
Sequent Calculi and Abstract Machines

ZENA M. ARIOLA

University of Oregon

AARON BOHANNON

University of Pennsylvania

and

AMR SABRY

Indiana University

We propose a sequent calculus derived from the λµµ̃-calculus of Curien and Herbelin that is
expressive enough to directly represent the fine details of program evaluation using typical abstract
machines. Not only does the calculus easily encode the usual components of abstract machines
such as environments and stacks, but it can also simulate the transition steps of the abstract
machine with just a constant overhead. Technically this is achieved by ensuring that reduction in
the calculus always happens at a bounded depth from the root of the term. We illustrate these
properties by providing shallow encodings of the Krivine (call-by-name) and the CEK (call-by-
value) abstract machines in the calculus.

Categories and Subject Descriptors: F.3.3 [Logics and Meanings of Programs]: Studies of Pro-
gram Constructs—Control primitives; F.3.2 [Logics and Meanings of Programs]: Semantics
of Programming Languages—Operational Semantics; F.4.1 [Mathematical Logic and Formal

Languages]: Mathematical Logic—Lambda calculus and related systems; D.1.1 [Programming

Techniques]: Applicative (Functional) Programming

General Terms: Languages,Theory

Additional Key Words and Phrases: Curry-Howard Isomorphism, Duality, Explicit Substitutions,
Krivine Machine, Natural Deduction

1. INTRODUCTION

The study of computation is connected to the field of logic on many different levels.
One of the most striking examples of this connection is the relationship known as
the Curry-Howard isomorphism [Howard 1980]. The core of this relationship is
a correspondence between formal proofs in a logical inference system and terms
of a programming language. The most basic instance of this connection is the
one between minimal natural deduction and the λ-calculus. According to this
paradigm, propositions correspond to types and proofs to programs: a program t
of type τ is also seen as a proof of proposition τ . The reduction rules of the
λ-calculus correspond to proof normalization steps. Griffin [1990] extended this
isomorphism to classical natural deduction and an extension of the λ-calculus with

Supported by National Science Foundation grant number CCR-0204389.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 1999 ACM 0164-0925/99/0100-0111 $00.75

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1–??.

2 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

control operators. Curien and Herbelin [2000] further extended the correspondence
to sequent calculi. They show that different ways of executing a program can be
observed at the level of the logic.

Based on the pioneering work of Plotkin [1975], programming calculi are now rou-
tinely used to model the semantics of programming languages. The fundamental
theorem that makes a calculus suitable to describe a programming language is the
standardization theorem. The semantics of a programming language is ultimately
described with an evaluator, which is a partial function mapping programs to an-
swers. The standardization theorem mediates between the axioms of the calculus
and the evaluator by giving a deterministic way to apply the axioms that leads to
an answer, if one exists.

When modeled in the calculus, the deterministic strategy of the evaluator typ-
ically consists of a loop which repeatedly searches for the next redex and then
applies one of the axioms. In most known cases (e.g. the leftmost-outermost strat-
egy), the search phase might go arbitrarily deep in the syntax tree looking for a
redex. This however is not satisfactory if one wants to capture the execution of
an abstract machine, which always executes a redex at a fixed position. This im-
plies the need to introduce a new criterion to characterize a calculus as a “good
calculus” for reasoning about machines. In other words, we need an analogue to
the standardization theorem to mediate the relationship between a calculus and a
machine. The criterion we present in this paper consists of the following:

The reductions corresponding to the abstract machine transitions must
occur at a bounded depth from the root of the syntax tree.

Although languages based on lambda-calculi have been successful in supporting
reasoning about high-level programs, in this paper we focus on sequent calculi. We
show that sequent calculi are more suitable for reasoning about abstract machines
since they allow one to define an evaluator for terms in a tail-recursive fashion,
thus satisfying the above criterion. A tail-recursive evaluator captures the dispatch
function carried out by a machine. In contrast, an evaluator for terms corresponding
to natural deduction proofs is not tail recursive, requiring an unbounded search for
the next redex.

We present a sequent calculus which naturally embeds run-time data-structures,
such as control stacks and environments. We show how such a calculus allows one
to simulate the executions of two abstract machines: the Krivine machine and the
CEK machine. The Krivine machine corresponds to a deterministic call-by-name
reduction strategy. Whereas, the CEK corresponds to a call-by-value reduction
strategy. Both strategies are defined in a non-recursive, i.e., without using recur-
sion, manner. Moreover, they are obtained by choosing a different orientation of a
critical pair of the reduction semantics.

Our approach of capturing the operational semantics of the machine directly
through the normalization of the calculus is in contrast to specifying the operational
semantics on top of the calculus. More precisely, our approach entails the following:

—The state of the abstract machine is captured as a term.

—The transitions of the abstract machine are captured as term reductions.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 3

Our approach provides a shallow embedding of an abstract machine in a calcu-
lus/logic, as opposed to a deep embedding. This allows reasoning about the machine
inside the logic itself instead of on top of it. It also allows an elegant and simple
formulation of safety, based on the subject reduction theorem of the calculus.

1.1 Outline of the paper

Section 2 discusses related work. Sections 3 and 4 are background material. Sec-
tion 3 introduces minimal and classical natural deduction and their computational
interpretation. λ-calculus and the λDB-calculus are presented as term assignments
for minimal natural deduction proofs. λ-calculus corresponds to the system with
the collection of assumptions organized as a set. The λDB-calculus instead of vari-
ables to name assumptions has de Bruijn indices, it corresponds to the system
with the assumptions maintained in a sequence. The extension of λ-calculus with
control operators is presented as a term assignment for classical logic. Section 4
introduces Gentzen’s sequent calculus (minimal LJ and classical LK) and a vari-
ant called LKµµ̃. Curien and Herbelin λµµ̃-calculus [2000] is introduced as a term
assignment for this variant.

Section 5 compares λ-calculus and the λµµ̃-calculus. One key and distinctive
feature of the λµµ̃-calculus is that application occurs between a term and an ar-
gument list, rather than a single argument as it would in the λ-calculus in natural
deduction style. The use of argument lists in the λµµ̃-calculus grants a greater
range of expressiveness in structuring terms than is available in the λ-calculus, and
this more refined level of expressiveness is an essential tool for capturing the low
level details of β-reduction. The λµµ̃-calculus however is still not sufficient for
simulating abstract machines, as it lacks a notion of environment or simultaneous
substitution. Instead of extending the λµµ̃-calculus with this notion, mirroring the
λσw-calculus [Hardin et al. 1996], we work within the λµµ̃-calculus with unary sub-
stitution and show how to simulate the notion of an environment. The resulting
calculus is called the λµµ̃r↑-calculus.

Section 6 presents the λµµ̃r↑-calculus, which extends the λµµ̃-calculus with de
Bruijn indices, weakening and explicit substitution. We define the notion of well-
formed term and well-typed term, properties which are preserved during reduction.
We present call-by-name and call-by-value reduction strategies, which as for the
λµµ̃-calculus are obtained by resolving a critical pair. Unlike the case for the
λ-calculus, in the λµµ̃r↑-calculus these semantics are specified in a non-recursive
fashion. Section 7 defines over the λµµ̃r↑ an instruction set which is typical of ab-
stract machines. Using these instructions, the compilation of λDB terms in λµµ̃r↑
is presented. The compilation produces well-formed commands. Section 8 is de-
voted to showing how the λµµ̃r↑ calculus faithfully simulates the execution of the
Krivine [2007] and CEK [Felleisen and Friedman 1986] abstract machines. It shows
the correspondence between the Krivine machine and the call-by-name reduction
strategy of λµµ̃r↑-calculus, and the correspondence between the right-to-left CEK
machine and the call-by-value reduction strategy of λµµ̃r↑. Section 9 defines a type
system for the Krivine machine and the right-to-left CEK machine, shows how the
types are preserved by the translation in the λµµ̃-calculus, and how to use types
to reason about the correctness of different compilation schemes and optimizations.
Section 10 concludes.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

2. RELATED WORK

There has been previous work directed at modifying the λ-calculus so that β-
reduction can be simulated with smaller reduction steps. An important contribution
was the investigation of explicit substitutions [Abadi et al. 1990]. Lescanne [1994]
offers a comparison of several versions of calculi with explicit substitutions. Curien,
Hardin, and Lévy [1996] achieved an important goal by proving that the λσ⇑-
calculus is confluent on both closed and open terms. Furthermore, they introduce
the notion of weak and strong calculi of explicit substitutions. Hardin et al. [1996]
propose a weak calculus of explicit substitution (the λσw) as a useful “calculus of
closures” for bridging the gap between abstract machines and the λ-calculus. They
use it to prove the correctness of several abstract machines by developing transla-
tions from machine states to terms in the calculus. However, they fail to capture one
important aspect of an abstract machine: dispatching the next instruction should
not depend on the program to be executed. This in turn means that the calculus
does not model important structures present in the machine.

