Replacement Lemma and its proof

Venkatesh Choppella

February 21, 2002

Abstract

This note proves the Replacement Lemma that we talked about in class on Tuesday 2/19/2002.

Lemma 0.1 (Replacement) If

- 1. $D \triangleright \Gamma \vdash E[e] : t$, such that the hole in E occurs at position p
- 2. $D' \triangleright \Gamma \vdash e : t'$
- 3. D' is a subderivation of D occurring at position p and
- 4. $\Gamma \vdash e' : t'$

then, $\Gamma \vdash E[e'] : t$.

It is crucial that D' be a subderivation of D. For otherwise, the hypotheses

- 1. $\Gamma \vdash E[e] : t$,
- 2. $\Gamma \vdash e : t'$ and
- 3. $\Gamma \vdash e' : t'$

do not imply $\Gamma \vdash E[e']$: t. Consider the counter-example $E = \Box$, $e = \underline{DivZero}$, e' = 5, $t = \mathtt{bool}$ and $t' = \mathtt{int}$. The judgements

- 1. $\Gamma \vdash \Box [\underline{DivZero}] : bool,$
- 2. $\Gamma \vdash \underline{DivZero}$: int and
- 3. $\Gamma \vdash 5$: int

are all true but imply $\Gamma \vdash \Box[5]$: int, which is false.

Also, it is necessary that the position of D' in D and the position of e in E be the same. Otherwise, we have the counter-example $E[\underline{DivZero}]$, where $E = \mathbf{if} \Box \mathbf{then} \ DivZero \ \mathbf{else} \ 1$. If

- 1. $D \triangleright \emptyset \vdash e : \mathsf{int}$
- 2. $D_1 \triangleright \emptyset \vdash \underline{DivZero}$: bool and
- 3. $D_2 \triangleright \emptyset \vdash \underline{DivZero}$: int

then both D_1 and D_2 are subderivations of D. If the restriction about the subderivation D' being at position p were removed, then choosing D' to be D_2 means that the propositions

- 1. $D \rhd \emptyset \vdash E[\underline{\textit{DivZero}}]$: int
- 2. $D_2 \rhd \emptyset \vdash \underline{DivZero}$: int
- 3. D_2 is a subderivation of D and
- 4. $\emptyset \vdash 5$: int

are all true, but imply the false judgement $\emptyset \vdash E[5]$: int.

Proof (of **Replacement Lemma**)

By induction on D. For the base cases, D has exactly one node. Therefore, $E = \Box$, D' = D, and t = t' and the result follows.

For the inductive cases, we have the following subcases depending on E:

1. $E = \square$. This implies D = D' and t = t' and this is similar to the case above.

 \dashv

2. $E=+(E_1,e_2)$: By the Inversion Lemma, t= int, and there are derivations D_1 and D_2 such that

$$D = \text{AOP} \frac{D_1 \rhd \Gamma \vdash E_1[e] : \text{int} \qquad D_2 \rhd \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash + (E_1[e], e) : \text{int}}$$

It follows that D' is a subderivation of D_1 . Clearly, D_1 is a proper subderivation of D. Thus, by the induction hypothesis, $\Gamma \vdash E_1[e']$: int. Again, by the Inversion Lemma, $\Gamma \vdash e_2$: int. The result follows from the application of the AOP rule.

The other cases for E are similar and omitted.