solved in G: the implementation of a generic function is
type checked with respect to its where clause. Verifying that there are no type
errors in a generic function and that the type requirements are consistent is
trivial in G: just try to compile the generic function. In fact, while implementing
the STL in G, the type checker caught several errors in the STL.

One such error was in replace_copy. The implementation below was trans-
lated directly from the GNU C++ Standard Library, with the where clause trans-
lated from the requirements for replace_copy in the C++ Standard [18].

196 fun replace_copy<Iter1,Iter2, T>
197 where { InputIterator<Iter1>, Regular<T>, EqualityComparable<T>,
198 OutputIterator<Iter2, InputIterator<Iter1>.value>,
199 OutputIterator<Iter2, T>,
200 EqualityComparable2<InputIterator<Iter1>.value,T> }
201 (Iter1@ first, Iter1 last, Iter2@ result, T old, T neu) -> Iter2@ {
202 for (; first != last; ++first)
203 result << *first == old ? neu : *first;
204 return result;
205 }

The G compiler gives the following error message:

stl/sequence_mutation.hic:203:
The two branches of the conditional expression must have the
same type or one must be coercible to the other.

This is a subtle bug, which explains why it has gone unnoticed for so long. The
type requirements say that both the value type of the iterator and T must be
writable to the output iterator, but the requirements do not say that the value
type and T are the same type, or coercible to one another.

7 Related Work

There is a long history of programming language support for polymorphism,
dating back to the 1970’s [?,15,16,19]. An early precursor to G’s concept feature
can be seen in CLU’s type set feature [19]. In mathematics, the equivalent notion
of algebraic structure has been in use for an even longer time [20].

The concept feature in G is heavily based on the type class feature of Haskell [21],
with its nominal conformance and explicit model definitions. However, G’s sup-
port for associated types, same type constraints, and concept-based overloading
is novel. Also, G’s type system is fundamentally different from Haskell’s: it is
based on System F [15, 16] instead of Hindley-Milner type inferencing [?]. This
difference has some repercusions. In G there is more control over the scope of
concept operations because where clauses introduce concept operations into the
scope of the body, whereas in Haskell concept definitions introduce operation
names into the scope of the whole module. This difference allows Haskell to infer
type requirements but induces the restriction that two type classes in the same
module may not have operations with the same name. In [13] we performed a
comparative study of support for generic programming in several language and
Haskell performed quite well. We pointed out that Haskell was missing support
for associated types, and is work to remedy this [22], though their approach adds
datatype definitions to type classes, whereas G’s associated types are closer to
nested types in ML’s signatures [23].

Less closely related to G are languages based on subtype-bounded polymor-
phism [24, 25] such as Java, C#, and Eiffel. We found subtype-bounded poly-
morphism less suitable for generic programming and refer the reader to [13] for
an in-depth discussion. More recently, the object-oriented language Scala [?,?]
has added abstract type members based of the theory of dependent types. A
comparison of this with G’s associated types is planned for future work.

8 Conclusion

In this paper we presented the design of a new programming language named
G and demonstrated with an implementation of the Standard Template Library
that this language is well suited for generic programming. We were able to imple-
ment all of the abstractions in the STL in straightfoward manner. Further, the
language G is particularly well suited for the development of resusable compo-
nents because it offers separate type checking and compilation. G’s strong type
system provides support for the independent validation of components and G’s
system of concepts and constraints allows for rich interactions between compo-
nents without sacrificing namespace safety. As a result, we expect G to enable
increased programmer productivity with respect to the development and use of
generic components.

Acknowledgments

We would like to thank Ronald Garcia, Jeremiah Willcock, Doug Gregor, Jaakko
Järvi, Dave Abrahams, Dave Musser, and Alexander Stepanov for many discus-
sions and collaborations that informed this work. This work was supported by
NSF grant EIA-0131354 and by a grant from the Lilly Endowment.