This previously-mentioned work on calculi with explicit substitutions was, gen-
erally speaking, motivated by the goal of de-constructing β-reduction into smaller
steps. However, another calculus containing explicit substitutions was designed
with an entirely different motivation. This was the λ-calculus of Herbelin [1994],
which was conceived as a term assignment for sequent calculus proofs. The explicit
substitutions in this calculus are present precisely for the purpose of encoding a
particular proof structure. The subsequent work of Curien and Herbelin [2000] and
of Wadler [2003] in the area of proof terms for sequent calculus has elucidated some
of the symmetries inherent in computation, including the duality of the call-by-
name and call-by-value semantics. The two strategies are obtained by choosing a
different orientation of a critical pair. Computation is described as an interaction
between a consumer and a producer, by giving priority to the consumer one obtains
call-by-name, whereas by giving priority to the producer one obtains call-by-value.

With the recent interest in security, formalization of abstract machines has at-
tracted a lot of attention: encoding of the Java Virtual Machine (JVM) into
Haskell [Jones 1998; Yelland 1999], ACL2 [Liu and Moore 2004], Coq [Barthe et al.
2001] and HOL/Isabelle [Klein and Strecker 2004] have been proposed. These ap-
proaches are all based on a deep embedding whereas we propose an approach based
on a shallow embedding into a foundational sequent calculus/logic, in which the
machine specification becomes executable. Our foundational approach does not
immediately scale to the entire JVM. Although the latter machine is a stack-based
abstract machine like the machines we consider in this paper, it also includes some
“large” instructions that are intrinsically tied to the semantics of the Java or byte-
code languages: one such instruction might for example, load and verify entire
classes using a complicated data-flow analysis. Thus, to formalize the entire JVM
using our approach would seem to require some additional ad hoc axioms and/or
reasoning principles.

Our work is close in spirit to Foundational Proof-Carrying Code (FPCC) [Appel
2001] consisting of working with a minimal logic, the sequent logic in our case,
instead of higher-order logic. In FPCC, the machine’s operational semantics and
the typing rules are proved as additional lemmas on top of the logic. In our approach

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 5

A ::= X | A → A

Fig. 1. Syntax of the implicational fragment of minimal propositional logic

they are expressed inside the logic itself. Higuchi and Ohori already have stressed
the importance of a Curry-Howard isomorphism for low-level code [Higuchi and
Ohori 2002; Ohori 2005]. They propose typing Java bytecode with an extension of
intuitionistic propositional calculus. However, they do not provide a formalization
of the operational semantics of the machine inside the logic itself. Also, it does not
seem natural to relate bytecode to an intuitionistic logic since bytecode comes with
instructions that modify the flow of control. These operators are more naturally
embedded in a classical logic, since, as shown by Griffin [1990], they correspond to
the double negation elimination inference rule.

3. NATURAL DEDUCTION AND λ-CALCULI

Natural deduction [Prawitz 1965] has become popular, especially in the area of
computer science, for several reasons. One reason is that it has an important
connection with the λ-calculus, which is addressed shortly. Its proof system is also
popular because its proofs can be read and constructed in a manner that is often
considered more “natural” for humans than using Hilbert-style systems or sequent
calculi.

We start with the implicational fragment of minimal propositional logic. Al-
though simple, this logic still has an important relationship with computation.
The syntax of the implicational fragment of minimal propositional logic is given
in Figure 1. A formula is built from a set of atomic types (X), which we leave
unspecified, and a single logical connective (→), which joins two logical formulae.
We use A, B, C, . . . as meta-variables that range over the set of formulae.

Natural deduction has several presentations. In Section 3.1 we present Prawitz’s
rules and in Section 3.2 we present natural deduction in sequent form. We also
discuss different ways of managing the collection of assumptions, as sets, multisets
or sequences. In Section 3.3 we discuss the impact of these different views on the
structural rules. The computational interpretation of minimal natural deduction
is presented in Section 3.4. If the assumptions are collected in a set then proofs
of minimal natural deduction correspond to λ-calculus. If the assumptions are
maintained as a sequence, then proofs correspond to the λ-calculus with de Bruijn’s
indices. Section 3.5 presents the extension to classical natural deduction with a brief
introduction to continuations.

3.1 Prawitz’ Natural Deduction

The inference rules for Prawitz’ version of minimal natural deduction are given in
Figure 2. There is one rule for the introduction of the implication connective and
one for the elimination of the connective. Proofs correspond to trees where leaves
represent the assumptions. A leaf can be open or closed. An open leaf means that
the assumption is active. A closed leaf corresponds to an assumption that could
have potentially been used in the proof but has been discharged by the end of it.

Whereas the elimination rule is fairly clear, since it corresponds to the traditional
modus ponens, the notation of the implication introduction rule is fairly complex.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

A → B A

B
→e

[A]x
..
..
B

A → B
→x

i

Fig. 2. Prawitz’ minimal natural deduction

Γ, A ` A
Axiom

Γ ` A → B Γ ` A

Γ ` B
→e

Γ, A ` B

Γ ` A → B
→i

Fig. 3. Minimal natural deduction in sequent style with assumptions as sets

In the introduction rule, the dots from the formula A to the formula B indicate a
proof of B, which can refer to the assumption A zero or more times; the brackets
indicate that, after the introduction of the connective, the assumption A may be
discharged; and the variable x associates the use of this rule with the corresponding
discharged assumption.

To know the active assumptions at any point in the proof, one needs to travel
up the tree to the leaves. To remedy this, we present natural deduction in sequent
form. This also provides a more elegant way to clarify some details about using the
implication introduction rule that have been left unspecified.

3.2 Natural Deduction in Sequent Form

A sequent is a syntactic construct for asserting a relation between propositions—in
our case between a collection of formulae and a single formula—which is written:

Γ ` A

In this example, Γ is the antecedent and A is the succedent. Using sequents to
formulate the rules of natural deduction allows clearer distinctions between the
possible methods of managing assumptions. No longer must we work with open (or
closed) assumptions at the leaves of the proof tree; instead, the leaves contain an
instance of an axiom in the inference system, and assumptions are internalized into
the antecedents of the sequents. Therefore, to know the current collection of active
assumptions, one simply looks at the left-hand side of the sequent.

When using sequents, it is necessary to specify what sort of “collection” the an-
tecedent is. There are several possibilities: sets, multisets, sets of named formulae,
and sequences are the primary candidates. We first present in Figure 3 a system
where the antecedents should be interpreted as a set of formulae. We use the
comma to indicate the union of a collection and a single formula (as in Γ, A).

The correspondence with the previous form of natural deduction should be fairly
clear. This system corresponds to a version of Prawitz’ natural deduction in which
the following observations hold:

(1) A proof tree may have associated “leaves” that are not directly connected to
its branches. This arises from the fact that the axiom allows an arbitrary set
of extra assumptions as in A, B ` A;

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 7

(2) Implication introduction may not occur if there are no open assumptions of the
formula associated to the tree, as for example one cannot derive B ` A → B
from B ` B;

(3) No discharge need actually take place. This arises from the fact that Γ may
actually contain A, in which case Γ, A = Γ, as in A ` A→ A from A ` A;

(4) All equivalent (i.e., corresponding to the same formula) open assumptions in
the tree must be simultaneously discharged (and hence marked with the same
name) if any of them is discharged. For example, in the following proof:

[A]x
[A]x

B → A
→i

A→ (B → A)
→x

i

both occurrences of formula A will be deleted by the second implication intro-
duction. This is inherent in the use of sets to maintain assumptions.

Here is a simple proof in the system:

A ` A
Axiom

A ` A→ A
→i

` A→A→A
→i

In the first implication introduction step, the assumption A is not deleted. If it
were deleted, the second implication introduction step would not be possible.

Had we decided to manage assumptions with multisets, we would only have to
re-interpret the rules in Figure 3; the comma becomes the sum of multisets. In this
new interpretation, the third and fourth statements above would be replaced with:

(3) Exactly one open assumption in the tree must be discharged.

