
To appear in EPTCS.
c© Z.A. Sparks & A. Sabry

This work is licensed under the
Creative Commons Attribution License.

Superstructural Reversible Logic

Z.A. Sparks Amr Sabry
School of Informatics and Computing

Indiana University, USA
zasparks@cs.indiana.edu sabry@cs.indiana.edu

Linear logic is a “resource-conscious” logic. We analyze the notion of resource maintained by linear
logic proofs and argue that it only focuses on a “spatial” dimension of resources (e.g., memory
locations) omitting another important “temporal” dimension of resources (e.g., control flow choices).
By the same arguments used to explain the conventional spacetime trade-off in computation, these
two resources are interchangeable and hence should be managed simultaneously. We therefore refine
linear logic to maintain both spatial and temporal resources by adding more structural rules. The
resulting logic proves only equivalences that computationally correspond to type isomorphisms. This
property allows a study of reversible computation from a proof-theoretic perspective.

1 Introduction

· ` 1 1R

1 ` 1 1L · ` 1 1R

1 ` 1 1L

1⊕1 ` 1 ⊕L

In the original article introducing linear logic [8], Girard describes it
as “a resource-conscious logic.” However, linear logic does not treat
“truth” or “information” as a resource. Indeed, it is known that linear
logic allows us to “freely copy” and “foolishly discard” information in
the sense of Shannon [17]. Consider the derivation to the right. The
assumption 1⊕ 1 represents a boolean value and hence contains one
bit of information. The conclusion represents the unit value, which has no information. Where did the
information contained in the bool value go? One can answer this question more clearly by looking at
the computational counterpart of the above proof, which is the function λx.if x then () else () of type
bool(1. The information in the input is represented by the choice of which branch is selected. This
choice, which encodes one bit of information, is not recognized as a resource and hence is silently erased
in the derivation.

Put differently, propositions in linear logic model two kinds of resources:
• multiplicative resources that combine using ⊗: these resources cannot be erased or duplicated and

are carefully maintained in all proofs. As Wadler [20] argues, these resources naturally model
memory. Following the terminology used in monoidal categories, we call such resources spatial
resources since the object A⊗B is viewed as representing the parallel composition (in “space”) of
A and B, i.e., we have two objects that exist at the same time in different locations.

• additive resources that combine using ⊕: these resources can be erased and duplicated at will and
are not maintained in proofs. These resources model choices and hence information. We call such
resources temporal resources as we view the object A⊕B as representing a composition in which
exactly one of A and B must exist at a given time, i.e., we have two objects that exist in the same
location at different times.

This classification of resources is the first insight motivating our technical development. The remain-
ing insight is that spatial resources can be traded for temporal resources and vice-versa. In linear logic,
this trade-off is visible in examples such as [12]:

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Superstructural Reversible Logic

copyNat zero = (zero, zero)
copyNat (succ n) = let (n1, n2) = copyNat n in

(succ n1, succ n2)

The function (or proof) has type N(N⊗N where N is the recursive type 1⊕1⊕1 . . ., which appears
to violate the resource tracking infrastructure of linear logic. The catch is that the function needs an
implicit temporal resource that allows it to explore the structure of the input natural number 1⊕1⊕1
Computationally, copying a location containing a natural number requires time proportional to the size
of the number, i.e., we can “create” a new location containing n if we consume n time steps. In our
setting, this trade-off between spatial and temporal resources is manifested by the fact that the following
two propositions are equivalent A⊗ (B⊕C) and (A⊗B)⊕ (A⊗C).

To summarize, our goal is to track what we call spacetime resources, i.e., the combination of spatial
multiplicative resources and temporal additive resources. We achieve this by a variation of linear logic
that maintains information about both ⊗ and ⊕ in the context in the spirit of the logic of bunched impli-
cations (BI) [11]. The resulting logic conserves information, maintains all resources, and is reversible in
the sense that every proof of conclusion B from assumptions A can be reversed to produce A from B.

The rest of the paper introduces the rules for reversible logic, the relevant theorems about it, and
discusses its connection to reversible computation. Before proceeding, we briefly justify and explain the
words used in the title. The use of the phrase “reversible logic” in the literature is often associated with
computation in reversible logic (hardware) circuits. There is only a superficial connection between the
two usages that is the same sort of connection between the uses of “logic” in mathematical logic and
logic gates.

