MinML: Syntax, Static Semantics, Dynamic
Semantics, and Type Safety

1 Introduction

This note describes the syntax, static semantics, and dynamic semantics of a small func-
tional language, and then proves type safety. The material is based on the early chapters

Amr Sabry
February 21, 2002

of Robert Harper’s recent manuscriptogramming Languages: Theory and Pract|d$

but the dynamic semantics has been adapted to be as close as possible to the style used

by the Jbook [2] for describing the semantics of Java. The proof of type safety is more

involved because the semantics uses several intermediate structures like environments and

stacks whose invariants have to be maintained during subject reduction.

2 Syntax

The syntax is given by the following BNF. In the followimgranges over integer constants;
and bothr and f range over identifiers:

Types t u=
I

Operators 0

Program Expressionsp ::=

int
bool
t—t

= Ixl/l=1<

n

T

o(p; p)

true | false

if pthen p elsep
(funt f (t) {p})
p(p)

integer type
boolean type
function type

integer constants

variables

primitive applications

boolean constants

conditional expressions
user-defined recursive functions
function applications

Here are some examples of programs with their intuitive semantics:

pr o= 5 a trivial program

p2 = +(+(1,2),+(3,4)) another trivial program
ps = +(+(1,2),+(/(1,0),4)) divides by zero

ps = (funint f(int z){if = (z,0)then1elsex (z, f(—(z,1)))}) factorial

ps = (funint f(int z) {f(z)})(0) infinite loop

ps = if truethenlelse(funint f (int z) {f(x)})(0) evaluatesto 1

pr = +(true, 1) type error

ps = (funint f (bool =z){z}) another type error

3 Static Semantics

The static semantics filters the set of syntactically correct programs to exclude those pro-
grams that are not well-typed according to the rules in Figure 1. The intention (which we
formalize and prove in Section 5) is that the evaluation of a well-typed program will be
guaranteed not to encounter a certain class of errors. Note that a well-typed program may
still encounter errors in another class: non-termination and division by zero in our small
language. Also note that a program that fails to typecheck according to our rules may
still evaluate without any errors. (For examjifidrue then 1 else + (2, false) does not
typecheck but would evaluate taf allowed to execute.) In summary, the type rules are a
static approximation of what constitutes “good behavior.” The fact that such static approx-
imations can never be exact means that one can always develop a more sophisticated type
system that accepts a different class of programs.

Before getting to the type rules, note that the syntax forces every variable declaration
to be associated with a type: the formal parameter of a function must be given a type,
and the function declaration itself must be given a return type. Intuitively speaking the
process of type checking is to make sure that every use of a variable is consistent with its
declaration. To facilitate this process, variable declarations and their types are collected in
a table (called an environment and denoted with the I&tfevhich is propagated by the
type rules following the usual scoping rules. The judgniénte : ¢t means that given the
environment’, we can prove that expressiehas type. Each rule proves a judgment for a
certain kind of expression making assumptions about the judgments for the subexpressions.

Here is an example derivation for the factorial example:

z:int ,f:int —int Fx:int z:int ,f:int —int - 0:int

z:int , f:int —int k= (z,0) : bool zint , fint —int 1 :int
z:int , f:int —int Fif = (z,0)thenlelse* (z, f(—(z,1))) :int
@+ (funint f (int z) {if = (x,0)thenlelse = (z, f(—(z,1)))}) :int — int

where the derivatiol' is:

z:int ,f:int —int Fx:int z:int ,f:int —int F1:int
z:int ,f:int —int F f:int —int z:int | f:int —int F —(z,1) :int
z:int ,f:int —int Fz:int z:int ,f:int —int F f(—(z,1)) :int
z:int , f:int —int F x(z, f(—(z,1))) :int

INT — TRUE FALSE

C'En:int I' - true : bool [- false : bool
VAR —— if (z:t) el
F'-xz:t (z:¢)
EQFI—el:int Fl_egiint LT Fl—el:int Fl_egiint
I' b= (ey, e2) : bool I' F< (ey, e2) : bool
I'Feg:int I'ey:int .
AOP , if ois one of{+, —, x,
['Fo(er,es) :int ¢ =n /)
I '+ e; : bool eyt [Fes:t
'+ if e; thene, elsees : ¢
Dox:ity, fit,—t. Fp:t, ket t 'Fey:t
FUN » L f - p APP €1 1lg — €z [12
T'E(funt, f(ty x) {p}):t: — t, C'Fe(er):t

Figure 1: Typing Rulesp ranges over program expressions. For static semantics of pro-
gram expressiong,ranges over program expressions. For typings of runtime expressions,
e ranges over runtime expressions.

4 Dynamic Semantics

The dynamic semantics is a function that maps a syntactically valid program to a value.
The function is partial since programs may diverge, cause errors like division by zero, or
get stuck if a nonsensical operation such as additogrue is attempted at runtime. In the
next section we will be concerned with the proof that well-typed programs can never get
stuck during evaluation.