The proof of A→A→ A in this system is:

A, A ` A
Axiom

A ` A→ A
→i

` A→A→ A
→i

Although these two versions of natural deduction in sequent form provide some
clarification on the use of implication introduction, they both lack some expressive
power with respect to Prawitz’ version. Each of the proofs above could correspond
to either of the two below:

[A]x

A→ A
→x

i

A→ A→ A
→y

i

[A]x

A→ A
→y

i

A→ A→ A
→x

i

Using sets of named assumptions solves half of the problem. We could then
tell which open assumption was discharged during an implication introduction, but
would still not know which assumption corresponds to the succedent in the axiom
rule. One solution to this problem is to attach names to the succedent in the
axiom rules. Another solution is simply to use sequences to manage assumptions.
This requires a modification to the axiom, and the resulting system is presented
in Figure 4. We return to this system in Section 3.4, where de Bruijn indices are
discussed.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

Γ, A,Γ′ ` A
Axiom

Γ ` A → B Γ ` A

Γ ` B
→e

Γ, A ` B

Γ ` A → B
→i

Fig. 4. Minimal natural deduction in sequent style with assumptions as sequences

Γ ` B

Γ, A ` B
Weakening

Γ, A,A ` B

Γ, A ` B
Contraction

Γ, A,Γ′, B, Γ′′ ` C

Γ, B, Γ′, A,Γ′′ ` C
Exchange

Fig. 5. Structural rules

t ::= x | (λx.t) | (t t′)

Fig. 6. Syntax of λ-calculus terms

3.3 Structural Rules

When working with multisets or sequences, it is sometimes necessary to add struc-
tural rules. The three structural rules typically considered are Weakening, Contrac-
tion, and Exchange (Figure 5). Clearly, in a system that uses sets of assumptions,
only weakening is relevant, and in a system that uses multisets, only weakening and
contraction are relevant.

Adding these structural rules to a system may not alter the set of sequents that
is provable in the system; in that case, the structural rules are admissible (but not
derivable). This is the case for the three systems of natural deduction presented.
It is worth noting that the precise formulation of the inference rules, especially the
axiom, can influence the admissibility of various structural rules. For instance, if
we had used the axiom:

A ` A
Axiom

in any of the above inference systems, then weakening would have been necessary
to make the inference system complete and would no longer be an admissible rule.

3.4 The λ-calculus and Minimal Natural Deduction

There is a natural bijection between the terms of the basic λ-calculus and proofs in
minimal natural deduction. The syntax of the λ-calculus is presented in Figure 6.
The method for matching proofs to λ-terms is described by the inference rules in
Figure 7. In particular, whereas λ-terms correspond to proofs, formulae correspond
to types. In this case, we are encoding proofs from a system that manages assump-
tions with sets of named formulae with a provision in the axiom to assign a name
to the formula in the succedent of the sequent.

Once we can encode proofs as terms, it becomes much easier to work with trans-
formations on proofs. The Curry-Howard isomorphism is properly an isomorphism
because the reduction rules of the λ-calculus correspond to correct proof normal-
ization steps. Reduction in the λ-calculus is done by means of the β-rule:

(λx.t) u→ t{x := u}

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 9

Γ, x : A ` x : A
Axiom

Γ ` t : A → B Γ ` u : A

Γ ` (t u) : B
→e

Γ, x : A ` t : B

Γ ` (λx.t) : A → B
→i

Fig. 7. Assignment of λ-terms to proofs in minimal natural deduction

t ::= n | λt | (t t′)

Fig. 8. Syntax of λDB-terms

(|∆| = n)

Γ, A, ∆ ` n + 1 : A
Axiom

Γ ` t : A → B Γ ` u : A

Γ ` (t u) : B
→e

Γ, A ` t : B

Γ ` λt : A → B
→i

Fig. 9. Assignment of λDB-terms to proofs in minimal natural deduction

Here we use the notation t{x := u} as meta-syntax to describe the term t, with all
free occurrences of x replaced with the term u. A term with no occurrences of a
β-redex is said to be in normal form.

To assign terms that can represent proofs in the system with the collection of the
assumptions interpreted as a sequence, one needs to slightly modify the λ-calculus.
Instead of working with variables, one works with de Bruijn’s indices representing
the assumption’s position in the sequence Γ. We call the new terms λDB-terms;
their syntax is given in Figure 8. The assignment of terms to proofs and the typing
rules of λDB-terms are in Figure 9. (We use the notation |Γ| here to represent the
number of assumptions in the sequence Γ.)

As mentioned by several authors [Curien et al. 1996; Lescanne 1994], we do not
actually need to depend upon an externally-defined set of natural numbers; instead,
we can integrate them into our calculus if we add a unary operator ↑, as described
in Figure 10. There are no natural numbers here. Instead we may define them as
follows:

1 := •↑ 2 := (•↑) ↑ 3 := ((•↑) ↑) ↑ 4 := (((•↑) ↑) ↑) ↑

The new terms correspond to a logic with an explicit weakening rule. These typing
rules are given in Figure 11.

Intermezzo 1. In Section 7 the λDB terms are translated into a lower language
which corresponds to a variant of natural deduction with multiple conclusions given
in Figure 12.

3.5 Control Operators and Classical Natural Deduction

Classical logic is obtained by extending the set of formulae with the absurd for-
mula ⊥, which stands for the false proposition. The formula ⊥ has no introduction
rule and one elimination rule:

Γ,¬A ` ⊥

Γ ` A
Reductio Ad Absurdum

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

t ::= • | λt | (t t′) | (t ↑)

Fig. 10. Syntax of λDB-terms with explicit weakening

Γ, A ` • : A
Axiom

Γ ` t : A
Γ, B ` (t↑) : A

Weakening

Γ ` t : A→ B Γ ` u : A
Γ ` (t u) : B

→e
Γ, A ` t : B

Γ ` λt : A→B
→i

Fig. 11. λDB-terms and minimal natural deduction with weakening

Γ, A ` A, ∆

Γ ` A, ∆ Γ, A ` ∆

Γ ` ∆

Γ ` A→B, ∆

Γ, A ` B, ∆

Γ, A ` B, ∆

Γ ` A→B, ∆

Fig. 12. Alternative deduction system with multiple conclusions

where ¬A stands for the formula A → ⊥. A single application of the rule leads to
the Ex Falso Quodlibet rule which says that from a contradiction any formula can
be derived:

Γ ` ⊥
Γ ` A

Ex Falso Quodlibet

Griffin [1990] showed that the Curry-Howard isomorphism extends to an iso-
morphism between classical proofs and λ-terms with operators for manipulating
first-class continuations. An example of such an operator is the operator C which
was introduced for reasoning about Scheme programs [Felleisen et al. 1987; Felleisen
et al. 1986; Felleisen and Friedman 1986]. Intuitively, an application of the C oper-
ator marks the current context with a label that can be later used to “jump back”
and resume from that point. For example, in the term 1+C (λk.2+ k 3) variable k
gets bound to the context surrounding the C application which is represented as
1 + 2. When this context is invoked, the execution aborts the pending addition to
2 and instead re-instates the captured context with 2 replaced with 3. The final
answer is 4. Given this intuitive semantics, it is clear that one can represent the
context (1+2) as a function which takes an integer to be added and never returns,
i.e., it is safe to give the function the type int→ ⊥. Griffin adds C to the λ-calculus
and shows that the resulting system corresponds to classical natural deduction as
shown in Figure 13. As the last rule shows, the construct C(λk.t) corresponds to
the proof by contradiction inference rule.

4. SEQUENT CALCULI AND THE λµµ̃-CALCULUS

Having considered natural deduction, we now turn to the sequent calculus, which
has been appreciated, since its introduction by Gentzen [1969], for its symmetry
and its applicability to automated proof search. Instead of having introduction

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 11

t ::= x | λx.t | t t′ | C(λk.t)

Γ, x : A ` x : A
Axiom

Γ ` t : A→ B Γ ` u : A
Γ ` (t u) : B

→e
Γ, x : A ` t : B

Γ ` λx.t : A→ B
→i

Γ, k : ¬A ` t : ⊥

Γ ` C(λk.t) : A

Fig. 13. λC and (classical) natural deduction

Γ, A ` A
Axiom

Γ ` A Γ, B ` C

Γ, A → B ` C
→l

Γ, A ` B

Γ ` A → B
→r

Γ ` A Γ, A ` B

Γ ` B
Cut

Fig. 14. Sequent calculus with assumptions as sets (Minimal LJ)

and elimination rules as natural deduction does, the sequent calculus has right
introduction rules and left introduction rules. Additionally, it has the significant
Cut rule.

In Section 4.1 the minimal sequent calculus LJ is presented. As for natural
deduction, the issue of how to organize the collection of assumptions is discussed.
In Section 4.2 we present the classical sequent calculus LK. In Section 4.3 we present
the sequent calculus LKµµ̃ which solves the issue of LK of having different normal
(i.e. without cuts) proofs of the same formula. In Section 4.4 we present Curien
and Herbelin λµµ̃-calculus as a term assignment for LKµµ̃.