Our use of “superstructural” alludes to “substructural” logics: describing a logic as “substructural”
implicitly refers to the structural rules of intuitionistic or classical logic and conveys the idea that the
logic lacks some of these usual rules. Although technically accurate, this description de-emphasizes the
role of the structural rules. Conversely, our logic places heavy emphasis on its many structural rules,
bringing them to the forefront of the presentation: hence the term “superstructural.”

2 A Reversible Sequent Calculus

Inspired by our previous work on reversible computation [9] and the technical development of the logic
of bunched implications (BI) [11], we refine linear logic to maintain information about both ⊗ and ⊕
in the contexts of assumptions. We call the resulting system Reversible Logic, or RL. Throughout this
section, we will use ` as the sequent symbol for RL when it is unambiguously a RL proof. Otherwise,
we will distinguish between linear logic sequents, `LL, and RL sequents, `RL.

2.1 Spacetime contexts and resources

As Girard [8] notes, the way linear logic tracks multiplicative resources that combine with ⊗ is by using
the “comma” connective in contexts as “hypocrisy” for⊗. Informally, we argue that if our goal is to also
maintain resources that combine with ⊕, then we should add another connective to contexts that stands
for ⊕. Furthermore, as ⊗ and ⊕ are related in non-trivial ways, the resulting contexts should have a
non-trivial algebra. Formally, propositions and contexts are defined as follows:

Propositions A,B ::= 0 | 1 | A+B | A×B
Contexts Γ,∆ ::= O | 1 | A | Γ⊕Γ | Γ⊗Γ

Z.A. Sparks & A. Sabry 3

Γ⊕O ∼ Γ

Γ1⊕Γ2 ∼ Γ2⊕Γ1
Γ1⊕ (Γ2⊕Γ3) ∼ (Γ1⊕Γ2)⊕Γ3

Γ⊗1 ∼ Γ

Γ1⊗Γ2 ∼ Γ2⊗Γ1
Γ1⊗ (Γ2⊗Γ3) ∼ (Γ1⊗Γ2)⊗Γ3

Γ⊗O ∼ O

Γ1⊗ (Γ2⊕Γ3) ∼ (Γ1⊗Γ2)⊕ (Γ1⊗Γ3)

Γ∼ Γ

Γ1 ∼ Γ2
Γ2 ∼ Γ1

Γ1 ∼ Γ2 Γ2 ∼ Γ3
Γ1 ∼ Γ3

Γ1 ∼ Γ3 Γ2 ∼ Γ4
Γ1⊕Γ2 ∼ Γ3⊕Γ4

Γ1 ∼ Γ3 Γ2 ∼ Γ4
Γ1⊗Γ2 ∼ Γ3⊗Γ4

Figure 1: Contextual equivalences in RL

Contexts as trees with two forms of binary connectives and their units. One connective serves as
the internalization of spatial conjunction, which represents having multiple resources in different places
at the same time, and the other connective serves as the internalization of temporal conjunction, which
represents having one resource that could be in any of several different states at any particular time.
Treated as a whole, our contexts track spacetime resources. To make things easier to read, we use ⊕
and ⊗ instead of commas and semicolons for the contextual connectives. The propositional versions
of these connectives are + and ×, since our logic can also be interpreted as a deductive system for
mathematical equality on these operators. (The formal result [5] is that the axioms of a commutative
semiring constitute a sound and complete set of isomorphisms for finite types built from the empty type,
the unit type, disjoint union, and product.)