To be close to the ASM framework, the dynamic semantics is specified using an abstract
machine. The machine has three components: the code being evaluated, the environment
that holds the values for the free variables in the code, and the stack of activation records.
The evaluation proceeds in steps: at each step, a subexpression of the entire program is
chosen for evaluation. The subexpressions of the program are gradually replaced by their
values until the entire program reduces to a value or evaluation gets stuck.

To specify this evaluation formally, we first need to define the set of values and then
extend the syntax of expressions to accommodate the fact that some subexpressions may
be replaced by values or runtime errors.

Values von=on integer values
| true | false boolean values
| (closfunt f (t z) {p}),p) function values (closures)
| DivZero error condition for division by zero
Proper Values v* = n integer values
true | false boolean values

(clogfunt f (t x) {p}),p) function values (closures)

Environments p = {xy=wv,- -, 2, = vy}
Runtime Expressionse := n integer constants
| =z variables
| ofe,e) primitive applications
| true | false boolean constants
| if ethene elsee conditional expressions
| (funt f (¢t x) {p}) user-defined recursive functions
| e(e) function applications
| n integer values
| true | false boolean values
| (clogfunt f (t z) {p}),p) function values (closures)
| DivZero error condition for division by zero

The process of choosing one subexpression to evaluate is best explained using the no-
tion of evaluation contexts defined below.

Evaluation contexts £ [empty context

| o(E,e) evaluate left argument first

| o(v*, E) when done with left argument, go to right
| if Etheneelsee need the value of the test

| Ele) left first

| v*(E) then right

It is easy to verify that every runtime expressiohas aunique decompositioimto an
evaluation context’ and a subexpression of interest. This is formalized in the following
lemma.

Lemma 4.1 (Unique Decomposition)Every runtime expressians in one (and only one)
of the following forms:

e avaluewv,

e an evaluation context filled with:

o gk wNh R

an integer constant,

a variabler,

a boolean constaritue or false,

a function declaratiorifun ¢ f (¢ z) {p}),

a primitive operation where the first argument is an excepti@vZero, e),

an application of a primitive operation to two valueg?;, v2) where the first
value is guaranteed to be a proper value,

7. a conditional expression with an evaluated test posifianthen e, elsee,,

8. an application where the function position is an excepawrZerg(e),

9. an application of two values;(v,) where the function position is guaranteed

to be a proper value.

Each activation record is of the for(#’, p). In other words, when a function call occurs
within an evaluation context, we save the evaluation context on the stack together with
the environment needed for its free variables.

To evaluate a program, the abstract machine is put in the initial stétef, []). A
successful evaluation terminates with a state of the farm, [|) for some valuev and
environmenip. The transitions of the machine are:

(v,0',(E,p): k)

(Eln], p, k)

(Elz], p, k)

(E[true], p, k)
(E[false], p,)

(E[(fun ¢’ £ (t2) {p})], p, k)
(E[+(n1, n2)], p,)
(E[*(n1, n2)], p, K)
(E[=(n1,n2)], p, k)
(E[/(n1, n2)], p, K)
(E[/(n,0)], p, k)

(E[= (n,n)], p, k)
(E[= (n1,n2)], p, k)
(E[< (n1,n2)], p, k)
(E[< (n1,n2)], p, £)
(E|o(v, DivZero), p, k)
(E[o(DivZero e)], p, k)

(E[if true then e, elseesy], p, k)
(E|if false then e, elsees], p, k)
(E[if DivZerothen e; elsees], p, k)

(Elcl(v)]; p, &)

(E[DivZerd(e)], p, k)
(El(clodfunt’ f (t x) {p}), '}(DivZero)], p,)

I

Pl it

L1

I

| —

| —

falsel, p, k) if ny # ny
true], p, k) if ny < ny
false], p, k) if ny > ny
DivZerd, p, k)
DivZerd, p, k)

(e,p'lx :==wv, f:=¢l],(E,p): k)
wherecl = (clogfun t' f (t x) {p}), p')
andv # DivZero

(E[DivZerd, p, k)

(E[DivZerd, p, k)

As a small example, we trace the evaluation of the program:

(funint f(int z) {if = (z,0)thenl elsex (z, f(—(x,1)))})(1)

