Replacement Lemma and its proof

Venkatesh Choppella

February 21, 2002

Abstract

This note proves the Replacement Lemma that we talked about in class on Tuesday 2/19/2002.

Lemma 0.1 (Replacement) *If*

- *1.* $D \triangleright \Gamma \vdash E[e]$: *t, such that the hole in E occurs at position p*
- 2. $D' \rhd \Gamma \vdash e : t'$
- *3.* D' is a subderivation of D occurring at position p and
- *4.* $\Gamma \vdash e' : t'$

then, $\Gamma \vdash E[e'] : t$ *.*

It is crucial that D' be a subderivation of D . For otherwise, the hypotheses

- 1. $\Gamma \vdash E[e] : t$,
- 2. $\Gamma \vdash e : t'$ and
- 3. $\Gamma \vdash e' : t'$

do not imply $\Gamma \vdash E[e'] : t$. Consider the counter-example $E = \Box$, $e = \underline{DivZero}$, $e' = 5$, $t =$ bool and $t' =$ int. The judgements

- 1. $\Gamma \vdash \Box[\underline{\text{DivZero}}]$: bool,
- 2. $\Gamma \vdash DivZero$: int and
- 3. Γ \vdash 5 : int

are all true but imply $\Gamma \vdash \Box [5]$: int, which is false.

Also, it is necessary that the position of D' in D and the position of e in E be the same. Otherwise, we have the counter-example $E[\text{DivZero}]$, where $E =$ **if** □ **then** *DivZero* **else** 1. If

- 1. $D \triangleright \emptyset \vdash e$: int
- 2. $D_1 \triangleright \emptyset \vdash \underline{DivZero}$: bool and
- 3. $D_2 \triangleright \emptyset \vdash \underline{DivZero}$: int

then both D_1 and D_2 are subderivations of D. If the restriction about the subderivation D' being at position p were removed, then choosing D' to be D_2 means that the propositions

- 1. $D \triangleright \emptyset \vdash E[DivZero]$: int
- 2. $D_2 \triangleright \emptyset \vdash \underline{DivZero}$: int
- 3. D_2 is a subderivation of D and
- 4. $\emptyset \vdash 5 : \text{int}$

are all true, but imply the false judgement $\emptyset \vdash E[5]$: int.

Proof (of **Replacement Lemma**)

By induction on D . For the base cases, D has exactly one node. Therefore, $E = \Box, D' = D$, and $t = t'$ and the result follows.

For the inductive cases, we have the following subcases depending on E :

1. $E = \Box$. This implies $D = D'$ and $t = t'$ and this is similar to the case above.

2. $E = +(E_1, e_2)$: By the Inversion Lemma, $t = \text{int}$, and there are derivations D_1 and D_2 such that

$$
D = \text{AOP} \frac{D_1 \triangleright \Gamma \vdash E_1[e] : \text{int} \quad D_2 \triangleright \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash + (E_1[e], e) : \text{int}}
$$

It follows that D' is a subderivation of D_1 . Clearly, D_1 is a proper subderivation of D. Thus, by the induction hypothesis, $\Gamma \vdash E_1[e']$: int. Again, by the Inversion Lemma, $\Gamma \vdash e_2 : \texttt{int}.$ The result follows from the application of the AOP rule.

The other cases for E are similar and omitted. \Box