4.1 The Minimal Subset

The inference rules of the minimal subset, called minimal LJ, are given in Figure 14,
where Γ stands for a set of assumptions. This system is complete; all of the sequents
that are derivable in the systems of natural deduction that we previously considered
are also derivable in this system. Furthermore, it is complete without the cut rule;
that is to say, the cut rule is admissible. (Demonstrating this fact is not trivial, as
it would be to demonstrate the admissibility of weakening in one of our previous
systems.)

Even though the cut rule is admissible, its presence gives the sequent calculus a
certain expressiveness that is quite valuable. For instance, it is relatively trivial to
give a translation of natural deduction into sequent calculus when the cut rule is
present. This expressiveness is one of the primary factors that makes the sequent
calculus so useful as a basis for computational structures.

Remark 2. In natural deduction, the presentation of the systems using sets and

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

Γ, A ` A
Axiom

Γ ` A Γ, B ` C

Γ, A → B ` C
→l

Γ, A ` B

Γ ` A → B
→r

Γ, A,A ` B

Γ, A ` B
Cont

Γ ` A Γ, A ` B

Γ ` B
Cut

Fig. 15. Minimal Sequent calculus with assumptions as multisets

multisets required no typographical changes to the inference rules. Thus, we may
be inclined to believe the same holds true with the sequent calculus. However, if
we wish to maintain the property of cut admissibility, this is not the case. Consider
the following proof:

A → B ` A → B
Axiom

A → B, A ` A
Axiom

(A → B) → A, A → B ` A
→l

(A → B) → A, A → B, B ` B
Axiom

(A → B) → A, A → B ` B
→l

This is a valid proof in the system of Figure 14 where assumptions are managed
as sets. Note that in the left introduction step just before the conclusion, there is
an implicit contraction step. In the application of the rule, we have:

Γ = (A→B)→A, A→ B

However, the newly formed formula on the left is A→B, which is already present as
an assumption. So we get Γ, A→B = Γ. This contraction would not be automatic
if assumptions were kept as a multiset. There is no way to remedy the situation
without changing the inference rules. We may either alter the left introduction rule
or add a contraction rule to the system. We take the latter choice: the resulting
system is presented in Figure 15.

4.2 The Classical Extension

Whereas classical natural deduction (with the exception of Parigot’s classical nat-
ural deduction [1993]) is obtained by adding rules that break the symmetry of
introduction and elimination rules, the classical sequent calculus is rendered by
simply allowing multiple conclusions, as expressed in the judgment:

Γ ` ∆

where ∆ is a set of formulae. The judgment has a simple reading: the conjunction
of the assumptions implies the disjunction of the conclusions. The system called
LK is shown in Figure 16.

It may not be immediately clear why having a set of conclusions in the judgments
makes the system classical. The intuition will be clear after we introduce the term
assignments relating the logic to λ-calculi with control operations. In that term
assignment, each formula in the set of conclusions will represent a “continuation.”
A system with one conclusion like LJ from the last section corresponds to a language
with exactly one current continuation, i.e., a language with no global control effects.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 13

Γ, A ` A,∆
Axiom

Γ ` A,∆ Γ, B ` ∆

Γ, A → B ` ∆
→l

Γ, A ` B, ∆

Γ ` A → B, ∆
→r

Γ ` A,∆ Γ, A ` ∆

Γ ` ∆
Cut

Fig. 16. The LK sequent calculus

A system like LK with several conclusions corresponds to a language with several
live continuation variables, i.e., a language with first-class continuations.

4.3 The logic LKµµ̃

An issue with LJ or LK is that although the Cut rule is admissible, there are often
multiple cut-free proofs of the same sequent. For example, the following two proofs
of the same formula are distinct and neither contains any detour, i.e., they are
both in normal form. The problem, however, is that they are both associated to
the same λ-term [Herbelin 1994].

Example 3.

A, C ` A
Axiom

A, C, B ` B
Axiom

A→ B, A, C ` B
→l

A→B, A ` C →B
→r

A ` A
Axiom

A, C, B ` B
Axiom

A, B ` C →B
→r

A→B, A ` C→ B
→l

A solution to this permutability of the left and right implication rules is offered
by Danos [1993] and more recently by Curien and Herbelin [2000]. In the more
recent solution, Curien and Herbelin define a restriction of LJ (LK) called LJµµ̃

(LKµµ̃), which restores the bijection between cut free proofs and λ-terms in normal
form. The restriction forces the application of the left-introduction rule as soon as
it becomes applicable. Thus, only the first proof is a legal proof.

The logic LKµµ̃ uses three distinct judgments:

Γ ` A | ∆ Γ | A ` ∆ Γ ` ∆

where Γ and ∆ are sets of formulae. There is a difference between the formulae
in Γ and ∆ and the formula A explicitly mentioned in the first two judgments.
The formulae in Γ or ∆ are formulae that are passive or unfocused. Formula A
is an active formula also called a distinguished formula. The symbol | is used to
separate the distinguished formula from the rest of the passive conclusions and
passive assumptions, as shown in the first and second judgment, respectively. The
presence of this extra symbol does not change the meaning of the judgments; the
conjunctions of the assumptions still implies the disjunction of the conclusions.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

Γ | A ` A,∆
Axioml

Γ, A ` A | ∆
Axiomr

Γ ` A | ∆ Γ | B ` ∆

Γ | A → B ` ∆
→l

Γ, A ` B | ∆

Γ ` A → B | ∆
→r

Γ, A ` ∆

Γ | A ` ∆
Activatel

Γ ` A,∆

Γ ` A | ∆
Activater

Γ ` A | ∆ Γ | A ` ∆

Γ ` ∆
Cut

Fig. 17. The LKµµ̃ logic

The inference rules are shown in Figure 17. In the Axiomr axiom, formula A
is separated from the rest of the formulae in ∆ which means that A is an active
conclusion. Analogously, the dual axiom Axioml allows one to single out a specific
assumption, which again becomes the active assumption, and thus is separated from
the rest of the formulae in Γ with the | symbol. The presence of active formulae
is what distinguishes the implication rules and the cut rule from the corresponding
LK rules. For example, notice how in the premises of the right implication rule
formula B must be an active assumption. Thus, given the judgment A ` A | B, A,
one cannot infer ` A→ B | A since formula B is not active.

To focus on a specific assumption or conclusion one needs to use the Activate
rules. These rules however only apply to judgments with no distinguished formulae
and hence it should be possible to also “passivate” or unfocus the distinguished
formula. This is accomplished by the Cut rule.

For example, given the judgment A ` A | B, A, to focus on B one first need to
unfocus A:

A ` A | B, A
Axiomr

A | A ` B, A
Axioml

A ` B, A
Cut

Now that the judgment has no active formulae, we focus on B using the Activater

rule:

A ` B, A

A ` B | A
Activater

At this point one can apply the right introduction rule to obtain ` A → B | A.
Analogously, given a judgment with no active formulae either on the left or right-
hand side, the Activatel allows one to select an assumption. For example:

A, A→ B, C ` B

A→ B, C | A ` B

A, A→ B, C ` B

A, C | A→ B ` B

Example 4. The left-hand side proof of Example 3 is expressed in LKµµ̃ as

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 15

Terms v ::= x | λx.v | µα.c
Contexts e ::= α | v · e | µ̃x.c
Commands c ::= 〈v | e〉

Fig. 18. Syntax of the λµµ̃-calculus

follows:

A, A → B, C ` A → B | B

A → B,A, C ` A | B A → B, A,C | B ` B

A → B, A,C | A → B ` B
→l

A, A → B, C ` B
Cut

A → B, A,C ` B |
Activater

A → B, A ` C → B |
→r

As remarked in [Curien and Herbelin 2000], the lack of special rules to unfocus
the distinguished formula destroys the cut elimination property. For example, the
cut in the above proof cannot be eliminated.

4.4 The λµµ̃-calculus and the logic LKµµ̃

Curien and Herbelin’s λµµ̃-calculus [2000] is a term assignment for the LKµµ̃ variant
of Gentzen’s sequent calculus. The syntax is given in Figure 18. There are two
“dual” syntactic categories: terms which are producers of values and contexts which
are consumers of values. The interaction between a producer and a consumer
is rendered by a command, which can also be seen as a hole filling operation.
The duality of terms and contexts is also reflected at the variable level. One has
two distinct sets of variables. The usual term variables range over by x, and the
context variables range over by α. The context variables correspond to continuation
variables.