which should compute the factorial bf

((funiint f (int z) {if = (x,0)thenlelsex (z, f(—(z,1)))})(1),0,]])
— {((clogfunint f (int z){if = (z,0)thenlelsex (z,f(—(z,1)))}),0)(1),0,[])
— ({clos...,0)(1),0,)
— (if = (x,0)then1elsex (z, f(—(z,1))),{z =1,f = (clos...,0)},([],0) : [])
— (if =(1,0)thenlelsex (z, f(—(z,1))),{z =1,f = (clos...,0)},(],0) : [])
— (if =(L,0)then1elsex (z, f(—(z,1))),{z = 1, f = (clos...,0)}, ([,) : [|)
—— (if false then 1 else x (z, f(—(z,1))),{z =1, f = (clos...,0)},([],0) : [])
— (i, (=@, 1)), o = 1, f = (clos...., 0}, ([,0) : [}
— (oL f(=(z), {# = 1, f = (clos. .., 0)}, ([}, 0) : [}
— (L, {clos...,0) (~(z, 1))}, {z = L, f = (clos...,0)}, (,0) : [}
— (#(1, (clos. .., 0)(~(1,1))), {z = 1, f = (clos...,0)}, ([},0) : [
— (L, (clos...,0)(~(L,1))), {z = 1, = (clos. .., 0}, ([, 0) : [
— (x(L, (clos. .., 0)(0), {x = L, f = (clos...., 0}, ([,0) :)
— (if =(z,0)thenlelsex (z, f(—(x,1))),{z=0,f=...}, x(L,[),{z=1Lf=...}):(
— (if =(0,0)thenlelsex (z, f(—(z,1))),{z=0,f=...},*x(L,]]),{z=1f=...}):(
— (if =(0,0)thenlelsex (z, f(—(z,1))),{z=0,f=...},*x(L,]),{z=1LFf=...}):(
— (if true then1else* (z, f(—(z,1))),{z =0,f =...},x(1,[]),{z=1,f=...}) : ([],0)
— (L{z=0,f=..}, (LD Az =1,f=...}) : ([,0) : [}
— (L{z=0,f=...}, (L) Az =1,f=...}) : ([,0) : [}
— (LD Az =Lf=...L(.0):
— (L{z=Lf=...}(0):[)
— (L,0,]))

It is useful to classify the states of the abstract machine in the following way:

Definition 4.1 (Start State, Terminal state, Final state, Stuck state) et s be a state.
s is terminalif there are no transitions froma. Otherwise, it imon-terminal
s isinitial if it is of the form(p, 0, []).
s isfinal, or is avalue statef it is of the form(v, p, []).
s is stuckif it is terminal but not final.

5 Type Safety

=R
S~ N

Type safety means that if a program typechecks then its evaluation cannot get stuck. Thus

what we wish to guarantee is that the evaluation of a prograia typet can only result
in one of the following cases:

e a proper value* of typet,
e an exceptiorDivZerg, or

¢ an infinite loop.

To understand the proof strategy, consider the case of a prqgadnypet evaluating
to a proper value* in a million transitions of our abstract machine. To relate the initial
program and its type to the valug, it is natural to proceed one machine transition at a time.
If we can prove that each machine transition preserves the type of the expression, and that
well-typed machine states can always make progress until they become final states, then we
can conclude our main result by induction on the number of machine transitions. This is
the gist of our proof technique. This basic idea has to be extended however since evaluation
uses auxiliary structures (runtime values, environments, and stack frames) that affect the
current expression being evaluated. Hence to guarantee that the current expression remains
well-typed, we must maintain certain type information about runtime values, environments
and stack frames and propagate this information at every transition.

5.1 Definitions

We begin by providing the definitions for the type rules of environments, runtime values,
and stacks.

Definition 5.1 (Environments match) A typing environmenkt matches a value environ-
mentp (written " ~ p) if the domains of both environments are identical and for every
variablez in that domain, we have thdt> p(z) : I'(x).

Definition 5.2 (Value typing) All values are closed and hence can be typed in an empty
type environment but the type rules are valid in any environfient

INT ——— TRUE FALSE
- I'kn:int — T'F true: bool I' + false : bool
DIVZ f t
— T'F DivZero: t orany
IV z:t it tobFp:it I~ o
CLOS ity f it —tabEp ity 1Y

T F{(clodfunt, f (t,) {p}),p) : t1 — ts

Note that when we type closures we do not rely on the given signature, but instead rely on
the available runtime information. To infer that a closure is of type> t,, we must find

a typing environment that matches the closure’s environment and prove that the body has
the right type. The rule for exceptions says that we can assign any typefero.

Definition 5.3 (Frame typing) We view each stack frame as a function that expects a re-
turn value calledr from the callee and then deliver its own value to its caller.

Lozt F Elx]: ty ['~p
(E,p) : t; — to

Note that the name cannot occur ifl". This is not a problem because we can rename
variables if there is a clash.

Definition 5.4 (Stack Typing) The stack is just a sequence of frames where each frame
expects a return value from the frame after it and passes it to the frame before it. The entire
stack can thus be seen as taking a return value from the current expression and producing
the final answer:

for anyt

(E,p) :t; —t K:t—ty
(E,p): k) 1t — ty

J:t—t
The final answer can be of any type, which explains the typing we give to the bottom of the

stack.

5.2 Little Lemmas

Before getting into the main proof of type safety, we provide without proof some useful
auxiliary lemmas. We writé) > .J to denote thaf is a well-typing judgment whose deriva-
tionis D.

Lemma 5.1 (Replacement)If
1. DeT F Ele] : t, such that the hole i occurs at positiomn,
2. DT Fe:t, and
3. D' is a subderivation o) occurring at positiorp,
4. T ket
then,I" - Ele] : .

This basically says that if we can typecheck an expressiorflikéthen we can certainly
also typecheclg[6] sinceb and6 have the same type. The lemma fails if we alloto be
a value. As a counterexample in that case, jakeDivZero.

