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We show that the model of quantum computation based on density matrices and

superoperators can be decomposed in a pure classical (functional) part and an effectful

part modelling probabilities and measurement. The effectful part can be modelled using

a generalisation of monads called arrows. We express the resulting executable model of

quantum computing in the programming language Haskell using its special syntax for

arrow computations. The embedding in Haskell is however not perfect: a faithful model

of quantum computing requires type capabilities which are not directly expressible in

Haskell.

1. Introduction

A newcomer to the field of quantum computing is immediately overwhelmed with many

apparent differences with classical computing that suggest that quantum computing

might require radically new semantic models and programming languages. In some sense

this is true for two reasons: (1) quantum computing is based on a kind of parallelism

caused by the non-local wave character of quantum information which is qualitatively

different from the classical notion of parallelism, and (2) quantum computing has a pe-

culiar notion of observation in which the observed part of the quantum state and every

other part that is entangled with it immediately lose their wave character. Interestingly

it seems that none of the other differences that are often cited between quantum and

classical computing are actually relevant semantically. For example, even though we do

not often think of classical computation as “reversible,” it is just as reversible as quantum

computing. Both can be implemented by a set of reversible universal gates (see (Nielsen

and Chuang 2000), section 1.4.1), but in neither model should the user be required to

reason about reversibility.

The two properties of quantum computing discussed above certainly go beyond “pure”

classical programming and it has been suspected earlier that they might correspond to

some notion of computational effect. Following Moggi’s influential paper (Moggi 1989),

computational effects like assignments, exceptions, non-determinism, could all be mod-

elled using the categorical construction of a monad. This construction has been inter-

nalised in the programming language Haskell as a tool to elegantly express computational
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effects within the context of a pure functional language. Since the work of Moggi, several

natural notions of computational effects were discovered which could only be expressed as

generalisations of monads. Of particular importance to us is the generalisation of monads

known as arrows (Hughes 2000) which is also internalised in the programming language

Haskell.

Mu and Bird (2001) showed that the simple model of quantum computing based on

vectors and linear operators is almost a monad. We expand and build on this observation

as follows. First the model built using vectors and linear operators cannot even express

measurements. There exists however a more general model based on density matrices

and superoperators which can express measurements. After expressing this more general

model in Haskell, we establish that the superoperators used to express all quantum

computations and measurements are indeed an instance of the concept of arrows. In

particular the construction clarifies the crucial need for some form of linear typing: arrow

computations must be required to use every quantum value or else the computations

produce results that are inconsistent with quantum mechanics.

In summary, our construction relates “unusual” quantum features to well-founded se-

mantic constructions and programming languages. We hope it will serve as a useful tool

to further understand the nature and structure of quantum computation. The remainder

of the paper is organised as follows. Section 2 presents the model of quantum comput-

ing using vectors and linear operators and its implementation in Haskell, focusing on

the possibility of structuring the effects using monads. Section 3 discusses the limita-

tions of this simple model as a complete model of quantum computation which should

include measurement. Section 4 introduces a more general model of quantum based on

density matrices and superoperators. Our main result is discussed in Section 5 where

we show that general quantum computations including measurement can be structured

using the generalisation of monads called arrows. Section 6 gives two complete examples

implementing a Toffoli circuit and the teleportation experiment: both examples use the

arrow notation to express the structure of the computation elegantly. Section 7 discusses

the limitations of our Haskell embedding and its connection to the functional quantum

programming language QML (Altenkirch and Grattage 2005). Section 8 concludes. The

entire Haskell code is available online (Vizzotto et al. 2005).

2. The Traditional Model of Quantum Computing

We present the traditional model of quantum computing in this section.

