
Operational Semantics and Effects

Page 1

Recall

• Operational Semantics:

E[e0] 7→ E[e1] 7→ E[e2] . . . 7→ v

• Stuck terms do not typecheck

• Reductions preserve typability

• Type safety follows

Page 2

Robust framework

• The above framework is quite robut

• If we change the language by adding a new construct, the old

reduction rules and their proofs usually remain valid (almost)

• Let’s try adding assignments, exceptions, and continuations.

Page 3

Assignments

• New syntax:

e : := . . . | ref e | deref e | setref e1 e2

• Syntactic sugar:

let x = e1 in e2 = (λx.e2) e1

e1; e2 = (λ .e2)e1

• Examples:

inc = λr. setref r (add1 (deref r))
n = let r = ref 5 in inc r; deref r + 2

countadd1 r = λx.inc r; add1 x

Page 4

Semantics

• Evaluation contexts:

E : := . . .
| ref E | deref E | setref E e | setref v E

• Locations `

• Stores

S : := (`1, v1), . . . , (`n, vn)

• Expressions and values may contain locations:

e : := . . . | `
v : := . . . | `

(Programs) p : := (S, e)

Page 5

Reductions

• Old reductions:

(S, E[add1 0]) 7→ (S, E[1])
(S, E[add1 1]) 7→ (S, E[2])

...
(S, E[not false]) 7→ (S, E[true])
(S, E[not true]) 7→ (S, E[false])

(S, E[(λx.e)v]) 7→ (S, E[e[v/x]])

• New reductions

(S, E[ref v]) 7→ (S ∪ (`, v), E[`]) ` 6∈ S
(S, E[deref `]) 7→ (S, E[S(`)])

(S ∪ (`,), E[setref ` v]) 7→ (S ∪ (`, v), E[v])

Page 6

Example

• Given:

inc = λr. setref r (add1 (deref r))
n = let r = ref 5 in inc r; deref r + 2

• Calculate:

(∅, n) 7→ (∅, let r = ref 5 in inc r; deref r + 2)
7→ ((`, 5), let r = ` in inc r; deref r + 2)
7→ ((`, 5), inc `; deref ` + 2)
7→ ((`, 5), setref ` (add1 (deref `)); deref ` + 2)
7→ ((`, 5), setref ` (add1 5); deref ` + 2)
7→ ((`, 5), setref ` 6; deref ` + 2)
7→ ((`, 6), 6; deref ` + 2)
7→ ((`, 6), deref ` + 2)
7→ ((`, 6), 6 + 2)
7→ ((`, 6), 8)

Page 7

Types

• Syntax of types

τ : := int | bool | · · · | τ→τ
| ref τ

• Type rules

Γ ` e: τ
Γ ` ref e: ref τ

Γ ` e: ref τ
Γ ` deref e: τ

Γ ` e1: ref τ Γ ` e2: τ
Γ ` setref e1 e2: τ

Page 8

Subject reduction

• Reductions rewrite stores and expressions

• During evaluation, expressions contain locations

• Need to type stores and locations

• How?

Γ ` `: ???

Page 9

Signatures

• Signature Σ maps locations to types

• Type rules

Γ `Σ e: τ
Γ `Σ ref e: ref τ

Γ `Σ e: ref τ
Γ `Σ deref e: τ

Γ `Σ e1: ref τ Γ `Σ e2: τ
Γ `Σ setref e1 e2: τ

Γ `Σ `: ref (Σ(`))

Page 10

Typing stores

• Store must be consistent with the signature:

S: Σ Γ `Σ e: τ
Γ `Σ (S, e): τ

• Example:

S = (`1, 5), (`2, true), (`3, (λx.x + (deref `1)))
Σ = (`1, int), (`2, bool), (`3, int→int)

• In what order do we compare them?

S = (`1, (λx.x + (deref `2 0))), (`2, (λx.x + (deref `1 0)))
Σ = (`1, int→int), (`2, int→int)

• Another way to express recursion!

