
Spring 2003 CSCI B522 Programming Language Foundations 1

CSCI B522 Programming Language Foundations

Spring 2003

Final

Maximum: 40 points (40% of Final Grade)

Name (please print): .

Id:

1 Haskell 8 pts

2 Types 8 pts

3 Semantics I 8 pts

4 Proofs I 8 pts

5 Java Bytecode Language 8 pts

6 Proofs II 8 pts

Total 48 pts

Page 1 of 8

Spring 2003 CSCI B522 Programming Language Foundations 2

1 Haskell

There are four questions about Haskell:

1.1 Recursive Programming

You are given the following datatype of natural numbers with addition:

data Nat = Zero | Succ Nat

plus :: Nat -> Nat -> Nat
plus x Zero = x
plus x (Succ y) = Succ (plus x y)

Define the function multiply :: Nat -> Nat -> Nat with the obvious meaning.
Solution:

multiply :: Nat -> Nat -> Nat
multiply x y = rep (plus x) y

rep f Zero = Zero
rep f (Succ n) = f (rep f n)

1.2 List Manipulation

The definitions of map, (++) (append), foldl, and foldr from the standard library are:

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

Without using any recursive calls, write the following functions:

� sum :: (Num a) => [a] -> a which returns the sum of a list of numbers:

> sum [1,2,3,4]
10

Solution: sum = foldr (+) 0

� product :: (Num a) => [a] -> a which returns the product of a list of numbers:

> product [1,2,3,4]
24

Solution: product = foldr (*) 1

� concat :: [[a]] -> [a] which takes a list of lists which it appends all together:

> concat [[1,2,3], [4,5], [], [6,7]]
[1,2,3,4,5,6,7]

Solution: concat = foldr (++) []

Page 2 of 8

Spring 2003 CSCI B522 Programming Language Foundations 3

1.3 Reading Haskell

What does main below return?

f (h:t) = h : f [x | x <- t, x ‘mod‘ h /= 0]
main = f [2..]

Solution: All prime numbers

1.4 Typing Haskell

Consider the following program:

foldl f z [] = [z]
foldl f z (x:xs) = foldl f (f z x) xs

flip f x y = f y x

reverse = foldl (flip (\ x xs -> x : xs)) []

palin xs = reverse xs == xs

The intention is that palinwould take a list and check if it is a palindrome. Unfortunately compiling this program produces
the following message:

ERROR "Ex1.hs":8 - Type error in application
*** Expression : reverse xs == xs
*** Term : reverse xs
*** Type : [[a]]
*** Does not match : [a]
*** Because : unification would give infinite type

Identify the type error and correct it.
Solution: The first line should be foldl f z [] = z

Page 3 of 8

Spring 2003 CSCI B522 Programming Language Foundations 4

2 Types

You are given the syntax and type system for the following small language. A type
�

is either an int or a function type. An
expression � is either the constant � , the constant � , or an application of two expressions:

�������
int 	 ��
��

� ����� ��	
��	��
�
The type rules are:

� � ������
�������
������ � � ��������
�� ���!
���"
�#�$
���������
����
�$
�� ����
���"%���
� � � �&� �
�� � � � ��� �

� � � � �'�&�

Give a type derivation for the term:
��� �(� � � �

Solution:
)+*-,/.10324.5.107682905:;290�:5:;2<.5.10;2=.1076>2905:5:;24.1032?0�:5:@)BAC,D0;24.5.1056E2F0�:G290�:

)+*GA9,/.10324.10 6 2905:5:;24.1032?0�:)BAC,D0;24.10 6 290�:
)H*GAIA?,D032?0

Page 4 of 8

Spring 2003 CSCI B522 Programming Language Foundations 5

3 Semantics I

Complete the following interpreter for this very simplified call-by-value functional language:

data Exp =
Var String -- x

| Fun String Exp -- lambda x. e
| App Exp Exp -- e1 e2

data Value = Closure Exp Env
type Env = [(String,Value)]

eval :: Exp -> Env -> Value

eval (Var s) env =
let binding = lookup s env
in case binding of

Just v -> v

eval (e @ (Fun x body)) env = ...

eval (App e1 e2) env = ...