2.1. Vectors

A finite set a can be represented in Haskell as an instance of the class Basis below, which

has the constructor basis :: [a] explicitly listing the basis elements. Given such a set a

representing observable (classical) values, a pure quantum value is a vector a → C which

associates each basis element with a complex probability amplitude. The basis elements

must be distinguishable from each other which explains the constraint Eq a on the type

of elements below:
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���������
Eq a => Basis a ��	�
��

 basis :: [a]

����� 
 K = Complex Double
����� 
 Vec a = a → K

The type K (notation from the base field) is the type of probability amplitudes.

From a programming perspective, a monad is a way to structure computations in

terms of values and sequences of computations using those values. The type construc-

tor Vec is technically not a monad: it corresponds to a Kleisli structure (Altenkirch

and Reus 1999). Yet as noted by Mu and Bird (2001), the probabilities introduced

by vector spaces constitute a computational effect which can be structured using a

slight generalisation of monads in Haskell (Moggi 1989). A monad is represented us-

ing a type constructor for computations m and two functions: return :: a → m a and

�= :: m a → (a → m b) → m b. The operation �= (pronounced “bind”) specifies

how to sequence computations and return specifies how to lift values to computations:

return :: Basis a => a → Vec a

return a b = ��� a≡b
� 	�
�� 1.0 
 ��� 
 0.0

(>>=) :: Basis a => Vec a → (a → Vec b) → Vec b

va >>= f = λ b → sum [ (va a) * (f a b) | a ∈ basis]

Because of the additional constraint that our computations must be over specified bases

whose elements must be comparable, the types of our operations are more restricted than

strictly desired for a monad. However return and �= satisfy the three monad laws.

Proposition 2.1. Vector spaces satisfy the required equations for monads.

Vector spaces have additional properties abstracted in the Haskell class MonadPlus .

Instances of this class support two additional methods: mzero and mplus which provide

a “zero” computation and an operation to “add” computations:

mzero :: Vec a

mzero = const 0.0

mplus :: Vec a → Vec a → Vec a

mplus v1 v2 a = v1 a + v2 a

We also have mminus which is defined analogously.

For convenience, it is also possible to define various kinds of products over vectors: the

scalar product $∗, the tensor product 〈∗〉, and the dot product 〈·〉:

($*) :: K → Vec a → Vec a

pa $* v = λa → pa * v a

(<*>) :: Vec a → Vec b → Vec (a,b)

v1 <*> v2 = λ (a,b) → v1 a * v2 b

(<.>) :: Basis a => Vec a → Vec a → K

v1 <.> v2 = sum [ conjugate (v1 a) * (v2 a) | a ∈ basis ]

Examples of vectors over the set of booleans may be defined as follows:

��� � � � � � 
 Basis Bool ��	�
��

 basis = [False,True]
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qFalse,qTrue :: Vec Bool

qFalse = return False

qTrue = return True

qFT,qFmT :: Vec Bool

qFT = (1/sqrt 2) $* (qFalse ‘mplus‘ qTrue)

qFmT = (1/sqrt 2) $* (qFalse ‘mminus‘ qTrue)

The first two are unit vectors corresponding to basis elements; the last two represent

states which are in equal superpositions of False and True. In the Dirac notation,

these vectors would be respectively written as |False〉, |True〉, 1√
2
(|False〉+ |True〉), and

1√
2
(|False〉 − |True〉).

Vectors over several values can be easily described using the tensor product on vectors

or the Cartesian product on the underlying bases:

��� � � � � � 
 (Basis a, Basis b) => Basis(a, b) ��	�
��


basis = [(a, b) | a ∈ basis, b ∈ basis ]

p1,p2,p3:: Vec (Bool,Bool)

p1 = qFT <*> qFalse

p2 = qFalse <*> qFT

p3 = qFT <*> qFT

epr :: Vec (Bool,Bool)

epr (False,False) = 1 / sqrt 2

epr (True,True) = 1 / sqrt 2

epr _ = 0

In contrast to the first three vectors, the last vector describes an entangled quantum state

which cannot be separated into the product of independent quantum states. The name

of the vector “epr” refers to the initials of Einstein, Podolsky, and Rosen who used such

a vector in a thought experiment to demonstrate some counterintuitive consequences of

quantum mechanics (Einstein et al. 1935).