Page 11

Typing stores

• S: Σ if

• the domain of S is equal to the domain of Σ

(they talk about the same locations)

• for each location ` in the domain of S we have:

`Σ S(`): Σ(`)

(Typing relative to the entire signature to allow recursion)

Page 12

Recursion

• fc = ref (λx.x)

fc: ref (int→int)

• f = λn.if n = 0 then 1 else n ∗ (deref fc (n− 1))

f : int→int

• setref fc f

• Calculate (a bit informally):

f 5 7→ if 5 = 0 then 1 else 5 ∗ (deref fc (5 − 1))
7→ 5 ∗ (deref fc (5 − 1))
7→ 5 ∗ (f (5 − 1))
7→ 5 ∗ (f 4)
7→ 5 ∗ (if 4 = 0 then 1 else 4 ∗ (deref fc (4 − 1)))

Page 13

Subject reduction

• Perhaps we can prove something like

If Γ `Σ (S, e): τ and (S, e) 7→ (S ′, e′) then

Γ `Σ (S ′, e′): τ

• Counterexample. We have:

– ∅ `∅ (∅, ref 5): ref int

– (∅, ref 5) 7→ ((`, 5), `)

• But ∅ 6`∅ ((`, 5), `): τ for any τ

Page 14

Monotonicity

• Perhaps we can prove something like

If Γ `Σ (S, e): τ and (S, e) 7→ (S ′, e′) then

there exists Σ′ such that Γ `Σ′ (S ′, e′): τ

• Proving the conclusion requires that we prove S ′: Σ′

• Looking at the rules, we have either S ′ = S or S ′ = S ∪ (`, v)

for some new location `

• We need to prove Σ′ agrees with S ′ on all the old locations and

perhaps the new location too.

• We must require that Σ′ ⊇ Σ

Page 15

General picture

• Proof technique is the same as for the pure case

• Cannot exactly reuse previous lemmas; but new proofs are similar

• This is good

• This is also bad

Page 16

References and Subtyping

• Why subtyping?

• Convenient to have: int � float

• Necessary for objects, records, etc

• Basic idea: add a type rule

Γ ` e: τ τ � τ ′

Γ ` e: τ ′

Page 17

Subtyping relation

• Something on base types:

int � float

• Sanity rules:

τ � τ
τ 1 � τ 2 τ 2 � τ 3

τ 1 � τ 3

• Function types (methods in OOP)

τ ′1 � τ 1 τ 2 � τ ′2
τ 1→τ 2 � τ ′1→τ ′2

• A function of type float→int can be used anywhere a function of

type int→float is expected.

Page 18

What about reference types

• Perhaps?

τ � τ ′

ref τ � ref τ ′

• This would allow us to give ref 5 the type ref float.

• But then when we dereference a location of type ref float we

might get an int which is not expected.

• Array types in Java give up on typechecking; the above is allowed;

and an runtime check is performed.

Page 19

References and polymorphism

• Why polymorphism?

• Reuse the same code with different types: λx.x can be applied

to any type

• Introduce type schemas:

σ : := ∀α.σ | τ
τ : := . . . | α

• The function λx.x would have type ∀α.α→α.

Page 20

Polymorphism

• A type rule to introduce a polymorphic value:

Γ ` e: τ
Γ ` e:∀α.τ α 6∈ Γ

• A type rule to use a polymorphic value at any type:

Γ ` e:∀α.τ
Γ ` e: τ [τ ′/α]

Page 21

References

• For any α we can prove that λx.x has type α→α

• We can give ref (λx.x) one of the following two types:

– ∀α.ref (α→α), or

– ref (∀α.(α→α))

• The type ref (∀α.(α→α)) contains nested polymorphism which

is quite complicated to deal with. Most programming languages

restrict this in one way or the other, or completely disallow it.

• The type ∀α.ref (α→α) makes the system unsound.

Page 22

Soundness of references and polymorphism

• Consider

let fr = ref (λx.x) in setref fr not; deref fr5

• Typechecks but applies not to 5.

Page 23

