Operational Semantics and Effects

Page 1

Recall

e Operational Semantics:

Eleg] — FElei| — FEley . ..

e Stuck terms do not typecheck

e Reductions preserve typability

e T'ype safety follows

— v

Page 2

Robust framework

e The above framework is quite robut

e [f we change the language by adding a new construct, the old
reduction rules and their proofs usually remain valid (almost)

e Let’s try adding assignments, exceptions, and continuations.

Page 3

Assignments

e New syntax:

e ::= ... | ref e | deref e | setref e; €5

e Syntactic sugar:

let z =€) in ey = (Ax.e9) €
€1, €2 <)\f.62)61

e Fixamples:

inc = Ar. setref r (addl (deref r))

n = let r =ref 5 in inc r; deref r + 2
countaddl r = Ax.inc r;addl x

Page 4

Semantics

e Fvaluation contexts:

E = ...
| ref B | deref E | setref F e | setref v E

e [.ocations /

e Stores

S = (61,’01% ceey <€n7Un>

e Eixpressions and values may contain locations:

e 1= ... |/
voii= |/
p i= (5,€)

(Programs)

Page 5

Reductions

e Old reductions:

(S, Eladd1 0]) — (S, E[1])
(S, Eadd1 1]) — (S, E[2])

(S, E[not false]) ~ (.S, Eltrue])
(S, E[not true]) +— (S, Elfalse])

(5, El(Az.e)v]) = (S, Elelv/x]])

e New reductions
(S, Elref v]) — (SU (L, v), E|{]) T2
(S, Ederef £]) — (S, E[S(¢)])
(SU(L,.), Elsetref £ v]) — (SU (L, v), E[v])

Page 6

Example

e (Glven:

inc = Ar. setref r (addl (deref r))
n = let r =ref 5 in wnc r; deref r 4+ 2

e Calculate:

(0, m) 0,1et r =ref 5 in inc r; deref r + 2)
,let r = { in inc r;deref r 4 2)
,inc {; deref £ + 2)

,setref £ (addl (deref £)); deref £ + 2)
,setref £ (addl 5); deref ¢ 4 2)

,setref £ 6; deref £ + 2)

,6; deref £ + 2)

, deref £ + 2)

,6+2)

~ ~

1177111111171
D e N N
N TN TN TN N N N T
DW»E DD D O S S S
SSRGS

Page 7

Types

e Syntax of types

7 :=int | bool | +++ | 77
| ref 7
e T'ype rules
I'FerT ['Feref T

['F ref e:ref 7 [' - deref e: 1

I'Feprefm T'Eeo:r
[' - setref ey eo: 7

Page 8

Subject reduction

e Reductions rewrite stores and expressions

e During evaluation, expressions contain locations

e Need to type stores and locations

o How?

[2

Page 9

Signatures

e Signature X2 maps locations to types

e Type rules

['Fyer ['Fy eref 7
[y ref exref 7 [' by deref e: 7

['Fyepirefm 'y eor
[' by setref €1 e9: 7

[y Coref (2(0))

Page 10

Typing stores

e Store must be consistent with the signature:

S:Y I'bkyxer
['Fy (S)e): T
e Fixample:
S = (£1,5), by, true), (L3, (Ax.x + (deref £1)))
2 = (61, int), (62, bOO|), (63, int%int)

e In what order do we compare them?

S = (b1, (Ax.x + (deref £5 0))), (Lo, (Ax.x + (deref £, 0)))
>, = (£, int—int), (fs, int—int)

e Another way to express recursion!

Page 11

Typing stores

o S: X if

e the domain of S is equal to the domain of X
(they talk about the same locations)

e for each location ¢ in the domain of S we have:

5 S(4): X(0)

(Typing relative to the entire signature to allow recursion)

Page 12

Recursion

o fc = ref (Ax.x)
fc: ref (int—int)

e f =An.if n =0 then 1 else n * (deref fc (n — 1))
f:int—int

o setref fc f

e Calculate (a bit informally):

f5+— if 5=0 then 1 else 5 x (deref fc (5 — 1))
— 5 x (deref fc (5 —1))
(? —1))

« (f
«(f 4
5 % (1f 4 = 0 then 1 else 4 x (deref fc (4 — 1)))

—
—
—

Page 13

Subject reduction

e Perhaps we can prove something like

[fT'Fy (S,e): 7 and (S,e) — (5, €') then
[y (5 €): 7

e Counterexample. We have:
— Oy (0, ref 5): ref int
B (@7 ref 5) — <(€7 5)7 g)

e But 0 t/; ((£,5),£): 7 for any 7

Page 14

Monotonicity

e Perhaps we can prove something like

[f 'y (S,e): 7 and (S, e) — (S, €') then
there exists ¥ such that I' sy (57, €'): 7

e Proving the conclusion requires that we prove S”: >

e Looking at the rules, we have either 8" = S or §' = S U (¢, v)
for some new location ¢

e We need to prove X/ agrees with S” on all the old locations and
perhaps the new location too.

e We must require that X O ¥

Page 15

General picture

e Proof technique is the same as for the pure case

e Cannot exactly reuse previous lemmas; but new proofs are similar

e This is good

e This is also bad

Page 16

References and Subtyping

e Why subtyping?

e Convenient to have: int > float

e Necessary for objects, records, etc

e Basic idea: add a type rule

e 7> 7
e 7’

Page 17

Subtyping relation

e Something on base types:

int > float

e Sanity rules:

T1D>To ToD> T3
TD> T 71 D> T3

e Function types (methods in OOP)

Th> T T D> T
T1—To > T)—T)

e A function of type float—int can be used anywhere a function of
type int—float is expected.

Page 18

What about reference types

e Perhaps?

7> 7
ref 7 > ref 7/

e This would allow us to give ref 5 the type ref float.

e But then when we dereference a location of type ref float we
might get an int which is not expected.

e Array types in Java give up on typechecking; the above is allowed:
and an runtime check is performed.

Page 19

References and polymorphism

e Why polymorphism?

e Reuse the same code with different types: Az.z can be applied
to any type

e Introduce type schemas:

o= VYao|T
T o= ... |«

e The function Ax.x would have type Va.a—«.

Page 20

Polymorphism

e A type rule to introduce a polymorphic value:

['Fer
['FeVa.r agl

e A type rule to use a polymorphic value at any type:

' e:Ya.1
['Fe 7|7 /a]

Page 21

References

e For any a we can prove that Az.z has type a—a«

e We can give ref (Az.x) one of the following two types:

—Va.ref (a—a), or

—ref (Va.(a—a))

e The type ref (Va.(a—a)) contains nested polymorphism which
is quite complicated to deal with. Most programming languages
restrict this in one way or the other, or completely disallow it.

e The type Va.ref (a—«) makes the system unsound.

Page 22

Soundness of references and polymorphism

e Consider

let fr=ref (Ax.x) in setref fr not; deref fr5

e Typechecks but applies not to 5.

Page 23