To gain some intuition about the constructs of the calculus, we explain how to
express in λµµ̃, the λ-term (λx.λy.x + y + z) 1 z. The producer corresponds to
the function part of the application, that is the function λx.λy.x + y + z. The
consumer corresponds to the arguments which are packaged up in a list made from
the constructors “nil” (α) and “cons” (·) as follows: 1 · z · α. Intuitively, the first
argument 1 is waiting to consume a function; then the second argument z consumes
the next function; and finally variable α indicates what to do next. Putting the
producer and consumer together gives us the command 〈λx.λy.x + y + z | 1 · z ·α〉.
The context 1 · z · α intuitively corresponds to the context α ((2 1) z), and the
command can be seen as filling the hole of the context with the lambda term.
With the µ construct, one can give a name to a context so to invoke it later. For
example, to execute the above command and return its result to the top level one
writes µα.〈λx.λy.x + y + z | 1 · z · α〉.

As the µ construct gives a name to a context, it is equivalent to Felleisen’s C
control operator. More precisely, µα.c can be written as C(λα.c).

Whereas µ names a context, the dual construct µ̃ gives a name to a term. For
example, one can read µ̃x.c as the let expression ‘let x = 2 in c’.

The type system uses the following three judgments:

Γ ` v : A | ∆ Γ | e : A ` ∆ c : (Γ ` ∆)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

Γ | α : A ` α : A, ∆
Axioml

Γ, x : A ` x : A | ∆
Axiomr

Γ ` v : A | ∆ Γ | e : B ` ∆

Γ | v · e : A→ B ` ∆
→l

Γ, x : A ` v : B | ∆

Γ ` λx.v : A→ B | ∆
→r

c : (Γ, x : A ` ∆)

Γ | µ̃x.c : A ` ∆
Activatel

c : (Γ ` α : A, ∆)

Γ ` µα.c : A | ∆
Activater

Γ ` v : A | ∆ Γ | e : A ` ∆

〈v | e〉 : (Γ ` ∆)
Cut

Fig. 19. Type system for the λµµ̃-calculus

where Γ and ∆ are sets of named formulae or types. Γ contains the types of the free
term variables, and ∆ contains the types of the free continuation variables. Whereas
continuation variables in Prawitz’ classical logic are kept in the left-hand side of
the sequent and typed with formulae of the form A → ⊥, in here the continuation
variables are kept in the right-hand side of the sequent and typed simply with A.
The reading of the first judgment is as usual: term v has type A. The second
judgment reads as: context e is waiting for something of type A. In other words,
A is the type of the hole in the context. Commands are typed using the third
judgment, which indicates that we have an active formula neither on the left-hand
side nor on the right-hand side of the judgment.

The type system is given in Figure 19. Analogously to the Axiomr, its dual axiom
reads as: given that continuation variable α has type A one can safely assume that
the context α is waiting for something of type A. For the →l rule one has: given
that v has type A and the list of arguments is waiting for something of type B,
the newly applicative context v · e is waiting for a function of type A → B. The
reading of the Cut rule is: given a producer of type A and a context e waiting
for something of type A, the type of the command is a judgment containing the
types of the free term variables and of the free continuation variables occurring in
the command. The Activater rule turns a command into a producer. Notice that
since ∆ can contain multiple conclusions, one has freedom in choosing a potential
output. For example, given

c : (Γ ` α : A, β : B)

by selecting α, one obtains the producer µα.c of type A and by selecting β, one
obtains the producer µβ.c of type B. Whereas the Activater permits the selection
of a conclusion, the Activatel (or equivalently the µ̃) permits the selection of an
assumption. As before, one has a choice in selecting the assumption. Thus, given

c : (x : B, y : A ` ∆)

one can select x to obtain the consumer µ̃x.c of type B or select y to obtain the
consumer µ̃y.c of type A.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 17

4.5 Reduction Semantics for the λµµ̃-calculus

The calculus has three basic reduction rules which can simulate either a call-by-
value or a call-by-name semantics:

(β) 〈λx.v | v′ · e〉 → 〈v′ | µ̃x.〈v | e〉〉
(µ) 〈µα.c | e〉 → c{α := e}
(µ̃) 〈v | µ̃x.c〉 → c{x := v}

In the first reduction, a procedure is paired with a context that has an argu-
ment v′ on the stack. The argument v′ becomes the new producer, and the new
context receives the value of v′, binds it to x, and continues with the body of the
procedure and the stack e. This reduction seems to model a call-by-value semantics
but the issue is more subtle; it all depends on what a value is, which in turn depends
on how a command 〈µα.c1 | µ̃x.c2〉 evaluates. In the call-by-name semantics, the
µ̃-rule has higher priority, the argument v′ is immediately absorbed (without eval-
uation). In the call-by-value semantics, the µ-rule has higher priority, thus forcing
the evaluation of v′.

Remark 5. The λµµ̃ calculus is not confluent. For example, the term

µβ.〈λx.z | µα.〈y | β〉 · β〉

will reduce to µβ.〈z | β〉 according to call-by-name:

µβ.〈λx.z | µα.〈y | β〉 · β〉 →β

µβ.〈µα.〈y | β〉 | µ̃x.〈z | β〉〉 →µ̃

µβ.〈z | β〉

The same term will reduce to µβ.〈y | β〉 according to call-by-value:

µβ.〈λx.z | µα.〈y | β〉 · β〉 →β

µβ.〈µα.〈y | β〉 | µ̃x.〈z | β〉〉 →µ

µβ.〈y | β〉

5. APPLICATIVE TERMS, ENVIRONMENTS, AND CONTEXTS

Our central claim is that sequent calculi are more appropriate for the simulation of
abstract machines. The essence of this claim is that a reduction of terms correspond-
ing to sequent calculus proofs is naturally tail-recursive. In contrast, reduction of
terms corresponding to natural deduction proofs is not tail recursive, requiring an
unbounded search for the next redex which may be located deep inside the term.
We explain this point in Section 5.1 by comparing the structure of proofs in natural
deduction and sequent calculus. There is however a problem with substitution, as
discussed in Section 5.2.

5.1 The structure of applicative terms in λ and λµµ̃ calculi

Consider the following two proofs of the same formula from the same assumptions:

Γ ` A→ B → C → D Γ ` A
Γ ` B → C → D

→e
Γ ` B

Γ ` C → D
→e

Γ ` C
Γ ` D

→e

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

�
�

�
�

�
�

�
�

@
@
@

@
@
@

@
@
@

t

t

t

t u1

u2

u3

@
@

@
@

@
@

@
@

@
@@

�
�

�
�

�
�

�
�

�
�

�
�

t

t

t

t

t

u1

u2

u3 α

Fig. 20. The structure of applicative terms in the λ-calculus and the λµµ̃-calculus

and

Γ ` A→ B → C → D | D

Γ ` A | D

Γ ` B | D

Γ ` C | D Γ | D ` D

Γ | C → D ` D
→l

Γ | B → C → D ` D
→l

Γ | A→ B → C → D ` D
→l

Γ ` D
Cut

Γ ` D |
Activater

The first proof is in the usual natural deduction style and corresponds to the typing
judgment of the λ-term (t u1 u2 u3) as given below:

Γ ` t : A→ B → C → D Γ ` u1 : A

Γ ` t u1 : B → C → D Γ ` u2 : B

Γ ` t u1 u2 : C → D Γ ` u3 : C

Γ ` t u1 u2 u3 : D

The second proof is in the LKµµ̃ sequent calculus and corresponds to the λµµ̃-
command 〈t | u1 ·u2 ·u3 ·α〉 as given below (we sometimes omit the passive conclusion
D):

Γ ` t : A→ B → C → D

Γ ` u1 : A

Γ ` u2 : B

Γ ` u3 : C Γ | α : D ` α : D

Γ | u3 · α : C → D ` α : D

Γ | u2 · u3 · α : B → C → D ` α : D

Γ | u1 · u2 · u3 · α : A→ B → C → D ` α : D

〈t | u1 · u2 · u3 · α〉 : (Γ ` α : D)

Γ ` µα.〈t | u1 · u2 · u3 · α〉 : D

While the expressions look somewhat similar, their abstract syntax trees are
quite distinct as revealed by Figure 20. If t is the term λx.λy.λz.z, in the case of

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 19

the λ-term, the redex is at the bottom of the syntax tree but in the case of the
λµµ̃-term, it is at the top. This means that β-reduction would, in general, require
a search at an arbitrary depth into the λ-term but not in the λµµ̃-term This is
shown in the following two reduction sequences, where the redex performed at each
step is underlined:

(λx.λy.λz.z)u1 u2 u3 →

(λy.λz.z)u2 u3 →

(λz.z)u3 →

u3

µα.〈λx.λy.λz.z | u1 · u2 · u3 · α〉 →

µα.〈u1 | µ̃x.〈λy.λz.z | u2 · u3 · α〉〉 →

µα.〈λy.λz.z | u2 · u3 · α〉 →→

µα.〈λz.z | u3 · α〉 →→

u3

Notice how in the λµµ̃-calculus there is always a redex within a bounded distance
from the top of the syntax tree.