Lemma 5.2 (Substitution) If
1. zis not free inE,
2.0,z :t+ Elx]: t'and
3.TFe:t,
thenT' - Ele| : ¢'. Conversely, if
1. x does not occur inlom(I") orin FV(Ele])

9

2. D>T F Ele] : t, such that the hole i occurs at position, and
3. DT Fe:t, and
4. D' is a subderivation op occurring at positiorp,

thenl',z : t' - E|x] : .

This is almost the same as the previous lemma. It says that if we can typdchécknder
the assumption that is anint , then we can certainly typechedk5] where we have
replacedr by something of the same type, and vice versa.

Lemma 5.3 (Environment Extension) If I' - e : t andl” O T, thenl” |- e : t.

This lemma says that adding more “junk” variables to the environment doesn't affect typ-
ing. So if we can prove thdit- 5 : int thenwe can also prove thét : bool } 5 :int .

Lemma 5.4 (Environment Contraction) If ',z : t F e : tandz ¢ FV (e), thenl |- e : t.

This lemma is the converse of Lemma 5.3. It says that if a variable doesn’t occur free in
an expression, omitting it from the set of type assumptions doesn't affect the expression’s
typing. So, since we can proez :int 5 :int , we canalso provét 5:int .

Lemma 5.5 (Subterm typing) If ' = Ele] : tthenl' e : ¢/

In other words, if we type a term, then all its subterms must have types. The environment
does not change in the statement since the evaluation cdntiogs not bind any variables.

Lemma 5.6 (Inversion Lemma)

o IfI'Fn:t thent = int .
o If ' - true: t, thent = bool .
o If ' - false: t, thent = bool .
o If T x: ¢ thenl'(z) =t.

o If ' o(ey,eq) : t Whereo is one of{=, <}, thent = bool andT ¢, : int and
'+ €9 . int .

o If T o(eq,ez) : t whereo is one of{+, —, %, /}, thent = int andT + e, : int
andI' e, :int .

o If ' if e, thene, elsees : ¢, thenl' F e, : bool andI' e, : tandl' F es : t.

o IfTF (funt, f (t, z) {p}):t,thent =t, — t,andl,z : t,, f : t, — t, b p:t,.

10

If I' - eq(es) : t, then there exists g such that e, : t, — tandl F ey : to.

If " n:t thent = int .

If I" - true : t, thent = bool .

o If T false: t, thent = bool .

If I = (clogfun ¢, f (t. =) {p}), ') : t, then there exist’ ~ p’ andt¢, andt, such
thatt =t; — teandl’,x : ¢y, f : t; = ta - p: to.

Lemma 5.7 (Canonical Forms Lemma)Suppose thal - v : ¢:

e If £t =int ,thenv = n for somen or v = DivZero.
e If £t = bool ,thenv = true or v = false or v = DivZera

o If t =1t — ty, thenv = (clogfun t, f (¢, x) {p}), p) for somet,, f, t,, x, p, andp,
or v = DivZero

In other words, the type of a value predicts its form.

5.3 Main Lemma and Theorem

The mostinteresting thing here is the definition of what constitutes a safe state, and Lemma 5.9
which describes the evolution of safe states. Given Lemma 5.9, the actual proof of type
safety (Theorem 5.8) is rather straightforward.

Definition 5.5 (Safe state)A states = (e, p, k) is safe with typet if there existl” and¢
such that

1.TFe:t
2.T~p
3. k:t—ty

We writes : ¢, to denote that is safe with type;. s is safeif s : ¢, for somet;. Otherwise
s is unsafe

Theorem 5.8 (Type Safety)If § - p : ¢,

(p,0, 1) —" sy

ands; is a terminal state, theg is a final statg(v, p, [|), wherev is a value of type;.

11

Note that our definition of values includes tBé&vZeroexception which has every type.
Proof. From Lemma 5.9, it follows by induction on nhumber of transitions that :ift
ands —* §', thens’ : t ands’ is not stuck.
Since(p, 0,]) : t;, and(p, 0, []) —"* s, it follows thats is not stuck and : ¢;. Since
s is terminal and not stuck, is a final stat€v, p, [|). Sinces; : t;, v has typé;.

Lemma 5.9 (Progress and Subject Reduction Lemma).ets : ¢;. Then,
e Progress:s is not stuck, i.e.s is either final or non-terminal.

e Subject Reduction: If s — s’ thens' : ¢;.

Proof.
Lets = (e, p,t) and letl’, ¢ be such that

e ['Fe:t,
e '~ p,and
o K:1—ty,

The proof is by case analysis emising the unique decomposition lemma. In each case,
we verify thats is either final or can be updated to a stelte= (¢’, o', x'). We verify that
s" : ty by constructing™ andt’ such that

e ["Fe: ¥,
o [~/ and

o k't —ty.