To gain an intuition for resources, we think of the types as possible events, and of the values as
consistent timelines of events. From this perspective, A×B denotes spatial composition, where both A
and B must happen in any order, and A+B denotes temporal composition, where exactly one of A and B
must happen at a given time. The event 1 is then trivial, and 0 is impossible. We visualize the denotation
of 1 as a point in space, and 0 as empty space. The denotation of A+B is the denotation of A drawn on
top of the denotation of B and separated by a border, and the denotation of A×B is just the denotation of
A written next to the denotation of B. Now we can formally define a consistent timeline recursively on
the structure of a diagram:
• An endpoint (the denotation of 1) has exactly one timeline through it. Empty space (the denotation

of 0) has no timelines through it.
• A timeline through a stack of alternatives A1 + A2 + ...+ An is a timeline through exactly one of

the possible alternatives.
• A timeline through a spatial composition of cells A1×A2× ...×An is a timeline through all of the

cells, in any order.
For example, the following would be a consistent timeline through the diagram for ((2 + 2)× (2 +

2))+((2+2)× (2+2)) times itself as shown in the left two boxes. The right two boxes show the trade-
off between space and time encoded in distributivity. Since a timeline must pass through a column in
exactly one point, the two boxes on the right have the same timelines:

A

A

A

A

A

A

A

A

A

A

AB

AC

AA AB

AA AC

4 Superstructural Reversible Logic

Γ ` A Γ′ ` B
Γ⊗Γ′ ` A×B

×R
Γ[A⊗B] `C
Γ[A×B] `C

×L Γ ` A Γ′ ` B
Γ⊕Γ′ ` A+B

+R
Γ[A⊕B] `C
Γ[A+B] `C

+L

O ` 0 0R
Γ[O] `C
Γ[0] `C 0L

1 ` 1 1R
Γ[1] `C
Γ[1] `C 1L

Figure 2: Left and right rules in RL

2.2 Contextual equivalence

As mentioned above, contexts form a commutative semiring. The rules of contextual equivalence are
shown in Fig. 1. We note that if contexts do not include ⊕, we recover linear logic contexts. The new
rules encode the (monoidal) behavior of additive resources and, crucially, that multiplicative resources
distribute over additive ones: Γ1⊗ (Γ2⊕Γ3) ∼ (Γ1⊗Γ2)⊕ (Γ1⊗Γ3). This rule allows multiplicative
resources to be traded for additive ones and vice-versa, reifying the spacetime trade-off that is usually
left implicit in programs. At first glance, distributivity appears to violate “meta-linearity,” as it duplicates
or erases a copy of Γ1. Looking more closely, though, we find that although it violates syntactic linearity,
it does not violate semantic linearity [6]—since⊕ represents a choice between two alternatives, only one
Γ1 can exist at any time.

Distributivity and factoring provide a mechanism for choosing to delay or force choices, at will. This
mechanism already exists implicitly in linear logic: consider an attempt to prove A⊕B,C ` (A⊕B)⊗C.
Without a predetermined proof search strategy or a cut rule, there are two choices: first, we could attempt
to apply ⊕L:

A ` A
idA

A ` A⊕B
⊕R1 C `C

idC

A,C ` (A⊕B)⊗C
⊗R

B ` B
idB

B ` A⊕B
⊕R2 C `C

idC

B,C ` (A⊕B)⊗C
⊗R

A⊕B,C ` (A⊕B)⊗C
⊕L

However, note that this duplicates one of the branches of the proof. We might instead choose to apply
⊗R first:

A⊕B ` A⊕B
idA⊕B C `C

idC

A⊕B,C ` (A⊕B)⊗C
⊗R

The former proof corresponds to deconstructing the choice first and using the common resource C later
(that is, (Γ1⊗Γ2)⊕ (Γ1⊗Γ3)); the latter proof uses the common resource first, then proceeds to decon-
struct the choice (that is, Γ1⊗ (Γ2⊕Γ3)). Both proofs are, in some sense, the same. In reversible logic,
the structure of the context dictates which choice can be made, but they can be switched between at will.

2.3 Inference rules

We now define the left and right rules for our reversible sequent calculus, RL, shown in Fig. 2. As in BI,
we want the left rules to be able to act on a proposition nested arbitrarily deeply within the context, so
instead of writing Γ,A as in linear logic, we write Γ[A] to mean a context Γ with a single hole somewhere
in it that is filled by A. More generally, we can fill a hole with an arbitrary context, Γ[∆]. We can also

Z.A. Sparks & A. Sabry 5

have a context with multiple holes in it, which we write with curly braces instead of square braces,
Γ{∆}. The rules for × work the same as ⊗ in linear logic and BI, matching on the context on the right
and decomposing the connective into its contextual version on the left. Now that we have a contextual
version of +, its rules behave identically, transforming propositional + into contextual⊕. The units have
similar rules, decomposing them into their contextual forms.