2.2. Linear Operators

Given two base sets A and B a linear operator f ∈ A ( B is a function mapping vectors

over A to vectors over B. We represent such operators as functions mapping values to

vectors which is similar to the representation used by Karczmarczuk (2003):
����� 
 Lin a b = a → Vec b

fun2lin :: (Basis a, Basis b) => (a → b) → Lin a b

fun2lin f a = return (f a)

The function fun2lin converts a classical (reversible) function to a linear operator. For

example, the quantum version of the boolean negation is: qnot = fun2lin not. Linear

operations can also be defined directly, for example:

phase :: Lin Bool Bool

phase False = return False

phase True = (0 :+ 1) $* (return True)

hadamard :: Lin Bool Bool

hadamard False = qFT

hadamard True = qFmT

The definition of a linear operation specifies its action on one individual element of

the basis. To apply a linear operation f to a vector v , we use the bind operation to
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calculate v �= f . For example (qFT �= hadamard) applies the operation hadamard

to the vector qFT which one can calculate produces the vector qFalse as a result.

It is possible to write higher-order functions which consume linear operators and pro-

duce new linear operators. An important example of such functions produces the so-called

controlled operations :

controlled :: Basis a => Lin a a → Lin (Bool,a) (Bool,a)

controlled f (b1,b2) = (return b1) <*> ( ��� b1
� 	�
�� f b2 
 ��� 
 return b2)

The linear operator f is transformed to a new linear operator controlled by a quantum

boolean value. The modified operator returns a pair whose first component is the input

control value. The second input is passed to f only if the control value is true, and is

otherwise left unchanged. For example, (qFT 〈∗〉 qFalse)�= (controlled qnot) applies

the familiar controlled-not gate to a vector over two values: the control value is a super-

position of False and True and the data value is False . As one may calculate the result

of this application is the epr vector.

Linear operations can be combined and transformed in several ways which we list

below. The function 〉∗〈 produces the linear operator corresponding to the outer product

of two vectors. The functions linplus and lintens are the functions corresponding to the

sum and tensor product on vectors. Finally the function o composes two linear operators.

adjoint :: Lin a b → Lin b a

adjoint f b a = conjugate (f a b)

(>*<) :: (Basis a, Basis b) => Vec a → Vec b → Lin a b

(v1 >*< v2) a b = v1 a * conjugate (v2 b)

linplus :: (Basis a, Basis b) => Lin a b → Lin a b → Lin a b

linplus f g a = f a ‘mplus‘ g a

lintens :: (Basis a, Basis b, Basis c, Basis d) =>

Lin a b → Lin c d → Lin (a,c) (b,d)

lintens f g (a,c) = f a <*> g c

o :: (Basis a, Basis b, Basis c) => Lin a b → Lin b c → Lin a c

o f g a = (f a >>= g)

2.3. Example: A Toffoli Circuit

The circuit diagram uses the de-facto standard notation for specifying quantum compu-

tations. Each line carries one quantum bit (qubit); we refer to the three qubits in the

circuit as top, middle , and bottom . The values flow from left to right in steps correspond-

ing to the alignment of the boxes which represent quantum gates. The gates labeled H ,

V , VT , and Not represent the quantum operations hadamard , phase , adjoint phase , and

qnot respectively. Gates connected via a bullet to another wire are controlled operations.