Solution:

eval :: Exp -> Env -> Value
eval (Var s) env =

let binding = lookup s env
in case binding of

Just v -> v
eval (e @ (Fun x body)) env = Closure e env
eval (App e1 e2) env =

let Closure (Fun s body) env’ = eval e1 env
v2 = eval e2 env

in eval body ((s,v2):env’)

Page 5 of 8

Spring 2003 CSCI B522 Programming Language Foundations 6

4 Proofs I

We define a binary tree as follows:

data tree = Leaf | Node tree tree

Here are three definitions that compute the size, the number of leaves, and the number of nodes in a tree:

size Leaf = 1
size (Node t1 t2) = size t1 + size t2 + 1

leaves Leaf = 1
leaves (Node t1 t2) = leaves t1 + leaves t2

nodes Leaf = 0
nodes (Node t1 t2) = nodes t1 + nodes t2 + 1

Prove the following theorem: for any binary tree t, we have that size(t) = leaves(t) + nodes(t).
Solution: By induction on the structure of t:

� t = Leaf: we have that

size Leaf = 1,
leaves Leaf = 1, and
nodes Leaf = 0.

Check 1 = 1 + 0.

� t = Node t_1 t_2: we have that

size (Node t1 t2) = size t1 + size t2 + 1
leaves (Node t1 t2) = leaves t1 + leaves t2
nodes (Node t1 t2) = nodes t1 + nodes t2 + 1

Since t1 and t2 are smaller trees, the inductive hypothesis gives:

size t1 = leaves t1 + nodes t1
size t2 = leaves t2 + nodes t2

Substituting and calculating we have:

size (Node t1 t2)
= size t1 + size t2 + 1
= leaves t1 + nodes t1 + leaves t2 + nodes t2 + 1
= (leaves t1 + leaves t2) + (nodes t1 + nodes t2 + 1)
= leaves (Node t1 t2) + nodes (Node t1 t2)

Page 6 of 8

Spring 2003 CSCI B522 Programming Language Foundations 7

5 Java Bytecode Language

According to the dynamic semantics (not the type systems) we studied and implemented, does this program evaluate without
errors? (See Appendix for the rules.) If you answer that the program is correct, show the contents of the local variables and
stack after each instruction. If you answer that the program is incorrect, explain the error.

(You need three local variables for this example; they are initialized to unusable values � ; the stack is initially empty.)

PC Instruction Locals Stack
1 new “C”

�����
2 store 0

����� (Uninit “C” 1 100)
3 load 0

(Uninit “C” 1 100) ���
4 store 1

(Uninit “C” 1 100) ��� (Uninit “C” 1 100)
5 load 0

(Uninit “C” 1 100) (Uninit “C” 1 100) �
6 store 2

(Uninit “C” 1 100) (Uninit “C” 1 100) � (Uninit “C” 1 100)
7 jsr 11

(Uninit “C” 1 100) (Uninit “C” 1 100) (Uninit “C” 1 100)
8 load 2

(Ret 8) (Obj “C” 100) (Obj “C” 100)
9 use “C”

(Ret 8) (Obj “C” 100) (Obj “C” 100) (Obj “C” 100)
10 halt

(Ret 8) (Obj “C” 100) (Obj “C” 100)
11 store 0

(Uninit “C” 1 100) (Uninit “C” 1 100) (Uninit “C” 1 100) (Ret 8)
12 load 1

(Ret 8) (Uninit “C” 1 100) (Uninit “C” 1 100)
13 init “C”

(Ret 8) (Uninit “C” 1 100) (Uninit “C” 1 100) (Uninit “C” 1 100)
14 ret 0

(Ret 8) (Obj “C” 100) (Obj “C” 100)

Page 7 of 8

Spring 2003 CSCI B522 Programming Language Foundations 8

6 Proofs II

In Java, the typing rule for conditional expressions (b ? e1 : e2) is as follows:

� The guard b must have type boolean
� if the expressions e1 and e2 have reference types t1 and t2, then either:

– t1 and t2 are identical, or
– one of t1 and t2 must be a subtype of the other

� . . .

For the purposes of this question, the semantics of Java is given by an abstract machine which includes among other rules
the following rule for method calls:

� ���8�����>�%�
��	� � ��

� �����>�

�����

where � has the definition: � � ��� � � � �3� � � � ���
return

�����

and
�	� � �

� � ��� �

� � �

is the expression
�

with all free occurrences of
� �

and
� �

replaced by
� �

and
� �

.
It is known that type safety fails for the fragment of Java described above. Find a counterexample.

Hint: Consider the following method:

Object m (Object a1, Object a2) { return (true ? a1 : a2); }

Solution:
The proof of subject reduction fails as follows. Consider the following program fragment where classes A and B are

unrelated:

Object m (Object a1, Object a2) { return (true ? a1 : a2); }
m(new A(), new B())

The above state typechecks. Let’s do one evaluation step. We get:

Object m (Object a1, Object a2) { return (true ? a1 : a2); }
return true ? new A() : new B();

which no longer typechecks.

Page 8 of 8