Γ `LL C
Γ,1 `LL C 1L

This is a small departure from linear logic, especially with the treatment of 0.
The decomposition of 1 is also important since unlike in linear logic, this unit
cannot always be eliminated. Recall the linear 1L rule to the right. This only
works because there is only one contextual connective, and ·, the contextual ver-
sion of 1, is its unit. In RL, we have no such guarantee that in Γ[1], the hole is
appearing as an immediate child of a ⊗ node, so we must rely on the contextual
rules to eliminate it when possible.

So far, the rules appear tautological, just allowing us to shift focus from the proposition to the context
and vice-versa. This is also the case for multiplicative linear logic, but in addition to this shift of focus,
the linear logic context can be silently re-ordered. In our case, we add a rule that explicitly shuffles the
resources in the context using the transformations in Fig. 1. The rule is similar to one in BI, with the
exception that we treat the contextual equivalence as another derivation rather than a side condition:

Γ∼ Γ′ Γ′ `C
Γ `C

struct

For example, a proof that A×B ` B×A would look as follows:

A⊗B∼ B⊗A
B ` B id A ` A id

B⊗A ` B×A ×R

A⊗B ` B×A
struct

A×B ` B×A ×L

The left and right rules in RL act as wrappers around the combinators that act on contexts. We believe
there may be ways to relax these restrictions and make writing proofs in RL more user-friendly, but for
now it is intended just as a basic sequent calculus for reversible logic.

2.4 Internal Soundness and Completeness

To demonstrate that RL is internally sound and complete [18], we show that our sequent calculus as
presented has admissible identity and cut rules.

Theorem 2.1 (Admissibility of identity). For all propositions A, A ` A.

Proof. By induction on the proposition A.
The proof of a usual statement of cut, unfortunately, does not proceed smoothly. We must first

generalize the cut statement to multicut as in the BI metatheory [13]. This involves a slight change of
notation: instead of writing Γ[A] for a context Γ with one hole into which A gets substituted, we write
Γ{A} for a context Γ with zero or more holes, all of which contain A.

This generalization alone is not strong enough to prove cut for RL. The eventual result hinges on
contextual parametericity, as follows:

Lemma 2.2 (Contextual parametericity). For all multi-hole contexts Γ and Γ′ with no copies of A in
them, if Γ{A} ∼ Γ′{A}, then for all contexts ∆, Γ{∆} ∼ Γ′{∆}.

6 Superstructural Reversible Logic

Proof. By induction on the context Γ.
Due to the factoring rule (the inverse of distributivity), this lemma only holds with the condition that A
does not occur in the contexts other than as a replacement in a hole. Otherwise, substituting in ∆ would
potentially prevent factoring from happening, even though it could happen before. For example, in the
context (A⊗B)⊕(A⊗C), we can factor out A, but if we replace one copy with ∆, we get (∆⊗B)⊕(A⊗C)
and the rule can no longer immediately be applied. With this lemma out of the way, we can finally state
and prove cut:

Theorem 2.3 (Admissibility of cut). If ∆ ` A, Γ{A} `C, and A does not occur outside a hole in Γ, then
Γ{∆} `C.

Proof. As in BI [13], using the contextual parametericity lemma in the right commutative case of the
struct rule.

2.5 Reversibility

Since we have been writing this logic with the goal of reversibility in mind, it is important that we show
that it is actually reversible. We can first show that each proof is a logical equivalence. This proof relies
on the p−q operator from contexts to propositions, which turns each contextual connective and unit into
its propositional counterpart.

Theorem 2.4 (Logical reversibility). If Γ ` A, then A ` pΓq.

Proof. Another simple induction on the structure of the derivation of Γ ` A.
The full version of the paper [19] develops a proof term assignment for RL that can used to show

that every RL proof corresponds to a computation witnessing a type isomorphism.

2.6 Superstructural Approach to Logic

The above results demonstrate that the idea of tracking both ⊗ and ⊕ resources can be formalized in
a richer refined variant of linear logic. The development however is confined to finite types, with no
negation, and more crucially with no implication. We briefly discuss these current limitations in Sec. 3.