Case analysis o1

e Casee is a valuev. We are giverl’ v : ¢, ' ~ p, andk : t — ;. If k is empty
then we have a final state and we are done. Else we have(FE1,p;) : x; and
the state(v, p, (E1, p1) : k1) can be updated tOF [v], p1, x1). Because we know
thatx : ¢ — t;, we know that there exists # such that(E,, p;) : ¢ — t' and
k1 : t' — t;. BecausgEy,p;) : t — t', there must exist &, such thatl’y, ~ p,
and wherd'y, x : t - Ey[z] : t'. The result then follows easily using the substitution
lemma sincer has type in any environment.

e Casee is E[n]. We are giverl’ - Efn] : t,T" ~ p, andx : ¢t — t;. By an
application of the subterm typing lemma followed by an application of the inversion
lemmal’ - n :int . The stateEn|, p,x) can be updated toF n], p, k). Since
['Fn:int , we can conclude by the replacement lemmalhatE|[n| : ¢.

e Caser is E[true] or Elfalse]. These cases are almost identical to the previous case.

12

Casee is E[z]. We are giverl' - E[z] : t,T" ~ p, andx : t — t;. By the subterm
typing lemma and the inversion lemma, the variabl@ust be in the domain df.
Lett, = I'(z) then we haved' - x : t,. Becausd' ~ p, the variabler must also
be in the domain op. This means that it is possible to update the state], p, x)
to (Elp(x)], p, k). Sincel’ ~ p, we know that) - p(x) : ¢,. By the environment
extension lemma& + p(z) : ¢, and by the replacement lemra- E[p(x)] : t.

Casee is E[(fun t, f (t, z) {b})]. We know thatl’ - E[(fun ¢, f (¢, z) {b})] : ¢,

I' ~ p,andx : t — t;. By the subterm typing lemma and the inversion lemma,
'k (funt, f (t,) {b}) : t, — t,. Hencel',z : t,, f : t, — t, - b: t,.. The state
(E[(funt, f (t; =) {b})], p, k) can be updated tF[(clos(fun ¢, f (¢, z) {b}), p)}, p,).
We need to show thdt ~ E[(clogfun ¢, f (t, z) {b}),p)] : t. Given thatl’,z :
te,f : t, — t. = b : t. and thatl' ~ p, it follows from the definition of value
typing thatd - (clogfun ¢, f (t, x) {b}), p) : t. — t,. The result follows using the
environment extension lemma and then the replacement lemma.

Casee = E[o(DivZero, e,)]. The state can be updated(tb|DivZerd, p, k) and the
result follows.

Casee = Flo(v},v2)]. We only consider the case of division; the other cases are
similar and somewhat simpler since they do not themselves raise exceptions. We are
givenT' - E[/(v],vs)] : t. By the subterm typing lemma and the inversion lemma,
we getl’ - /(vf,v9) :int . Thisimpliesthafl + o :int andl - v, : int . By

the canonical forms lemma, the valuemust be an integer value angis either an
integer value or an exception. We proceed by cases:

— v = m, v2 = ng # 0. The state(E[/(n1,n2)], p, k) can be updated to
(E[n1/na], p, k). The result follows easily.

— vy = ny, vy = 0 0rvy = DivZero The statd E[/(ny, v2)], p, k) can be updated
to the state E[DivZerd, p, k) and the result also follows easily sinBavZero
can have any type includirigt .

Casee = E|if vthene, elsee,|. Following the previous cases, we first conclude that
v has typebool and using the canonical forms lemma, consider the three possible
values of this typetrue, false, or DivZero. The result follows for each case.

Casee = E[DivZerd(e)]. Easy.

13

e Caser = E[vf(v)]. Followingthe previous cases, we first show that vf : t5 — ¢,
andl’ - v, : o. If vy is @an exception, we are done as before. Otherwise, the canonical
forms lemma ensures that is a closure of the forniclosfun ¢, f (t. =) {pc}), pc)-
Because we know this closure has type— t¢;, we conclude that there exists
al.~p.such thatl'.,z : ty, f : to — ¢, F p. : t;. The state can be updated to
(Pe, pelr := w9, [:= 1], (E, p) : k) and it suffices to prove thal'., x : to, f : to —
t1 ~ plr == vy, f := v] and that((E, p) : k) : t; — t. The first statement is im-
mediate. To prove the second we need to show (hap) : ¢t; — ¢ which we can
prove if we know thatl’, z : t; = E[z] : t. This follows from the substitution lemma.

Acknowledgments

Thanks to Todd Veldhuizen for correcting the definition of evaluation contexts to only use
proper values, and thanks for Venkatesh Choppella for correcting the statements of the
substitution and replacement lemmas, and for extensive comments.

References

[1] HARPER R. Programming Languages: Theory and Practi@raft, 2001.

[2] STARK, R. F., SHMID, J.,AND BORGER E. Java and the Java Virtual Machine:
Definition, Verification, ValidationSpringer-Verlag, 2001.