As described by Ager et al. [2003], one can obtain a tail recursive evaluation by
translating λ-terms into continuation-passing style (CPS). Our approach instead is
to translate λ-terms into the λµµ̃-calculus which uses continuations but avoids the
explicit conversion to CPS.

Consider the λ-term t u1 u2 u3 which can be directly embedded in the λµµ̃-
calculus as 〈µα.〈µα.〈t | u1 ·α〉 | u2 ·α〉 | u3 ·α〉. The embedding actually represents
a translation from a proof in natural deduction to one in the sequent calculus. The
resulting λµµ̃-term reduces as follows:

〈µα.〈µα.〈t | u1 · α〉 | u2 · α〉 | u3 · α〉 →
〈µα.〈t | u1 · α〉 | u2 · u3 · α〉 →
〈t | u1 · u2 · u3 · α〉

where each reduction occurs at the top of the term. The final term has the structure
shown on the right of Figure 20.

Indeed, the connection between CPS and abstract machines is quite deep. In
particular, Streicher and Reus [1998] present a rational reconstruction of the Krivine
abstract machine from the “natural” denotational continuation semantics of the λ-
calculus.

5.2 The problem with substitution

The version of the λµµ̃-calculus presented above uses symbols to refer to variable
names and includes substitution as a meta-operation. In typical abstract machines
names are replaced by indices and substitution is typically expressed at a lower-
level using calculi with explicit substitutions [Abadi et al. 1990]. Consider such an
extension for λµµ̃ with terms such as:

t[x← u1][y ← u2][z ← u3]

The problem with such an addition is that one loses the capability of always reduc-
ing at a bounded distance. In fact, the above potential redex (the one underlined)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

Terms v ::= r | λr.v | µk.c | vτ | v w
Contexts e ::= tp | k | v · e | µ̃r.c | eτ | e w
Commands c ::= 〈v | e〉 | cτ | c w
Continuations V ars k ::= α | γ
Substitutions τ ::= [r ← v] | [k ← e]
Weakenings w ::= ↑r | ↑k

Fig. 21. Syntax of the λµµ̃r↑-calculus

is now buried within the syntax tree instead of being at the top. Since there is no
limit on the number of substitutions, we may have sequences such as:

t[x1 ← u1][x2 ← u2] · · · [xn ← un]

where the depth of the redex cannot be determined statically.
In other words, a direct extension of λµµ̃ with explicit substitutions requires

unbounded search for redexes. To avoid this unbounded search, the calculus should
be extended with a notion of simultaneous substitution, which directly encodes
the environment used by an abstract machine. This is for example the approach
followed in the λσw-calculus [Hardin et al. 1996], in which the above term becomes

t [u1.u2.u3.id]

where we have assumed the variables x, y and z correspond to the de Bruijn numbers
1, 2 and 3, respectively.

Thus, in order to get closer to the level of abstract machines, we modify the λµµ̃-
calculus by moving to de Bruijn indices and by including environments. However,
unlike the various calculi for explicit simultaneous substitutions, environments need
not be modeled as a new primitive notion in the λµµ̃-calculus: just as lists of argu-
ments are modeled using contexts, environments too can be modeled using contexts.
In practice, this idea corresponds to the usual technique of maintaining both the
arguments and the environment on the run-time stack [Douence and Fradet 1998].

6. THE λµµ̃r↑-CALCULUS

We present the λµµ̃r↑-calculus: its syntax, types, and reductions. We then illus-
trate how both the call-by-name and call-by-value semantics can be defined using
reduction sequences which always apply reductions within a bounded distance from
the root.

6.1 Well-formed Terms and Types

The λµµ̃r↑-calculus builds on the λµµ̃-calculus with explicit substitution by adding
explicit weakening. Its syntax is given in Figure 21. As in the λµµ̃-calculus, the
syntactic categories v, e and c correspond to terms, contexts and commands, re-
spectively. There is however only one term variable r which corresponds to a fixed
register (the accumulator). There are also only two continuation variables, α and γ,
which allow one to simulate the environment and the working stack of arguments,
respectively. We also admit a continuation constant called tp which denotes the
top-level. One does not have an unbounded number of consecutive weakenings or

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 21

| k ` k
Axioml

r ` r |
Axiomr

| tp `
Axiomtp

Γ ` v | ∆ Γ | e ` ∆

Γ | v · e ` ∆
→l

r ` v | ∆

` λr.v | ∆
→r

c : (r ` ∆)

| µ̃r.c ` ∆
Activatel

c : (Γ ` k, ∆)

Γ ` µk.c | ∆
Activater

Γ ` v | ∆ Γ | e ` ∆

〈v | e〉 : (Γ ` ∆)
Cut

Substitution rules:

r ` v | ∆ ` v′ | ∆

` v[r ← v′] | ∆
Svl

Γ ` v | ∆, k Γ | e ` ∆

Γ ` v[k ← e] | ∆
Svr

r | e ` ∆ ` v | ∆

| e[r ← v] ` ∆
Sel

Γ | e ` ∆, k Γ | e′ ` ∆

Γ | e[k ← e′] ` ∆
Ser

c : (r ` ∆) ` v | ∆

c[r ← v] : (` ∆)
Scl

c : (Γ ` ∆, k) Γ | e ` ∆

c[k ← e] : (Γ ` ∆)
Scr

Weakening rules:

` v | ∆

r ` v ↑r | ∆
Wvl

Γ ` v | ∆

Γ ` v ↑k | ∆, k
Wvr

| e ` ∆

r | e ↑r ` ∆
Wel

Γ | e ` ∆

Γ | e ↑k ` ∆, k
Wer

c : (Γ ` ∆)

c ↑r : (r ` ∆)
Wcl

c : (Γ ` ∆)

c ↑k : (Γ ` ∆, k)
Wcr

Fig. 22. Well-formed λµµ̃r↑ terms, contexts and commands

substitutions. There are at most three consecutive weakenings or substitutions. To
express these syntactic restrictions we define in Figure 22 the notions of well-formed
terms, contexts and commands using the following three distinct judgments:

Γ ` v | ∆ Γ | e ` ∆ c : (Γ ` ∆)

Γ contains at most one term variable. The set ∆ is restricted to at most two distinct
continuation variables. The sets Γ and ∆ correspond to the set of free term and
continuation variables, respectively, occurring in either v, e or c. The function fvr

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

which determines if r occurs free in a term can be defined as following:

fvr(r) = {r}
fvr(λr.v) = {}
fvr(µk.c) = fvr(c)
fvr(v[r ← v′]) = {}
fvr(v[k ← e]) = fvr(v)
fvr(v ↑r) = {r}
fvr(v ↑k) = fvr(v)

The fvr on commands and contexts, and the function which determines the free
continuation variables are defined in a similar way. For example, the following
judgments are not derivable:

r ` λr.r | | tp ` α

since r does not occur free in λr.r and α does not occur free in tp. When we write
∆, k : A we assume k does not occur in ∆.

The reading of the axioms is as follows: term variable r (continuation variable
k) is well-formed if it occurs in the set of free term (continuation) variables. Also,
the constant tp is well-formed. Notice that the axioms do not have redundant
assumptions. For example, none of the following judgments is derivable:

r ` r | α r | α ` α r | α ` α, γ

They can however be obtained by applying weakening steps:

r ` r |
Axiomr

r ` r ↑α | α
Wvr

| α ` α
Axioml

r | α ↑r ` α
Wel

r | α ↑r↑γ ` α, γ
Wer

As shown below, (λr.r) is a well-form term:

r ` r |
Axiomr

` λr.r |
→r

Notice that in the conclusion the set of assumptions is empty. To derive judgments
with additional assumptions, explicit weakening steps must be used. For example,
we can derive the following three judgments:

r ` (λr.r) ↑r | ` (λr.r) ↑α | α r ` (λr.r) ↑r↑α↑γ | α, γ

The term λr.λr.r is not well-formed, as one cannot infer r ` λr.r | . However,
λr.((λr.r) ↑r) is well-formed:

` λr.r |

r ` (λr.r) ↑r |
Wvl

` λr.(λr.r) ↑r |
→r

Notice that r occurs free in (λr.r) ↑r.
On the surface, the left implication rule does not seem to impose any restrictions.

