
Fall 2008 B522 — Programming Language Foundations 1

Fall 2008

B522 — Programming Language Foundations

Midterm exam (30% of final grade)

Name (please print): .

Username:

1 Short Questions: Calculi 20 pts

2 Short Questions: Types 30 pts

3 Calculi 30 pts

4 Types 30 pts

Total 100 pts

Page 1 of 7

Fall 2008 B522 — Programming Language Foundations 2

1 Short Questions: Calculi

• Consider the following rewriting system:
B → 2
B → C
C → B
C → 3

and the standard equivalence relation = defined over it.

– Write the statement of the Church-Rosser theorem.

– Give a counterexample to the Church-Rosser theorem.

• Consider the λ-calculus extended with constants (numbers, addition, and so on). Show that the observational
equivalence relations for the call-by-value λ-calculus and for the call-by-name λ-calculus are different and that
neither is included in the other. Hint: Give one call-by-value equivalence that is not a call-by-name equivalence
and vice-versa.

Page 2 of 7

Fall 2008 B522 — Programming Language Foundations 3

2 Short Questions: Types

• Consider two expressions e1 and e2 that have the same type in the same type environment. A program p with
e1 as one of its subexpressions typechecks. Will the same program with e1 replaced by e2 typecheck? Your
answer will obviously depend on what assumptions you make about the expressions and the type system: try
to state these assumptions clearly.

• At the end of the exam, you will find a page from a recently published paper.1 In the figure (Fig. 6), how is
the type environment represented? (e.g., as a set, as a multiset, as a sequence, etc.). Justify your answer with
a one-line explanation.

• We know that the preservation lemma holds for the simply typed call-by-value λ-calculus. In other words, if
Γ ` e : t and e → e′ using a βv-reduction, then Γ ` e′ : t. Would the same lemma hold if we reversed the
direction of the βv reduction, i.e., if we used the following reduction:

e[v/x] → (λx.e)v

1p.7 of: David Walker, A type system for expressive security policies, POPL 2000.

Page 3 of 7

Fall 2008 B522 — Programming Language Foundations 4

3 Calculi

Consider the following small functional language with imperative extensions:

(Programs) p ::= ref n e
(Expressions) e ::= x | λx.e | ee | n | e + e | inc | read

The semantics of the language is defined using the following reduction relation:

(λx.e1) e2 → e1[e2/x]
(e1 + e2) + e3 → e1 + (e2 + e3)

n + e → e + n
n1 + n2 → n1 + n2

ref n read → ref n n
ref n (read + e) → ref n (n + e)

ref n inc → ref (n + 1) n
ref n (inc + e) → ref (n + 1) (n + e)

The evaluation of a program is defined as follows:

eval(p) =
{

n2 if p →∗ ref n1 n2

proc if e →∗ λx.e′

• Prove that eval(ref 0 ((λx.x + x) inc)) = 1

• Prove that x + y is not observationally equivalent to y + x. Hint: Consider the context ((λx.λy.[]) inc read).

Page 4 of 7

Fall 2008 B522 — Programming Language Foundations 5

• Consider all possible reduction sequences for the program:

ref 0 ((inc + read) + (inc + inc))

and show the result of each.

Page 5 of 7

Fall 2008 B522 — Programming Language Foundations 6

4 Types

You are given a small language, its type system, and its evaluation relation.

Syntax

(Expressions) e ::= zero | succ e | pred e
(Values) v ::= zero | succ v
(Evaluation contexts) E ::= [] | succ E | pred E

Type System

` zero : int
` e : int

` succ e : int
` e : int

` pred e : int

Evaluation

pred (succ v) → v

e1 → e2

E[e1] 7−→ E[e2]

eval(e) = v if e 7−→∗ v

• Find an expression e that typechecks but that does not evaluate to a value v.

• State and prove the preservation lemma.

Page 6 of 7

Fall 2008 B522 — Programming Language Foundations 7

Page 7 of 7