A AsmGofer Implementation

{-

File: minML.gs

A small typed functional language and its formalization in AsmGofer...

by Amr Sabry (based on Ch. 3-5 of Programming Languages: Theory and
Practice, Robert Harper, Draft of Dec. 2000 and using the style
developed for the JBook)

-- Annotated abstract syntax trees:

-- * jinitially the AST has no types and only uses syntactic constructors

-- * after typechecking the nodes are decorated with types

-- * during evaluation syntactic constructors are replaced by semantic values

14

data MLType = T Int | T_Bool | T_Arrow MLType MLType
instance AsmTerm MLType

data MLOp = O_Plus | O_Times | O_Minus | O_Div | O _Equal | O_LessThan
instance AsmTerm MLOp

data MLTerm a = Term a [MLTerm a]
instance AsmTerm a => AsmTerm (MLTerm a)

data MLForm = - a
-- Syntactic forms
S Num Int -1
| S_Var String -1
| S_Prim MLOp -- [MLTerm a, MLTerm a]
| S True -1
| S_False -1
| S_If -- [MLTerm a, MLTerm a, MLTerm a]
| S_Fun MLType String (String,MLType) -- [MLTerm a]
| S_App -- [MLTerm a, MLTerm a]
-- Runtime values or errors
| R_Val MLValue -]
| R_DivZero -]

instance AsmTerm MLForm

type MLExp = MLTerm MLForm
type TypedMLExp = MLTerm (MLForm,MLType)

data MLValue = V_Num Int | V_True | V_False | V_Closure MLExp VEnv
instance AsmTerm MLValue

type VEnv = [(String,MLValue)]

-- Static semantics:
-- * typechecking takes an AST and returns another AST with all the types
- or aborts if there is an error

type TEnv = [(String,MLType)]
tlookup :: String -> TEnv -> MLType

tlookup v [] = error ("Typechecking: unbound variable " ++ v)
tlookup v ((s,t):r) = if v == s then t else tlookup v r

15

typeOf :: TypedMLExp -> MLType
typeOf (Term (,t)) =1t

typecheck :: MLExp -> TEnv -> TypedMLExp
typecheck exp tenv =
case exp of

Term (S_Num i) [] -> Term (S_Num i, T_Int) []
Term (S_Var v) [] -> Term (S_Var v, tlookup v tenv) []

Term (S_Prim b) [el,e2] | b == O_Equal || b == O_LessThan ->
let el’ = typecheck el tenv
e2’ = typecheck e2 tenv
rt = case (typeOf el’, typeOf e2’) of
(T_Int,T_Int) -> T_Bool
(t1,t2) ->
error ("Typechecking: operator <"
++ show b ++ "> requires operands of type int; found <"
++ show t1 ++ "> and <" ++ show t2 ++ ">"
in Term (S_Prim b, rt) [el’,e2]]

Term (S_Prim b) [el,e2] | b == O_Plus || b == O_Minus ||
b == O_Times || b == O_Div ->
let el’ = typecheck el tenv
e2' = typecheck e2 tenv
rt = case (typeOf el’, typeOf e2’) of
(T_Int,T_Int) -> T_Int
(t1,t2) ->
error ("Typechecking: operator <"
++ show b ++ "> requires operands of type int; found <"
++ show t1 ++ "> and <" ++ show t2 ++ ">"
in Term (S_Prim b, rt) [el’,e2']

Term S_True [] -> Term (S_True, T_Bool) []
Term S _False [] -> Term (S_False, T_Bool) []

Term S_If [el,e2,e3] ->
let el’ = typecheck el tenv
e2' = typecheck e2 tenv
e3’ = typecheck e3 tenv
rt = if typeOf el’ == T_Bool && typeOf e2’ == typeOf e3’
then typeOf e2’

16

else error ("Typechecking: if requires a boolean and
++ "two expressions of the same type; found <"
++ show (typeOf el’) ++ ">, <"
++ show (typeOf e2’) ++ ">, and <"
++ show (typeOf e3’) ++ ">"

in Term (S_If,rt) [el’,e2',e3]

Term (S_Fun rt fn (pn,pt)) [e] ->
let tenv' = (fn, T_Arrow pt rt) : (pn, pt) : tenv
e’ = typecheck e tenv’
ct = if typeOf e == rt
then T_Arrow pt rt
else error ("Typechecking: declared return type <" ++ show rt
++ "> does not agree with actual return type <
++ show (typeOf e’) ++ ">"
in Term (S_Fun rt fn (pn,pt), ct) [e]

Term S_App [el,e2] ->
let el’ = typecheck el tenv
e2’ = typecheck e2 tenv
ct = case (typeOf el’, typeOf e2’) of
(T_Arrow t2 t, t27) | 12 == 12" -> t
(t1,t2) ->
error ("Typechecking: attempting to apply a
++ "function of type <"
++ show tl1 ++ "> to an argument of type <"
++ show t2 ++ ">"
in Term (S_App,ct) [el,e2]]

exp -> error ("Typecheck: unexpected expression " ++ show exp)

type Pos = [Inf]

: Pos -> Pos

up [] =[] -- NOT an error (used to return from top level evaluation)
up ds = init ds

firstPos :: Pos
firstPos =]

o (Pos,Int) -> Pos

17

down (ds,d) = ds ++ [d]