In general all three qubits in the circuit may be entangled and hence the state vector
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VH HVVT

 Not Not

representing them cannot be separated into individual state vectors. This means that,

despite the appearance to the contrary, it is not possible to operate on any of the lines

individually. Instead the circuit defines a linear operation on the entire state:

toffoli :: Lin (Bool,Bool,Bool) (Bool,Bool,Bool)

toffoli (top,middle,bottom) =
� 
 � cnot = controlled qnot

cphase = controlled phase

caphase = controlled (adjoint phase)

��� hadamard bottom >>= λ b1 →

cphase (middle,b1) >>= λ (m1,b2) →

cnot (top,m1) >>= λ (t1,m2) →

caphase (m2,b2) >>= λ (m3,b3) →

cnot (t1,m3) >>= λ (t2,m4) →

cphase (t2,b3) >>= λ (t3,b4) →

hadamard b4 >>= λ b5 →

return (t3,m4,b5)

3. Measurement

The use of monads to structure the probability effects reveals an elegant underlying

structure for quantum computations. This structure can be studied in the context of

category theory and exploited in the design of calculi for quantum computation (van

Tonder 2003; van Tonder 2004; Valiron 2004; Altenkirch and Grattage 2005).

Unfortunately in the simple model of quantum computing we have used so far, it is

difficult or impossible to deal formally with another class of quantum effects, including

measurements, decoherence, or noise. We first give one example where such effects are

critical, and then discuss various approaches in the literature on how to deal with such

effects.

3.1. Teleportation

The idea of teleportation is to disintegrate an object in one place making a perfect

replica of it somewhere else. Indeed quantum teleportation (Bennett et al. 1993) enables

the transmission, using a classical communication channel, of an unknown quantum state

via a previously shared epr pair.

In the following diagram, Alice and Bob initially have access to one of the qubits of

an entangled epr pair, and Alice aims to teleport an unknown qubit q to Bob:
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Not
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Not Z
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q

Alice Bob

m2

m1

The calculation proceeds as follows. First Alice interacts with the unknown qubit q and

her half of the epr state. Then Alice performs a measurement collapsing her quantum

state and getting two classical bits m1 and m2 that she transmits to Bob using a classical

channel of communication.

Upon receiving the two classical bits of information, Bob interacts with his half of the

epr state with gates controlled by the classical bits. The circuit in the figure can be shown

to re-create the quantum state q which existed at Alice’s site before the experiment.

Our main interest in this circuit is that it is naturally expressed using a sequence of

operations on quantum values which include a non-unitary measurement in the middle.

Using the model developed in the previous section, it is not possible to describe this

algorithm as stated. In the next section, we briefly discuss several possible ways to deal

with this problem.

3.2. Dealing with Measurement

The literature includes several approaches to dealing with the problem of measurement.

We characterize such approaches in three broad categories: deferring measurements, using

classical control with pointers and side-effects, and using density matrices and superop-

erators. We discuss the first two approaches in the remainder of this section, and expand

on the latter approach in the next section.

3.2.1. Deferring measurements. The first approach used for example by Mu and Bird

(2001), Van Tonder (2003; 2004) and Karczmarczuk (2003) relies on the principle of de-

ferred measurement (Nielsen and Chuang 2000). This principle can be used to transform

computations to always defer measurements to the end. Using this idea one can focus

entirely on managing the probability effects and perform the measurements outside the

formalism. The drawback of this approach is clear: programs that interleave quantum

operations with measurements cannot be expressed naturally. For example, transforming

the teleportation circuit above to defer the measurements until after Bob’s computation

completely changes the character of the experiment, because no classical information is

transmitted from Alice to Bob.

3.2.2. Classical Control and Side-effects. In general, this category of models is based on

the quantum random access machine (QRAM) model of Knill (1996), which is summa-
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rized by the slogan “quantum data, classical control” (Selinger 2004). In this context, a

quantum computer can be seen as a classical computer with a quantum device attached

to it. The classical control sends instructions for the quantum machine to execute unitary

operations and measurements. The most common approach to computationally realize

this hybrid architecture is via manipulating what are effectively pointers to a global shared

quantum state (Ömer 1998; Sabry 2003; Selinger and Valiron 2005; Skibinski 2001). The

use of pointers and sharing to model the side-effect of measurement is in some sense

adequate. However by doing so, we completely lose the monadic structure and the direct

connections to categorical semantics.