However, even a simple context such as r · α is not well-formed. The reason is that

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 23

both the argument and the rest of the context (α in this case) need to have the same
set of free term and continuation variables. To that end, weakenings are added to
the parameter and the rest of the list as shown below:

r ` r |
Axiomr

r ` r ↑α | α
Wvr

| α ` α
Axioml

r | α ↑r ` α
Wel

r | r ↑α ·α ↑r ` α
→l

For the same reason, the context (λr.r) · α is not well-formed. One would need
to write (λr.r) ↑α ·α. Like for the lambda rule, in the µ̃ rule, variable r needs to
occur free in the body. This explains the presence of the weakening in the term
µ̃r.(〈λr.r | tp〉 ↑r). The same holds for the dual µ construct. Thus, one writes
µα.(〈λr.r | tp〉 ↑α). In the command rule, both the term and the context share
the same set of assumptions. Thus, for example a command of the form 〈r | α〉 is
not well-formed. The command becomes well-formed after adding the appropriate
weakenings: 〈r ↑α | α ↑r〉.

The substitution removes an assumption either on the left-hand side or the right-
hand side of the sequent. Thus, r[r ← v] has an empty Γ. According to the inference
rule for v[r ← v′], v′ is checked in an empty Γ. This means that v′ cannot refer
to r. For example, the term r[r ← r] is not well-formed. The number of consecutive
substitutions is at most three. If we were to allow circular substitutions, then this
property would not hold since we could have an unbounded number of substitutions:
r[r ← r][r ← r] · · · . In applying a substitution to a term, the sets Γ and ∆ have
to be the same as the ones needed to check the term itself. The same holds for
a context or a command. Thus, the term r[r ← µγ.〈(λr.r) ↑α | α〉] is not well-
formed. One has to write r ↑α [r ← µγ.〈(λr.r) ↑α↑γ | α ↑γ〉]. Also, the term
(λr.r)[r ← v] is not well-formed. One would need to write (λr.r) ↑r [r ← v] as
shown below (assume v is closed with respect to term and continuation variables):

r ` r |
Axiomr

` λr.r |
→r

r ` (λr.r) ↑r |
Wvl

` v |

` (λr.r) ↑r [r ← v] |
Svl

A weakening step introduces one more assumption, either on the left-hand side
or on the right-hand side of the sequent. Since Γ and ∆ are restricted to at most
one and two variables, respectively, one has at most three consecutive weakening
steps. Moreover, the weakenings have to be distinct. For example, (λr.r) ↑r↑r is
not well-formed as ` (λr.r) ↑r is not derivable. Analogously, the context γ ↑α↑α

is not well-formed. In a term v ↑α, the weakening indicates that α does not occur
free in v. The same holds for a weakening on a context or a command.

Proposition 1. Given

Γ ` v | ∆ Γ | e ` ∆ c : (Γ ` ∆)

then

(1) Γ is non-empty iff r occurs free in v, e or c;

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

| k : A ` k : A
Axioml

r : A ` r : A |
Axiomr

| tp : A `
Axiomtp

Γ ` v : A | ∆ Γ | e : B ` ∆

Γ | v · e : A→ B ` ∆
→l

r : A ` v : B | ∆

` λr.v : A→ B | ∆
→r

c : (r : A ` ∆)

| µ̃r.c : A ` ∆
Activatel

c : (Γ ` k : A, ∆)

Γ ` µk.c : A | ∆
Activater

Γ ` v : A | ∆ Γ | e : A ` ∆

〈v | e〉 : (Γ ` ∆)
Cut

Substitution rule:

r : B ` v : A | ∆ ` v′ : B | ∆

` v[r ← v′] : A | ∆
Svl

Γ ` v : A | ∆, k : B Γ | e : B ` ∆

Γ ` v[k ← e] : A | ∆
Svr

r : B | e : A ` ∆ ` v : B | ∆

| e[r← v] : A ` ∆
Sel

Γ | e : A ` ∆, k : B Γ | e′ : B ` ∆

Γ | e[k ← e′] : A ` ∆
Ser

c : (r : B ` ∆) ` v : B | ∆

c[r← v] : (` ∆)
Scl

c : (Γ ` ∆, k : B) Γ | e : B ` ∆

c[k ← e] : (Γ ` ∆)
Scr

Weakening rules:

` v : A | ∆

r : B ` v ↑r : A | ∆
Wvl

Γ ` v : A | ∆

Γ ` v ↑k: A | ∆, k : B
Wvr

| e : A ` ∆

r : B | e ↑r: A ` ∆
Wel

Γ | e : A ` ∆

Γ | e ↑k: A ` ∆, k : B
Wer

c : (Γ ` ∆)

c ↑r : (r : B ` ∆)
Wcl

c : (Γ ` ∆)

c ↑k : (Γ ` ∆, k : B)
Wcr

Fig. 23. Type system for the λµµ̃r↑ calculus

(2) ∆ corresponds to the set of free continuation variables occurring in v, e or c.

The type system is in Figure 23. It reflects the well-formedness conditions ex-
plained in the previous section (well-typed terms are well-formed), but is otherwise
straightforward.

6.2 Reduction Semantics

The reduction semantics is given in Figures 24, 25 and 26. We first explain the
computational rules. The β-rule needs a weakening of the context. Otherwise,
the rule would produce a term which is not well-formed since r does not occur
free in e. The rules µ and µ̃ do not need any additional weakenings. Take the
µ rule for example, for the left-hand side to be well-formed continuation variable k

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 25

(β) 〈λr.v | v′ · e〉 → 〈v′ | µ̃r.〈v | e ↑r〉〉
(µ) 〈µk.c | e〉 → c[k ← e]
(µ̃) 〈v | µ̃r.c〉 → c[r ← v]

Fig. 24. Computational rules for λµµ̃r↑

(sv) µk.〈v ↑k | k wv〉 → v
(se) µ̃r.〈r we | e ↑r〉 → e

Fig. 25. Simplification rules for λµµ̃r↑

Rules on terms

(rτ) r[r ← v] → v
(λτ) (λr.v)[k ← e] → λr.(v[k ← e ↑r])
(µτ1) (µk.c)[r ← v] → µk.(c[r ← v ↑k])
(µτ2) (µk.c)[k′ ← e] → µk.(c[k′ ← e ↑k])
(v ↑r 1) (v ↑r)[r ← v′] → v
(v ↑k 1) (v ↑k)[k ← e] → v
(v ↑r 2) (v ↑r)[k ← e ⇑r] → (v[k ← e ⇑]) ↑r

(v ↑k 2) (v ↑k)[k′ ← e ⇑k] → (v[k′ ← e ⇑]) ↑k

(v ↑k 3) (v ↑k)[r ← v′ ⇑k] → (v[r ← v′ ⇑]) ↑k

Rules on contexts

(kτ) k[k ← e] → e
(·τ) (v · e)τ → (vτ) · (eτ)
(µ̃τ) (µ̃r.c)[k ← e] → µ̃r.(c[k ← e ↑r])
(e ↑r 1) (e ↑r)[r ← v] → e
(e ↑k 1) (e ↑k)[k ← e′] → e
(e ↑r 2) (e ↑r)[k ← e′ ⇑r] → (e[k ← e′ ⇑]) ↑r

(e ↑k 2) (e ↑k)[k′ ← e′ ⇑k] → (e[k′ ← e′ ⇑]) ↑k

(e ↑k 3) (e ↑k)[r ← v ⇑k] → (e[r ← v ⇑]) ↑k

Rules on commands

(cτ) 〈v | e〉τ → 〈vτ | eτ〉
(c ↑r 1) (c ↑r)[r ← v] → c
(c ↑k 1) (c ↑k)[k ← e] → c
(c ↑r 2) (c ↑r)[k ← e ⇑r] → (c[k ← e ⇑]) ↑r

(c ↑k 2) (c ↑k)[k′ ← e ⇑k] → (c[k′ ← e ⇑]) ↑k

(c ↑k 3) (c ↑k)[r ← v ⇑k] → (c[r ← v ⇑]) ↑k

Fig. 26. Substitution rules for λµµ̃r↑

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

has to occur free in c and cannot occur free in e. This makes the right-hand side
well-formed.

