Types and Type Safety

Page 1

Types as a way to avoid errors

e We have discussed this before

e Fixpressions like 1 -+ true with unspecified behavior are rejected
by the type system and are not allowed to execute

e Not every runtime error can be rejected by the type system.
Example: 1/0

Page 2

Type checking to avoid errors

e [f the goal is to eliminate errors then anything that is guaranteed
not to cause an error should be accepted by the type system

e This violates the whole concept of abstract data types.

Page 3

Stack ADT

module Stack (Stack, empty, push, pop) where

-— Internal representation type; not exported
data Stack a = Stack [al

empty = Stack []
push a (Stack as) = Stack (a : as)

pop (Stack []) = error "Empty stack"
pop (Stack (a:as)) = (a, Stack as)

Page 4

Using the ADT

module C where
import Stack

sl :: Stack Int
s1 = push 1 (push 2 (push 3 empty))

bad :: Int

bad = let Stack elements = sl in length elements

Page 5

Types as a programming discipline

e [iven if the type system has information that the code is safe;
it might still refuse to propagate the information and reject the
code

e Modern type systems are all about controlling access to informa-
tion as oppposed to avoiding run-time errors.

e This makes type systems relevant to encapsulation, security, proot-
carrying code, etc

Page 6

Type Soundness

Page 7

A little functional language

e Syntax of expressions

e = cl|x|Arelees
c::=0|1]---|addl]| true | false | not

e Syntax of types

7 1= int | bool | -+ | 7—7

Page 8

Semantics

e Syntax of values

v ii=clx| Are
e Small-step reductions:
addl 0 — 1
addl 1 — 2

not false — true
not true — false

(Ax.e)v — elv/x]

Page 9

Examples

(Az.addl z) 3 — addl 3

(Azx.(Ay.addl y) x) 3

(Ax.not x) true

—

[

Ll

4

(Ay.addl y) 3
addl 3
4

not true
false

Page 10

Examples

e (Azr.\y.addl z) (addl 3)) (addl 6) — 777

e Technically this is not related by — to anything

e Need to explain how to search for a place where to apply a re-
duction

Page 11

Evaluation contexts

e Syntax of evaluation contexts

E =] | Fe|vE

e Small-step evaluation

Ele] — El¢'] iff e—¢

e Big-step evaluation

evalle) =v it e—"w

Page 12

Decomposition

e ((Ar.\y.addl x) (addl 3)) (addl 6)

e Can be decomposed into: E|r] where:

_F =
_F =
_F =
_F =

], 7 = (Ax.\y.add1) (addl 3)) (addl 6)
([] (add1 6)), r = (Ax.Ay.addl z) (addl 3)
((]] (add1 3)) (addl 6)), r = Az.A\y.addl x
(Ax.Ay.addl z) []) (addl 6), r = (addl 3)

Page 13

Unique decomposition lemma

e Every e can be uniquely represented as either:

— a value v

— a decomposition E|r| for some evaluation context E and ex-
pression r where:

x 7 18 variable x, or
x 1 1s a redex, or

x r s a faulty expression

e Redexes: addl n | not b | (Az.e)v
e Faulty:

n e | true e | false e |
addl b | addl (Azx.e) |
not m | not (Az.e)

Page 14

Examples

e ((Ar.\y.addl x) (addl 3)) (addl 6)

e Can be decomposed into: E|r] where:

— E =], r=((Az.\y.addl x) (addl 3)) (addl 6)
No good

— FE = ([] (add1 6)), r = (Ax.\y.add1l) (addl 3)
No good

— FE = (([] (addl 3)) (addl1 6)), r = Az.\y.add1l x
No good

— F = ((Ax.A\y.addl z) []) (addl 6), r = (addl 3)
E|r] where r is a redex. Good

Page 15

Examples

e 5 decomposes as the value 5

L M decomposes as | T

e addl (not 5) decomposes as addl
faulty expression

e addl (addl 5) decomposes as add1l
redex

e (\y.2) (Ax.addl true) decomposes as [(Ay.2) (Ax.addl true)|

(not 5)| which focuses on a

(add1 5)| which focuses on a

(It contains a faulty expression though!)