Of more immediate significance is that our technical development motivated by the desire to keep
track of resources (re-)emphasizes the crucial nature of structural rules in logic. This resonates with the
original motivation to linear logic and with various more recent approaches like the logic of bunched
implications (BI) [11] and deep inference [2] but we believe we are the first to name the approach and
embrace it fully to an extent that subsumes previous approaches.

In more detail, BI takes the structure of contexts seriously and adds an extra connective, which was
the original inspiration for our own treatment of contexts. BI, however, explicitly eschews distributivity,
which is central to RL; its contextual forms are distinguished by whether or not they allow weakening
and contraction. Deep inference goes in a similar direction by focusing more on the structure and ma-
nipulation of contexts, but is explicitly a classical logic which is concerned with duality of rules, neither
of which was a direction we wanted to go with superstructural logic. We also note that some work in
mathematical logic [7] also replaces propositional connectives with separate connectives for structural
rules, similar to our work.

Many of these approaches are subsumed by our much more comprehensive and foundational structure
on contexts. Specifically, we argue that many of the logics that put some emphasis on the structure of
contexts can be recovered from our superstructural logic by adding further structural rules to identify

Z.A. Sparks & A. Sabry 7

additional contexts. As a concrete example (developed in full in the extended version of this paper [19]),
it is possible to recover linear logic by adding the following additional rules and connectives:

O Γ Γ ΓrΓ Γ T Γ⊕Γ Γ

wherer is the contextual version of N. These rules capture the implicit information effects inherent in
linear logic in an explicit way, by allowing contraction for⊕ and weakening forr, as well as appropriate
rules for their units.

This technique also generalizes to BI, which is directly expressible as a hybrid superstructural-
substructural logic, since some of the computation happens outside the structural rules on contexts. We
therefore put forward superstructural logic as a framework for studying low-level effects in logics that
not even substructural logics can examine, while retaining the ability to work in a proof-theoretic setting.

3 Conclusion and Future Work

We have demonstrated a general approach for writing substructural or otherwise resource-conscious logic
that places a heavy emphasis on the structural rules of the logic and subsumes prior approaches. We have
used this superstructural approach to develop a sequent calculus for reversible logic.

The current system lacks implication as a connective. Following the original inspiration for linear
logic, a linear implication is essentially a derived form with A(B defined as A⊥O B. The definition
of implication thus rests fundamentally on a definition of “negation” or in other words on notions of
“symmetry” and “duality.” The literature includes two distinct approaches to “symmetry” or “duality”.
One one hand, the historical view dating back to propositional logic and still present in linear logic is to
have one notion of symmetry ⊥ that applies universally. In linear logic, this gives rise to conflated notions
like “additive pairs” and “multiplicative sums.” On the other hand, the literature also includes work which
separates the additive from the multiplicative symmetry leading to “negative” and “fractional” types or
propositions. This is most apparent in the categorical models based on monoidal categories where each of
⊗ and⊕ carries the structure of a symmetric monoidal category that can be completed (i.e., extended with
duals and hence higher-order functions) by adding an “opposite” to either ⊗ or ⊕ separately. Negative
types have also appeared separately in various logics most notably Rauszer’s subtractive logic [14, 15,
16]. Crolard [3, 4] explains the type A−B as the type of coroutines with a local environment of type A and
a continuation of type B. A notion of fractional types has also appeared in various logics most notably the
Lambek-Grishin calculus [1] which includes products as well as a left division and right division which
capture constraints on the valid contexts in which a formula can be used. The most consistent approach
in our setting is to consider a dual for each resource separately (i.e. a negative symmetry and a fractional
symmetry of propositions) and study the interactions between these two duals. We have some initial and
promising results that we hope to report on in future work.

We conclude with two additional general directions for future research that are enabled by our results.

Reversible Proof Theory Using the machinery developed here, we plan to investigate reversible com-
putation from a proof-theoretic perspective, which we believe will provide a significant advantage for
understanding how to add more type-level features to a reversible programming language. In particu-
lar, the translation from a language with information effects to a reversible calculus given by James and
Sabry [9] was syntax-directed rather than type-directed; we believe that we may be able to use existential
types, as in closure conversion [10], to fix this problem and make sure source language terms of the same
type translate to target language terms of the same type.