4. Density Matrices and Superoperators

Fortunately the above model of quantum computing can be generalised to solve the prob-

lem of modelling measurements in a better way. In the generalised model, the state of the

computation is represented using a density matrix and the operations are represented us-

ing superoperators (Aharonov et al. 1998). Using these notions, the projections necessary

to express measurements become expressible within the model. We review this model in

this section.

4.1. Density Matrices

Intuitively, density matrices can be understood as a statistical perspective of the state

vector. In the density matrix formalism, a quantum state that used to be modelled by a

vector v is now modelled by its outer product.

����� 
 Dens a = Vec (a,a)

pureD :: Basis a => Vec a → Dens a

pureD v = lin2vec (v >*< v)

lin2vec :: (a → Vec b) → Vec (a,b)

lin2vec = uncurry

The function pureD embeds a state vector in its density matrix representation. For

convenience, we uncurry the arguments to the density matrix so that it looks more like a

“matrix.” For example, the density matrices corresponding to the vectors qFalse , qTrue,

and qFT can be visually represented as follows:
(

1 0

0 0

) (

0 0

0 1

) (

1/2 1/2

1/2 1/2

)

The appeal of density matrices is that they can represent states other than the pure

ones above. In particular if we perform a measurement on the state represented by qFT ,

we should get False with probability 1/2 or True with probability 1/2. This information,

which cannot be expressed using vectors, can be represented by the following density
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matrix:
(

1/2 0

0 0

)

+

(

0 0

0 1/2

)

=

(

1/2 0

0 1/2

)

Such a density matrix represents a mixed state which corresponds to the sum (and

then normalisation) of the density matrices for the two results of the observation.

4.2. Superoperators

Operations mapping density matrices to density matrices are called superoperators :

����� 
 Super a b = (a,a) → Dens b

lin2super :: (Basis a, Basis b) => Lin a b → Super a b

lin2super f (a1,a2) = lin2vec (f a1 >*< f a2)

The function lin2super constructs a superoperator from a linear operator on vectors.

4.3. Tracing and Measurement

In contrast to the situation with the traditional model of quantum computing, it is pos-

sible to define a superoperator which “forgets,” projects, or traces out part of a quantum

state as well as a superoperator which measures part of a quantum state:

trL :: (Basis a, Basis b) => Super (a,b) b

trL ((a1,b1),(a2,b2)) = ��� a1 ≡ a2
� 	�
�� return (b1,b2) 
 ��� 
 mzero

meas :: Basis a => Super a (a,a)

meas (a1,a2) = ��� a1 ≡ a2
� 	

�� return ((a1,a1),(a1,a1)) 
 ��� 
 mzero

We are considering projective measurements which are described by a set of projections

onto mutually orthogonal subspaces. This kind of measurement returns a classical value

and a post-measurement state of the quantum system. The operation meas is defined

in such a way that it can encompass both results. Using the fact that a classical value

m can be represented by the density matrix |m〉〈m| the superoperator meas returns the

output of the measurement attached to the post-measurement state.

For example, the sequence:

pureD qFT >>= meas >>= trL

first performs a measurement on the pure density matrix representing the vector qFT .

This measurement produces a vector with two components: the first is the resulting

collapsed quantum state and the second is the classical observed value. The last oper-

ation forgets about the collapsed quantum state and returns the result of the classical

measurement. As explained earlier the resulting density matrix is:
(

1/2 0

0 1/2

)
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5. Superoperators as Arrows

By moving to density matrices and superoperators, it becomes possible to express both

the original computations as well as measurements in the same formalism. One might

hope that the original monadic structure of quantum computations is preserved, but it

appears that this is not the case. The best we can do is to prove that the new model of

computation fits within a generalisation of monads called arrows.