Page 16

Examples

((Azx.Ay.addl z) (addl 3)) (addl 6)

= ((Azx.\y.addl z) |(addl 3)|) (addl 6)
— ((Az.\y.addl x) 4) (addl 6)
= |((Az.\y.addl z) 4)] (add1 6)
— (Ay.addl 4) (addl 6)
= (Ay.addl 4) |(addl 6)
(Ay.add1l 4) 7
(Ay.addl 4) 7
addl 4

addl 4
5

l

l

Il

Page 17

Big picture

e At every step, if we have not reached a final answer, we attempt
a decomposition of the current term

e The lemma says the decomposition can give us focus on a free
variable, a redex, or a faulty expression

e [f the source program is closed, we should never encounter free
variables

e [f the source program is well-typed, we should never encounter
faulty expressions

e [f the source program is closed and well-typed, we can always
make progress until we reach a value (or diverge)

Page 18

Relate typing to evaluation

e Must define what it means for an expression to typecheck

e Must show that typing is preserved by reduction

e Must also show that faulty expressions are not typable

Page 19

Type system

Fal“iT'_iCITAxU Fl—n:intAm
[' = true: bool Azt [" - false: bool Axf
['F addl: int—int A%¢ ['F not: bool—bool 477

ot ke 7
' \z.e:7—7

[Fepr =7 Tkext |
['Fejep: 7

(&

Page 20

Typing detour

e Can we typecheck (Ax.x x) (Ax.x x) ?

o [f it does typecheck then every subterm must also typecheck!

e Let’s try to typecheck x x:

'-ax:7—7 I'F a7’
'z a1

e So we must have 7'—7 = 7/ which is impossible in our system

Page 21

Typing recursion

e Many approaches: Add recursive type definitions, or polymor-
phism, or references, etc

e Add a construct fix with the following reduction rule:

fix f.e — 6[()\33.(fix fe) :E)/f]

e Intuition. The reduction is almost:

fix f.e — elfix f.e/f]

e The A delays the unfolding of the recursion until it is needed

Page 22

Example

Let fact = (fix f.An.if n =0 then 1 else nx* (f (n —1))):

fact 2

— (An.if n =0 then 1 else n * ((Ax.fact x) (n —1))) 2

— if 2 =0 then 1 else 2 ((Ax.fact x) (2 — 1))

— 2% ((Ax.fact x) 1)

— 2% (fact 1)

— 2% ((An.if n =0 then 1 else n * ((Ax.fact x) (n —1))) 1)
— 2% (if 1 =0 then 1 else 1 x ((Ax.fact z) (1 —1)))

— 2% (1% ((Ax.fact x) 0))

— 2% (1% (fact 0))

— 2% (1% ((An.if n =0 then 1 else nx* ((Az.fact x) (n —1))) 0))
— 2% (1% (1f 0 =0 then 1 else 0 ((Ax.fact x) (0 —1))))
— 2% (1x1)

Page 23

Type rule for fix

e [.ook at the reduction

fix f.e — 6[()\$.(fix fe) :Ij)/f]

e In the RHS, fix f.e is applied so it must have type: 7—7" for
some 7 and 7'; we must also have x: 7.

e In the RHS, f is substituted by something of type 7—7’
e The variable f may occur free in e with type 7—7'

e [f evaluation is to preserve types, the types of the LHS and RHS
must be the same:

I fir—7 Fer—1

I'Ffix f.e:7—7'

Page 24

Example

e The general rule:

I fir—7 Fer—1
['Ffix f.e:7—7'

o fact = (fix f.An.if n =0 then 1 elsenx* (f (n —1)))

frint—int, nint - n * (f (n—1)):int
frint—int,n:int - if n =0 then 1 else nx* (f (n —1)):int

frint—int = An.if n =0 then 1 else nx (f (n — 1)):int—int

- (fix f.An.if n =0 then 1 else nx (f (n — 1))): int—int

Page 25

Infinite loop

e Can we type an infinite loop now?

e Consider fix z.x
'o:r—7 Fxi7—7
' fix z.xo:7—7'

e Running (fix z.x) 0:

(
(x|(Ay.(fix x.x) y)/x]) O
E)\y.(ﬁx r.x)y) 0

fix x.z) 0

e The type of the infinite loop is 7’ for any type you want!

e You can use it in any context you want 1 + [|, not[], etc

Page 26

A little functional language (revisited)

e Syntax of expressions

e = c|x|Ar.e]|ee|fix fe
c::=0]1]---|addl | true| false | not

e Syntax of types

7 ::=int | bool | -+ | 77T

Page 27

Type safety

e The goal is to prove:

If = e: 7 then either the evaluation of e diverges or
eval(le) = v and F v: 7
e T'wo fundamental lemmas needed

e Progress: (Well-typed terms do not get stuck or do not encounter
configurations whose behavior is not specified by the semantics)

If - e: 7 then either e is a value or there exists an e’ such
that e — €’

e Subject Reduction: (Every step of evaluation preserves the above
property)

I[fFe:7and e+— e then e 7

Page 28

Subject reducution

e The heart of the proof really

e We look at each reduction in turn; assume the LHS typechecks:
use that knowledge to show that some type derivations must exist
and use them to construct a type derivation for the RHS

e Very similar to the proofs we have done for operational semantics
(Assignment 2).

