
Proof of Unique Typing for MinML Programs

Venkatesh Choppella

February 17, 2002

Abstract

This note states and proves the Unique Typing Lemma for MinML Pro-
grams.

1 Introduction

The Unique Typing lemma asserts that if a MinML program is typable in a given
type environment, then that type is unique for that program and environment. In
class, there was a lot of discussion about the statement of this property. How-
ever, the proof was done quite informally with a lot of handwaving. The proof is
worked out in a more formal way with a level of detail that makes it resemble an
assembly language program. Such a detailed style is seldom attempted by hand,
but sometimes it helps to make all the steps explicit.

In class, the proof was presented using induction on derivations, and as several
of you pointed out, it is easier to use induction on programs for this proof. The
proof presented here uses induction on programs. It relies on the Inversion Lemma
given in the MinML document. Please refer to Amr’s notes for the definition of
the Inversion Lemma, the syntax of programs and the type rules of MinML.

We use the “obvious” and ubiquitous rule of matching known more formally
as the Principle of Extensionality for inductively defined terms (essentially trees).
Extensionality says that two trees are identical if their roots are identical and the
corresponding subtrees are identical. This principle holds for programs because
they can be viewed as trees.

So, for instance, ifp = o(p1; p2) andp0 = o0(p0

1
; p0

2
) wherep; p0; p1; p

0

1
; p2; p

0

2

are programs, ando; o 2 f+;�; =; �; <;=g, then by appealing to extensionality,
we can claim thatp = p0 if and only if o = o0, p1 = p0

1
andp2 = p0

2
.

1



2 Unique Typing Lemma

Notation: Each case of a proof is written out in a tabular fashion. Each row of
the proof has a number, a proof step, and a justification as to how that step was
derived. The justification is of the formRule(x; y:::), whereRule is a rule in
logic, a Lemma that we refer to, or a type system rule.x; y::: denote steps of the
proof already derived that are needed forRule to be applicable.

The TRANS rule denotes transitivity of equality. We also use the Substitution
rule when we want to substitutee1 for e2 (or vice versa) in an entitye, given that
e1 = e is proven. This is abbreviatedSubst(x; y). Herex is the label of the step
derivinge1 = e2, andy is the step containinge.

Lemma 2.1 (Unique typing for MinML Programs)
If � ` p : t and� ` p : t0, thent = t0.

Proof By induction onp.
We pick arbitrary�; p; t; t0 and assume the following:

A: � ` p : t
B: � ` p : t0

The rest of the proof is by cases onp. In all the cases the proof is by applying
Substitution, then invoking the Inversion Lemma, and then either the Transitivity
rule TRANS, or the induction hypothesis IH (for theif case).

1. p = n for some integern:

1: p = n Assumption for this case
2: � ` n : t Subst(1, A)
3: � ` n : t0 Subst(1, B)
4: t = int Inversion(2)
5: t0 = int Inversion(3)
6: t = t0 TRANS(4,5)

2



2. p = true: This case is obtained from the previous case by replacingn and
int with true andbool , respectively.

1: p = true Assumption for this case
2: � ` true : t Subst(1, A)
3: � ` true : t0 Subst(1, B)
4: t = bool Inversion(2)
5: t0 = bool Inversion(3)
6: t = t0 TRANS(4,5)

3. e = false: This case is obtained by replacingtrue with false in the previous
case.

1: p = false Assumption for this case
2: � ` false : t Subst(1, A)
3: � ` false : t0 Subst(1, B)
4: t = bool Inversion(2)
5: t0 = bool Inversion(3)
6: t = t0 TRANS(4,5)

4. p = x for some variablex:

1: p = x Assumption for this case
2: � ` x : t Subst(1, A)
3: � ` x : t0 Subst(1, B)
4: �(x) = t Inversion(2)
5: �(x) = t0 Inversion(3)
6: t = t0 TRANS(4,5)

5. p = o(p1; p2) for o 2 f+;�; �; =g and for some programsp1, p2

1: p = o(p1; p2) Assumption for this case
2: � ` o(p1; p2) : t Subst(1, A)
3: � ` o(p1; p2) : t

0 Subst(1, B)
4: t = int Inversion(2)
5: t0 = int Inversion(3)
6: t = t0 TRANS(4,5)

3



6. p = o(p1; p2) for o 2 f<;=g and for some programsp1, p2. This case is
obtained by replacingint with bool in the previous case.

1: p = o(p1; p2) Assumption for this case
2: � ` o(p1; p2) : t Subst(1, A)
3: � ` o(p1; p2) : t

0 Subst(1, B)
4: t = bool Inversion(2)
5: t0 = bool Inversion(3)
6: t = t0 TRANS(4,5)

7. p = if p1 then p2 elsep3 for some programsp1, p2 andp3:

1: p = if p1 then p2 elsep3 Assumption for this case
2: � ` if p1 then p2 elsep3 : t Subst(1, A)
3: � ` if p1 then p2 elsep3 : t0 Subst(1, B)
4: � ` p2 : t Inversion(2)
5: � ` p2 : t

0 Inversion(3)
6: t = t0 IH(4,5)

In the last step, we can appeal to the inductive hypothesis, becausep2 is a
subterm ofp.

8. p is equal to(fun tr f (tx x) fbg), wheretr; tx are types,x and f are
variables, andb is a program.

1: p = (fun tr f (tx x) fbg) Assumption for this case
2: � ` (fun tr f (tx x) fbg) : t Subst(1, A)
3: � ` (fun tr f (tx x) fbg) : t

0 Subst(1, B)
4: t = tx ! tr Inversion(2)
5: t0 = tx ! tr Inversion(3)
6: t = t0 TRANS(4,5)

a

4