5.1. Arrows

The application of a superoperator to a density matrix can still be achieved with the

monadic bind operation, instantiated to the following type:

(>>=) :: Dens a → ((a,a) → Dens b) → Dens b

This type does not however correspond to the required type as computations now

consume multiple input values. This observation is reminiscent of Hughes’s motivation for

generalising monads to arrows (Hughes 2000). Indeed, in addition to defining a notion of

procedure which may perform computational effects, arrows may have a static component

independent of the input, or may accept more than one input.

In Haskell, the arrow interface is defined using the following class declaration:
���������

Arrow a ��	�
���

arr :: (b → c) → a b c

(>>>) :: a b c → a c d → a b d

first :: a b c → a (b,d) (c,d)

In other words, to be an arrow, a type a must support the three operations arr, ≫, and

first with the given types. The operations must satisfy the following equations:

arr id ≫ f = f

f ≫ arr id = f

(f ≫ g) ≫ h = f ≫ (g ≫ h)

arr (g . f) = arr f ≫ arr g

first (arr f) = arr (f × id)

first (f ≫ g) = first f ≫ first g

first f ≫ arr (id × g) = arr (id× g) ≫ first f

first f ≫ arr fst = arr fst ≫ f

first (first f) ≫ arr assoc = arr assoc ≫ first f

where the functions × and assoc are defined as follows:

(f × g) (a, b) = (f a, g b)

assoc ((a, b), c) = (a, (b, c))

The function arr allows us to introduce “pure” arrows which are simple functions

from their inputs to their outputs. The function ≫ is similar to �=: it composes two
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computations. The function first is the critical one for our purposes: it allows us to apply

an arrow to a component of the global quantum state. The equations above ensure that

these operations are always well-defined even with arbitrary permutations and change of

associativity.

5.2. Superoperators are Arrows (with Eq constraint)

Just as the probability effect associated with vectors is not strictly a monad because

of the Basis constraint, the type Super is not strictly an arrow as the following types

include the additional constraint requiring the elements to be comparable:

arr :: (Basis b, Basis c) => (b → c) → Super b c

arr f = fun2lin (λ (b1,b2) → (f b1, f b2))

(>>>) :: (Basis b, Basis c, Basis d) => Super b c → Super c d → Super b d

(>>>) = o

first :: (Basis b, Basis c, Basis d) => Super b c → Super (b,d) (c,d)

first f ((b1,d1),(b2,d2)) = permute ((f (b1,b2)) <*> (return (d1,d2)))

��	�
��

 permute v ((b1,b2),(d1,d2)) = v ((b1,d1),(b2,d2))

The function arr constructs a superoperator from a pure function by applying the func-

tion to both the vector and its dual. The composition of arrows is simply the composition

of linear operators. The function first applies the superoperator f to the first component

(and its dual) and leaves the second component unchanged. The definition calculates

each part separately and then permutes the results to match the required type.

Proposition 5.1. Superoperators satisfy the required equations for arrows.

The proposition implies that we can use the arrow combinators to structure our com-

putations. For instance, the first few steps of the Toffoli circuit of Section 2.3 would now

look like:

toffoli :: Super (Bool,Bool,Bool) (Bool,Bool,Bool)

toffoli =
� 
 � hadS = lin2super hadamard

cphaseS = lin2super (controlled phase)

cnotS = lin2super (controlled qnot)

��� arr (λ (a0, b0, c0) → (c0, (a0, b0))) >>>

(first hadS >>> arr (λ (c1, (a0, b0)) → ((b0, c1), a0))) >>>

(first cphaseS >>> arr (λ ((b1, c2), a0) → ((a0, b1), c2))) >>>

(first cnotS >>> arr (λ ((a1, b2), c2) → ((b2, c2), a1))) >>> ...