Page 29

Example

e Consider a simple instance of our evaluation rules:

(Ax.e) (addl 3) — (Ax.e) 4

e Assume the LHS typechecks:

['F (Az.e):int—7 [F (addl 3):int
['F (Az.e) (addl 3): 7

We know that we have a derivation of I' F (Azx.e): int—7

e Use the derivation above, we can construct a derivation for the
RHS:
['F (Az.e)int—7 T'F 4:int
['F(Az.e) 47

Page 30

Proof of subject reduction

e Recall the definition of evaluation contexts:

E .= || FEe|vE
e Our reductions are:
Eladd1 0] — E[1]
Eladd1 1] — E[2]
E[not false] - Eltrue]
E[not true] — Flfalse]
E[(Ax.e)v] — Elelv/x]|
Elfix f.e] — FEle[(Ax.(fix f.e) z)/f]]

Page 31

Case |

e Assume [' = Fladdl 0]: 7. Show that I' = E[1]: 7

e What do we know about the type derivation I' = E|add1 0]: 7

e Not much unless we look at cases for F

e Definition of E is recursive; proof goes by induction on the defi-
nition of £

Page 32

Case [(continued)

e Prove by induction on E that:
If I' = Eladdl 0]: 7 then I' = E[1]: 7

e ¥ =|[]. We have I' F addl 0: 7 and we want to show
['=1:7.

e The only way we could possibly derive I' - addl 0: 7 is for 7 =
int. In that case, we can clearly derive a typing for the RHS.

Page 33

Case [(continued)

e Still proving by induction on £ that:
If I' = Eladdl 0]: 7 then I' = E[1]: 7

e /= F'e. Wehavel - E’ladd1 0] e: 7. Show that ' = E’[1] e: 7.
e The derivation we are given must look like:

['FFEladdl 0]: 7'—7 T'Fe7’
['F E'laddl 0] e: 7

e We want to build a derivation:
I'FE1:7"—1 T'ker
I'FE]er

e Induction hypothesis tells us that I' = E’[1]: 7/—7 because
['F E'laddl 0]: 7/—7.

Page 34

Other cases

e We can finish the proof of this case easily

e The proof of this case E|not false] — FE[true] would be almost
identical.

e Should have generalized the previous proof.

e What’s the general statement that would allow us to conclude:

If ' = Eladdl 0]: 7 then ' = E[1]: 7

If I' = Elnot false|: 7 then I - E|true]: 7

If '+ El(Az.e)v]: 7 then I' - Ele|v/z]|: 7

If I' = Elfix f.e]: 7 then I' = Ele[(Az.(fix f.e) x)/f]]: 7

Page 35

Replacement lemma

e In general we are given I' - Ele]: 7

e This implies that e must typecheck but not necessarily in the

same environment

e In general all we know is that for some IV and 7/ we can prove
"Ee: 7

e In general we want to replace e by some expression € of the
same type. In other words an expression e’ such that we can
independently prove that IV F e’ 7/

e We want a general lemma that says that this is always ok.

Page 36

Replacement lemma

e ... ["Fe: 7’
FI—E[G]:T

"Ee: 7 ... I"Feée: 7
FI—E’[e’]:T

Page 37

Seems obvious

e What's the big deal?

e Consider a language with exceptions: for example a language
where division by zero throws an exception: err

dv62 — 3

divn (0 — err

e Assume that x and y are of type int. It is reasonable to assume
that all of the following expressions typecheck:

addl (div z y)

not (divx y = 3)
(if (div x y = 3) then (Aa.a) else (Aa.a)) b

Page 38

Propagating exceptions

e Consider what happens at runtime if x = 1 and y = 0.

e The first expression evaluates as follows:

addl (div 1 0) — addl err

e The second expression evaluates as follows:

not (div1 0 =3) — not (err = 3)
> not err

Page 39

Propagating exceptions

e The third expression evaluates as follows:

(if (div 1 0 = 3) then (Aa.a) else (Aa.a)) 5
— (1if (err = 3) then (Aa.a) else (Aa.a)) 5
— (if err then (Aa.a) else (Aa.a)) 5
— errd

e So at runtime, err might appear in a context expecting an int, a
bool, or even a function

e For any 7 we have:

['Ferr:7

Page 40

Replacement lemma again

e We are given:
— '+ Elerr]: bool
— I err:int
—I"F 5:int
e By the replacement lemma conclude I' - E|5]: bool

e Our conclusion is wrong!
e Take F = [|. The assumptions are:
—I' Ferr: bool
— I+ err:int
— 1"+ 5:int
We have concluded: I' = 5: bool which is bogus.

Page 41