-- During evaluation we replace syntactic constructors by dynamic values or
-- runtime errors
substMLExp :: (MLExp, MLExp, Pos) -> MLExp
substMLExp (e, (Term _), []) = e
substMLExp (e, (Term a ts), p:ps) =
let (lts,rt:irts) = splitAt p ts
in Term a (lts ++ [substMLExp(e,rt,ps)] ++ rts)
substMLExp (el, e2, p) =
error ("substMLExp: unexpected arguments
++ show el ++ " "
++ show e2 ++ ", and "
++ show p)

n

-- context takes an expression and a position and returns

-- the subexpression at the position

context :: (MLExp, Pos) -> MLExp

context (e,[]) = e

context (Term _ es, i:is) = context (es!li, is)

context (e,p) = error ("context: unexpected expression and position
++ show e ++ " and "
++ show p)

n

code :: Dynamic MLExp
code = initVal "code" asmDefault

pos :: Dynamic Pos
pos = initVal "pos" firstPos

env :: Dynamic VEnv
env = initVal "env" []

type SFrame = (MLExp,Pos,VEnv)

stack :: Dynamic [SFrame]
stack = initval "stack" []

initialize :: MLExp -> 10 ()

initialize e =
firel (do code = e

18

pos := firstPos
env =]
stack = [])

-- Evaluation:

-- * proceeds by finding a position where we can evaluate
-- * performs the evaluation

-- * replaces the constructor at the position with the value

vlookup :: String -> VEnv -> MLValue
viookup v [] = error ("vlookup: unexpected unbound variable" ++ v)
viookup v ((s,va)ir) = if v == s then va else vlookup v r
execML :: Rule ()
execML =
case context (code,pos) of
Term (S_Num i) [] -> yield (Term (R_Val (V_Num 1)) [])
Term (S_Var v) [] -> if v ‘elem' map fst env
then yield (Term (R_Val (vlookup v env)) [])
else skip
Term (S_Prim op) [Term (R_Val v1) [], Term (R_Val v2) []] ->
if op == O_Div && v2 == V_Num 0
then vyield (Term R_DivZero [])
else yield (Term (applyOp op v1 v2) [])

Term (S_Prim op) [Term (R_Val v1) [], Term R_DivZero []] ->
yield (Term R_DivZero [])

Term (S_Prim op) [Term (R_Val v1) [], e2] -> pos := down (pos,1)
Term (S_Prim op) [Term R_DivZero [], e2] -> yield (Term R_DivZero [])
Term (S_Prim op) [el,e2] -> pos := down (pos,0)

Term S_True [] -> yield (Term (R_Val V_True) [])

Term S_False [] -> yield (Term (R_Val V_False) [])

Term (S_If) [Term R_DivZero [], e2, e3] -> yield (Term R_DivZero [])

19

Term (S_If) [Term (R_Val vl) [], e2, e3] ->
case vl of
V_True -> yield e2
V_False -> yield e3
_ -> skip

Term (S_If) [el,e2,e3] -> pos := down (pos,0)

Term (S_Fun rt fn (pn,pt)) [e] ->
yield (Term (R_Val (V_Closure (Term (S_Fun rt fn (pn,pt)) [e]) env)) [])

Term S_App [Term (R_Val vl1) [], Term R_DivZero []] ->
yield (Term R_DivZero [])

Term S_App [Term (R_Val v1) [], Term (R_Val v2) []] ->
case vl of
V_Closure (Term (S_Fun rt fn (pn,pt)) [e]) lenv ->

do stack := (code,pos,env) : stack
code = e
pos := firstPos
env = (pn,v2) : (fn,vl) : lenv
-> skip

Term S_App [Term R_DivZero [], e2] -> yield (Term R_DivZero [])
Term S_App [Term (R_Val v) [], e2] -> pos := down (pos,1)
Term S_App [el,e2] -> pos := down (pos,0)

Term (R_Val v) ts ->
case stack of

[l -> skip
(cl,pl,el):sl -> do code := substMLExp (Term (R_Val v) ts, cl1, pl)
pos = up pl
env = el
stack = sl
Term R_DivZero [] ->
case stack of
[] -> skip
(c1,p1,el) : sl -> do code := substMLExp (Term R_DivZero [], c1, pl)
pos = up pl
env = el
stack := sl

20

e -> error ("execML:. unexpected expression " ++ show e)

yield :: MLExp -> Rule ()

yield result = do
code := substMLExp (result , code , pos)
pos = up pos

eval :: MLExp -> 10 ()

eval e = do putStr "- \nTypechecking..."
putStr "\nExpression: "
print e
putStr "has type:
print (typeOf (typecheck e []))
putStr " \nEvaluating...\n"
initialize e
fixpoint (trace printState execML)
printValue

applyOp :: MLOp -> MLValue -> MLValue -> MLForm
applyOp O_Plus (V_Num i1) (V_Num i2) = R_Val (V_Num (i1+i2))
applyOp O_Times (V_Num il1) (V_Num i2) R_Val (V_Num (i1*i2))
applyOp O_Minus (V_Num il1l) (V_Num i2) = R_Val (V_Num (i1-i2))
applyOp O_Div (V_Num il1l) (V_Num i2) = R_Val (V_Num (il/i2))
applyOp O_Equal (V_Num il1) (V_Num i2) =