Clearly this notation is awkward as it forces us to explicitly manipulate the entire state

and to manually permute the values. However, all the tedious code can be generated

automatically as we explain next.
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5.3. A Better Notation for Arrows

Following the Haskell’s monadic do-notation, Paterson (2001) presented an extension to

Haskell with an improved syntax for writing computations using arrows. We concentrate

only on the explanation of new forms which we use in our examples. Here is a simple

example to illustrate the notation:

e1 :: Super (Bool,a) (Bool,a)

e1 = proc (a,b) → ���
r ← lin2super hadamard ≺ a

returnA ≺ (r,b)

The do-notation simply sequences the actions in its body. The function returnA is the

equivalent for arrows of the monadic function return. The two additional keywords are:

— the arrow abstraction proc which constructs an arrow instead of a regular function.

— the arrow application ≺ which feeds the value of an expression into an arrow.

Paterson (2001) shows that the above notation is general enough to express arrow

computations and implemented a preprocessor which translates the new syntax to regular

Haskell. In the case of e1 above, the translation to Haskell produces the following code:

e2 :: Super (Bool,a) (Bool,a)

e2 = first (lin2super hadamard)

As the example shows, the output of the preprocessor is quite optimised.

5.4. Superoperators are (probably) not monads

Arrows are more general than monads. In particular, they include notions of computation

that consume multiple inputs as well as computations with static components, indepen-

dent of the input. Due to this general aspect of arrows, there are some subclasses of them

which turns out to be equivalent to monads. More precisely, arrow types which support

the following app function are just as expressive as monads.

���������
Arrow => ArrowApply a ��	�
���


app :: a (a b c, b) c

The function app is an arrow which also receives an arrow a of type b c, and element

of type b, and returns an element of type c. In other words, for superoperators to be

monads, we would have to define a superoperator of type Super (Super b c, b) c. which

in our case would require Super b c to be an instance of Basis . Unfortunately there is no

straightforward way to view the space of superoperators as a finite set of observables.

6. Examples Revisited: Toffoli and Teleportation

Using arrows and the notation introduced by Patterson, we can express both of our

examples elegantly.
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6.1. Toffoli

The code mirrors the structure of the circuit and the structure of the monadic compu-

tation expressed earlier:

toffoli :: Super (Bool,Bool,Bool) (Bool,Bool,Bool)

toffoli = � 
 � hadS = lin2super hadamard

cnotS = lin2super (controlled qnot)

cphaseS = lin2super (controlled phase)

caphaseS = lin2super (controlled (adjoint phase))

��� proc (a0,b0,c0) → ���
c1 ← hadS ≺ c0

(b1,c2) ← cphaseS ≺ (b0,c1)

(a1,b2) ← cnotS ≺ (a0,b1)

(b3,c3) ← caphaseS ≺ (b2,c2)

(a2,b4) ← cnotS ≺ (a1,b3)

(a3,c4) ← cphaseS ≺ (a2,c3)

c5 ← hadS ≺ c4

returnA ≺ (a3,b4,c5)

6.2. Teleportation

We use the machinery we have developed to faithfully express the circuit presented in

Section 3.1. We break the algorithm in two individual procedures, alice and bob. Besides

the use of the arrows notation to express the action of superoperators on specific qubits,

we incorporate the measurement in Alice’s procedure, and trace out the irrelevant qubits

from the answer returned by Bob.

alice :: Super (Bool,Bool) (Bool,Bool)

alice = proc (eprL,q) → ���
(q1,e1) ← (lin2super (controlled qnot)) ≺ (q,eprL)

q2 ← (lin2super hadamard) ≺ q1

((q3,e2),(m1,m2)) ← meas ≺ (q2,e1)

(m1’,m2’) ← trL ((q3,e2),(m1,m2))

returnA ≺ (m1’,m2’)

bob :: Super (Bool,Bool,Bool) Bool

bob = proc (eprR,m1,m2) → ���
(m2’,e1) ← (lin2super (controlled qnot)) ≺ (m2,eprR)