References

1. Kapur, D., Musser, D.R., Stepanov, A.: Operators and algebraic structures. In:
Proc. of the Conference on Functional Programming Languages and Computer
Architecture, Portsmouth, New Hampshire, ACM (1981)

2. Musser, D.R., Stepanov, A.A.: Generic programming. In Gianni, P.P., ed.: Sym-
bolic and algebraic computation: ISSAC ’88, Rome, Italy, July 4–8, 1988: Proceed-
ings. Volume 358 of Lecture Notes in Computer Science., Berlin, Springer Verlag
(1989) 13–25

3. Musser, D.R., Stepanov, A.A.: A library of generic algorithms in Ada. In: Using
Ada (1987 International Ada Conference), New York, NY, ACM SIGAda (1987)
216–225

4. Kershenbaum, A., Musser, D., Stepanov, A.: Higher order imperative program-
ming. Technical Report 88-10, Rensselaer Polytechnic Institute (1988)

5. Stroustrup, B.: Parameterized types for C++. In: USENIX C++ Conference.
(1988)

6. Stepanov, A.A., Lee, M.: The Standard Template Library. Technical Report
X3J16/94-0095, WG21/N0482, ISO Programming Language C++ Project (1994)

7. Austern, M.H.: Generic Programming and the STL. Professional computing series.
Addison-Wesley (1999)

8. Köthe, U.: Reusable Software in Computer Vision. In: Handbook on Computer
Vision and Applications. Volume 3. Acadamic Press (1999)

9. Siek, J., Lee, L.Q., Lumsdaine, A.: The Boost Graph Library: User Guide and
Reference Manual. Addison-Wesley (2002)

10. Boissonnat, J.D., Cazals, F., Da, F., Devillers, O., Pion, S., Rebufat, F., Teillaud,
M., Yvinec, M.: Programming with CGAL: the example of triangulations. In:
Proceedings of the fifteenth annual symposium on Computational geometry, ACM
Press (1999) 421–422

11. Pitt, W.R., Williams, M.A., Steven, M., Sweeney, B., Bleasby, A.J., Moss, D.S.:
The bioinformatics template library: generic components for biocomputing. Bioin-
formatics 17 (2001) 729–737

12. Troyer, M., Todo, S., Trebst, S., and, A.F.: (ALPS: Algorithms and Libraries for
Physics Simulations) http://alps.comp-phys.org/.

13. Garcia, R., Järvi, J., Lumsdaine, A., Siek, J., Willcock, J.: A comparative study
of language support for generic programming. In: Proceedings of the 18th ACM
SIGPLAN conference on Object-oriented programing, systems, languages, and ap-
plications, ACM Press (2003) 115–134

14. Siek, J., Lumsdaine, A.: Essential language support for generic programming. In:
Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI’05. (2005) accepted for publication.

15. Girard, J.Y.: Interprtation Fonctionnelle et Élimination des Coupures de
l’Arithmtique d’Ordre Suprieur. Thse de doctorat d’tat, Universit Paris VII, Paris,
France (1972)

16. Reynolds, J.C.: Towards a theory of type structure. In Robinet, B., ed.: Pro-
gramming Symposium. Volume 19 of Lecture Notes in Computer Science., Berlin,
Springer-Verlag (1974) 408–425

17. Boost: (Boost C++ Libraries) http://www.boost.org/.
18. International Standardization Organization (ISO): ANSI/ISO Standard 14882,

Programming Language C++, 1 rue de Varembé, Case postale 56, CH-1211 Genève
20, Switzerland (1998)

19. Liskov, B., Snyder, A., Atkinson, R., Schaffert, C.: Abstraction mechanisms in
CLU. Communications of the ACM 20 (1977) 564–576

20. Bourbaki, N.: Elements of Mathematics. Theory of Sets. Springer (1968)
21. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad-hoc. In: ACM

Symposium on Principles of Programming Languages, ACM (1989) 60–76
22. Chakravarty, M., Keller, G., Jones, S.P., Marlow, S.: Associated types with class.

In: Proceedings of the 32nd ACM-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2005, Long Beach, California, ACM (2005) 1–13

23. Milner, R., Tofte, M., Harper, R.: The Definition of Standard ML. MIT Press
(1990)

24. Cardelli, L., Wegner, P.: On understanding types, data abstraction, and polymor-
phism. ACM Computing Surveys 17 (1985) 471–522

25. Canning, P., Cook, W., Hill, W., Olthoff, W., Mitchell, J.C.: F-bounded poly-
morphism for object-oriented programming. In: Proceedings of the fourth interna-
tional conference on functional programming languages and computer architecture.
(1989)