8 Superstructural Reversible Logic

Computational interpretation. Coming up with a reversible logic is only the first step to studying
reversible computation from a proof theoretic perspective; we also need a programming language with a
reversible type system based on the logic. The extended version of the paper [19] includes a computa-
tional interpretation for RL, which we did not have space for in this paper. It acts as a level of wrappers
on top of a simple reversible calculus based on type isomorphisms [9], but we believe the logical setting
will allow more improvements in the syntax of the language, and easier extensions to the type system.

References
[1] Raffaella Bernardi & Michael Moortgat (2010): Continuation semantics for the Lambek–Grishin calculus.

Inf. Comput. 208, pp. 397–416.
[2] Kai Brünnler (2003): Deep inference and symmetry in classical proofs. Logos Verlag.
[3] Tristan Crolard (2001): Subtractive logic. Theoretical Computer Science 254(1-2), pp. 151–185.
[4] Tristan Crolard (2004): A Formulae-as-Types Interpretation of Subtractive Logic. Journal of Logic and

Computation 14(4), pp. 529–570.
[5] Marcelo P. Fiore, Roberto Di Cosmo & Vincent Balat (2002): Remarks on Isomorphisms in Typed Lambda

Calculi with Empty and Sum Types. In: LICS.
[6] Marco Gaboardi, Luca Paolini & Mauro Piccolo (2011): Linearity and PCF: A Semantic Insight! In: ICFP.
[7] Nikolaos Galatos & Hiroakira Ono (2010): Cut elimination and strong separation for substructural logics:

An algebraic approach. Annals of Pure and Applied Logic 161(9).
[8] Jean-Yves Girard (1987): Linear Logic. Theoretical Computer Science.
[9] Roshan P. James & Amr Sabry (2012): Information effects. In: POPL.

[10] Yasuhiko Minamide, Greg Morrisett & Robert Harper (1996): Typed closure conversion. In: POPL.
[11] Peter W. O’Hearn & David J. Pym (1999): The Logic of Bunched Implications. Bulletin of Symbolic Logic.
[12] Frank Pfenning (1998): Recursive Types. http://www.cs.cmu.edu/~fp/courses/98-linear/

handouts/rectypes.pdf.
[13] David J Pym (2002): The semantics and proof theory of the logic of bunched implications. Kluwer Academic.
[14] Cecylia Rauszer (1974): A formalization of the propositional calculus of H-B logic. Studia Logica 33.
[15] Cecylia Rauszer (1974): Semi-boolean algebras and their applications to intuitionistic logic with dual oper-

ators. Fundamenta Mathematicae 83, pp. 219–249.
[16] Cecylia Rauszer (1980): An algebraic and Kripke-style approach to a certain extension of intuitionistic logic.

In: Dissertationes Mathmaticae, 167, Institut Mathématique de l’Académie Polonaise des Sciences.
[17] Claude Shannon (1948): A mathematical theory of communication. Bell Systems Technical Journal 27.
[18] Robert J Simmons (2014): Structural Focalization. ACM Transactions on Computational Logic (TOCL)

15(3).
[19] Zachary Sparks & Amr Sabry (2014): Superstructural Reversible Logic (Extended version). Available from

http://homes.soic.indiana.edu/zasparks/papers/revlog.pdf.
[20] Philip Wadler (1993): A Taste of Linear Logic. In A. M. Borzyszkowski & S. Sokolowski, editors: Mathe-

matical Foundations of Computer Science, Springer-Verlag LNCS 781, Gdańsk, Poland.

http://www.cs.cmu.edu/~fp/courses/98-linear/handouts/rectypes.pdf
http://www.cs.cmu.edu/~fp/courses/98-linear/handouts/rectypes.pdf
http://homes.soic.indiana.edu/zasparks/papers/revlog.pdf

	Introduction
	A Reversible Sequent Calculus
	Spacetime contexts and resources
	Contextual equivalence
	Inference rules
	Internal Soundness and Completeness
	Reversibility
	Superstructural Approach to Logic

	Conclusion and Future Work