(m1’,e2) ← (lin2super (controlled z)) ≺ (m1,e1)

q’ ← trL ≺ ((m1’,m2’),e2)

returnA ≺ q’

teleport :: Super (Bool,Bool,Bool) Bool

teleport = proc (eprL,eprR,q) → ���
(m1,m2) ← alice ≺ (eprL,q)
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q’ ← bob ≺ (eprR,m1,m2)

returnA ≺ q’

7. Linear Typing: QML

The category of superoperators is considered to be an adequate model of non-reversible

quantum computation (Selinger 2004). Our construction presented so far seems to suggest

that this category corresponds to a functional language with arrows, and so that we can

accurately express quantum computation in such a framework. But as we explain below,

this is not quite the whole story.

First consider the well-known “non-cloning” property of quantum states (Nielsen and

Chuang 2000). The arrow notation allows us to reuse variables more than once, and we

are free to define the following operator:

copy :: Super Bool (Bool, Bool)

copy = arr (λ x → (x,x))

But can this superoperator be used to clone a qubit? The answer, as explained in Section

1.3.5 of the classic book on quantum computing (Nielsen and Chuang 2000), is no. The

superoperator copy can be used to copy classical information encoded in quantum data,

but when applied to an arbitrary quantum state, for example like qFT , the superoperator

does not make two copies of the state qFT but rather it produces the epr state which

is the correct and desired behaviour. Thus, in this aspect the semantics of arrows is

coherent with quantum computation, i.e., the use of variables more than once models

sharing, not cloning.

In contrast, in our model there is nothing to prevent the definition of:

weaken :: Super (Bool,Bool) Bool

weaken = arr (λ (x,y) → y)

This operator is however not physically realizable. Applying weaken to epr gives qFT .

Physically forgetting about x corresponds to a measurement: if we measure the left qubit

of epr we should get qFalse or qTrue or the mixed state of both measurements, but never

qFT .

Therefore, our use of Haskell as a vehicle for expressing the ideas finally hits a major

obstacle: arrow computations must be required to use every value that is introduced.

Instead of attempting to continue working within Haskell, a better approach might be

to now consider a functional quantum language like QML whose type system is designed

to explicitly control weakening and decoherence, and to express the separation of values

and arrow computations in that framework.

In more detail, QML (Altenkirch and Grattage 2005) is a functional quantum pro-

gramming language which addresses this problem by using a type system based on strict

linear logic: contraction is permitted and modelled by copy while weakening has to be

explicit and is translated by a partial trace. QML also features two conditional operators:

a classical conditional operator ��� which measures a qubit and returns the appropriate

branch and a quantum conditional operator ��� ◦ which avoids measurement but requires

that the branches return results in orthogonal subspaces.
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QML programs can be compiled to quantum circuits, using the category of finite

quantum computation FQC — Grattage’s QML compiler (Grattage 2006) is based on this

semantics. An irreversible computation can be modelled by a reversible circuit, allowing

additional heap qubits, which are initialised to a predefined values at the beginning of

the computation and disposing, i.e. measuring, qubits at the end of the computation. To

any FQC morphism we can assign a superoperator and indeed every superoperator can

be represented this way.

Alternatively, we can interpret QML programs directly as superoperators, giving rise

to a constructive denotational semantics exploiting the library of arrow combinators

developed here. We hope to exploit this semantics to further analyse QML and to develop

high level reasoning principles for QML programs.

8. Conclusion

We have argued that a realistic model for quantum computations should accommodate

both unitary operations and measurements, and we have shown that such general quan-

tum computations can be modelled using arrows. This is an extension of the previous-

known observation that one can model pure quantum probabilities using monads. Es-

tablishing such connections between quantum computations and monads and arrows en-

ables elegant embeddings in current classical languages, and exposes connections to well-

understood concepts from the semantics of (classical) programming languages. We have

demonstrated the use of arrows to model elegantly two examples in Haskell, including

the teleportation experiment which interleaves measurements with unitary operations.
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