R_Val (if il == i2 then V_True else V_False)
applyOp O_LessThan (V_Num il1) (V_Num i2) =

R _Val (if il < i2 then V_True else V_False)
applyOp op vl v2 =

error ("applyOp: unexpected operator and values"

++ show op ++ ", " ++ show vl ++ ", and " ++ show v2)

printState :: 10 ()

printState = do putStr "<code =
print code
putStr ",pos
print pos
putStr ".env =
print env
putStr ",stack size =
print (length stack)
putStr ">\n \n

n

21

printValue :: 10 ()
printValue = do putStr "VALUE = "
case code of
Term (R_Val v) [] -> print v
Term R_DivZero [] -> putStr "Exception: division by zero"
_ > error ("Unexpected value" ++ show code)

numg e = Term (S_Num e) []

varE e = Term (S_Var e) |[]

trueE = Term S_True []

falseE = Term S_False []

primE b el e2 = Term (S_Prim b) [el,e2]
addE el e2 = primgE O_Plus el e2

divE el e2 = primE O_Div el e2

less el e2 = primE O_LessThan el e2
ifE el e2 e3 = Term S _If [el,e2,e3]

funE rt fn (pn,pt) b = Term (S_Fun rt fn (pn,pt)) [b]
appE el e2 = Term S_App [el,e2]

tl = addE (addE (numkE 1) (hnumk 2)) (addE (hnumE 3) (humE 4))
t2 = addE (addE (numkE 1) (numE 2)) (addE (divE (numE 1) (numE 0)) (numE 4))
t3 = appE (funkE T_Int "f* ("X",T_Int) (appE (varE "f") (var "x"))) (numg 0)
t4 = ifE trueE (numk 1) t3
t5 = fungE T_Int "f* ("X",T_Int)
(ifE (primgE O_Equal (varE "x") (numE 0))
(numE 1)
(primg O_Times (varE "x")
(appE (varE "f")
(prime O_Minus (varE "x") (numkg 1)))))

t6 = appE t5 (humk 5) -- factorial of 5
t7 = fungE T_Int "f" ("x",T_Int)

(ifE (primE O_Equal (varE "x") (numEk 0))
(numE 1)
(prime O_Times
(appE (varE "f")
(prime O_Minus (varE "x") (numEk 1))
(varE "x")))
t8 = appE t7 (numE 5) -- checking environment after popping stack

t9 = divE (hnumE 1) (numE 0)

22

t10 = lessE t9 (numE 0) -- a boolean DivZero
t11 = ifE t10 t5 t5 -- an int->int divZero

t12 = appE t11 (numE 0)

-- Printing

showSepBy :: String -> [ShowS] -> ShowS

showSepBy _] = id

showSepBy _ [X] = X

showSepBy sep (x:xs) = x . showString sep . showSepBy sep xs

instance Text MLType where
showsPrec _ T_Int = showString "int"
showsPrec _ T Bool = showString "bool"
showsPrec _ (T_Arrow t1 t2) = shows t1 . showString " -> " . shows t2
showsPrec _ t = error ("show: unexpected type " ++ show t)

instance Text MLOp where
showsPrec _ O_Plus = showString "+"
showsPrec _ O _Times = showString "*"
showsPrec _ O_Minus = showString "-"
showsPrec _ O _Div = showString "/"
showsPrec _ O_Equal = showString "=="
showsPrec _ O_LessThan = showString "<"
showsPrec _ op = error ("show: unexpected operator " ++ show op)

instance Text a => Text (MLTerm a) where
showsPrec _ (Term e []) = shows e
showsPrec _ (Term e es) =
shows e . showString "{" . showSepBy " , " (map shows es) . showString "}"

instance Text MLForm where
showsPrec _ (S_Num i) = shows i
showsPrec _ (S_Var v) = showString v
showsPrec _ (S_Prim bop) = shows bop
showsPrec _ S True = showString "true"
showsPrec _ S _False = showString "false"
showsPrec _ S _If = showString "if"
showsPrec _ (S_Fun rt fn (pn,pt)) =
shows rt .
showString (" " ++ fn ++ " (" ++ pn) .
showString ":"

23

shows pt .
showsString ")
showsPrec _ S _App = showString "@"
showsPrec _ (R_Val v) = shows v
showsPrec _ R_DivZero = showString "DivZero"

showsPrec _ ¢ = error ("show: unexpected form

n

++ show c)

instance Text MLValue where
showsPrec _ (V_Num i) = shows i
showsPrec _ V_True = showString "true"
showsPrec _ V_False = showString "false"
showsPrec _ (V_Closure exp env) = showString "<closure>"
showsPrec _ v = error ("show: unexpected value " ++ show V)

24