The simplification rules of Figure 25 make use of the notation wv and we which
denotes a sequence of weakenings corresponding to the free variables in v and e,
respectively. For example, if e is α then we would be ↑α. The weakening applied to
term v occurring in the left-hand side of the sv-rule captures the fact that k does
not occur free in v. Usually this is expressed using a proviso. For example, in λC
the rule becomes:

C(λk.k M)→M k not free in M

where k M corresponds to 〈M | k〉. The weakenings on k are necessary to deal
with the case that v has free variables. Otherwise, the following reduction would
not be possible:

µk.〈r ↑k | k ↑r〉 → r

Analogously, rule se contains the weakening on r to indicate that r cannot occur
free in e. It needs the weakenings on r to cover the case that e has free continuation
variables. For example, one has:

〈v | µ̃r.〈r ↑α | α ↑r〉〉 → 〈v | α〉

Instead of binding r to v and then invoking α with r, one invokes α directly with v.
The rules of Figure 26 move substitutions to the leaves and then use them to

look up the values of variables. We explain the rules on terms. The rτ -rule applies
the substitution [r ← v] to variable r. One might also be inclined to introduce the
rule r[k ← e] → r. This however is not correct since r[k ← e] is not well-formed.
To make it well-formed one should write (r ↑k)[k ← e ↑r] which by application
of (v ↑k 1) reduces to r. The following three rules move a substitution across a
λ and a µ. Since we do not have α-renaming in our calculus, these rules might
seem suspicious. For example, moving a substitution inside a λ might cause a
free occurrence of the accumulator to get bound. This however does not occur
in our setting. For the term (λr.v)[k ← e] to be well-formed variable r cannot
occur free in e. Analogously, in the µτ1 and µτ2 rules, k cannot occur free in v
and e, respectively. Therefore, no variable capture can occur. However, to move
a substitution inside a binder one still needs to apply some weakening to the term
or context to be substituted. Otherwise, a reduction might produce a term that is
not well-formed:

(λr.r ↑α)[α← tp]→ λr.(r ↑α [α← tp])

With the appropriate weakening, the reduction produces a well-formed term:

λr.(r ↑α [α← tp ↑r])

This explains the weakenings applied to the right-hand sides of the λτ , µτ1 and µτ2
rules. There is no reduction for a term of the form (µk.c)[k ← e] or (λr.v)[r ← v]
as they are not well-formed. Rules (v ↑r 1) and (v ↑k 1) illustrate how weakening
corresponds to explicit memory deallocation. Since r and k do not occur free in v
one can get rid of the substitution. The remaining three rules move a substitution
across a weakening. This requires some care. For example, one might consider the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 27

following rule:

v ↑r [k ← e]→ v[k ← e] ↑r

For the left-hand side to be well-formed, r has to occur free in e, but this produces
a term on the right-hand side which is not well-formed. The solution is to express
the above reduction as follows:

v ↑r [k ← e ⇑r]→ v[k ← e ⇑] ↑r

The notation ⇑r (⇑k) stands for a sequence of weakenings containing a weakening
for r (k). If ⇑r (⇑k) occurs in the left-hand side of a rule, then the occurrence
of ⇑ in the right-hand side stands for the same sequence of weakening minus the
weakening on r (k). For example,

v ↑r [γ ← e ↑α↑r]→ v[γ ← e ↑α] ↑r

The rules on contexts and commands follow the same pattern. For example,
as discussed above it is possible to move a substitution inside a µ̃-construct, by
applying the appropriate weakening on r. There is no rule for a term of the form
(µ̃r.c)[r ← v] since is not well-formed.

Example 6. We show the reduction of

µα.〈λr.(r ↑α) | v ↑α ·α〉

where v is a closed term.

µα.〈λr.(r ↑α) | v ↑α ·α〉 →β

µα.〈v ↑α | µ̃r.〈r ↑α | α ↑r〉〉 →µ̃

µα.(〈r ↑α | α ↑r〉[r ← v ↑α]) →cτ

µα.〈r ↑α [r ← v ↑α] | α ↑r [r ← v ↑α]〉 →v↑k3

µα.〈r[r ← v] ↑α | α ↑r [r ← v ↑α]〉 →rτ

µα.〈v ↑α | α ↑r [r ← v ↑α]〉 →e↑k1

µα.〈v ↑α | α〉 →sv

v

Proposition 2.

(i) The λµµ̃r↑ satisfies subject reduction. Let l be a command, term or context:
—if l is well-formed and l → l′ then l′ is well-formed;
—if l is well-typed and l→ l′ then l′ is well-typed;

(ii) The λµµ̃r↑ satisfies strong normalization.

Proof. The proof strategy for strong normalization has been suggested to us by
Emmanuel Polonovski, who developed a general framework for proving strong nor-
malization for calculi with explicit substitutions. It consists of first showing strong
normalization for the λµµ̃r↑ without explicit substitution (but with weakening) by
applying a variant of the reducibility technique. Next, the PSN (preservation of
strong normalization) property is shown: if a term strongly normalizes in the calcu-
lus without explicit substitution, it also does in the one with explicit substitution.
Finally, an embedding of a λµµ̃r↑ term into a term without explicit substitutions is
shown. The explicit substitutions are turned into redexes. The strong normaliza-
tion of the whole calculus follows then from the PSN property. The proofs mirror
the ones given by Polonovski [2004].

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

6.3 Call-by-name and call-by-value evaluation

Before formalizing the call-by-name and call-by-value evaluation of the λµµ̃r↑, we
present in Figures 27, 28 and 29 three reduction strategies: 7→v , 7→e and 7→c.
They make use of the following notation: →v denotes the substitution rules on
terms together with the sv simplification rule; →e denotes the substitution rules
on contexts together with the se simplification rule and finally →c denotes the
substitution rules on commands.

The three strategies make use of the auxiliary reductions 7→v≤2τ , 7→e≤2τ and
7→c≤2τ whose goal is to apply →v , →e or →c under at most two substitutions.
Moreover, they go under a substitution only if the outermost term, context or
command is not a redex. For example, a term of the form

r[r ← v] ↑α [α← e]

contains two→v-redexes: the outer redex is a v ↑k 1-redex and the inner redex is a
rτ -redex. The strategy 7→v≤2τ will reduce the outermost redex. The same happens
in the following context and command:

α[α← s] ↑r [r ← v] 〈v | e〉τ ↑α [α← s]

The strategies 7→e≤2τ and 7→c≤2τ will reduce the (e ↑r 1)-redex and the (c ↑k 1)-
redex, respectively.

The strategy 7→v simply invokes 7→v≤2τ . In addition to invoking 7→e≤2τ , the 7→e

strategy reduces a context of the form v · e in a left-to-right fashion. First, the
strategy 7→v is applied to v. Next, the strategy 7→e≤2τ is applied to e. This means
that a deallocation step is carried out before any other reduction. For example,

r[r ← v] · e 7→e v · e and (λr.r) · α[α← s] 7→e (λr.r) · s

However,

v · r[r ← v′] · e 67→e v · v′ · e

since the strategy 7→e≤2τ only goes under substitutions and not a context v · e.
The strategy 7→c in addition to the invocation of 7→c≤2τ , it first applies the

strategy 7→e to the consumer, next the strategy 7→v is applied to the producer.
Finally, the call-by-name and call-by-value strategies are given in Figures 30 and

31, respectively.1 As described by Curien and Herbelin [2000], they resolve the
critical pair in a command of the form 〈µk.c | µ̃r.c′〉 in favor of the producer, for
call-by-value, and in favor of the consumer for call-by-name.

Proposition 3. The call-by-name and call-by-value reduction strategies for the
well-formed λµµ̃r↑-calculus are such that the reduction steps are confined to a
bounded distance from the top of the syntax tree.

1The description follows closely the implementation that can be found at http://www.cs.indiana.
edu/~sabry/papers/sequent_code.tar.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 29

v →v v′

v 7→v≤2τ v′

v →v v′ vτ1 not a →v-redex

vτ1 7→v≤2τ v′τ1

v →v v′ vτ1τ2 and vτ1 not →v-redexes

vτ1τ2 7→v≤2τ v′τ1τ2

v 7→v≤2τ v′

v 7→v v′

Fig. 27. The strategy 7→v

e→e e′

e 7→e≤2τ e′

e→e e′ eτ1 not a →e-redex

eτ1 7→e≤2τ e′τ1

e→e e′ eτ1τ2 and eτ1 not →e-redexes

eτ1τ2 7→e≤2τ e′τ1τ2

e 7→e≤2τ e′

e 7→e e′

v 7→v v′

v · e 7→e v′ · e

e 7→e≤2τ e′ and vgc not a 7→v-redex

vgc · e 7→e vgc · e
′

Fig. 28. The strategy 7→e

c→c c′

c 7→c≤2τ c′

c→c c′ cτ1 not a →c-redex

cτ1 7→c≤2τ c′τ1

c→c c′ cτ1τ2 and cτ1 not →c-redexes

cτ1τ2 7→c≤2τ c′τ1τ2

c 7→c≤2τ c′

c 7→c c′

e 7→e e′

〈v | e〉 7→c 〈v | e
′〉

v 7→v v′ and egc not a 7→e -redex

〈v | egc〉 7→c 〈v
′ | egc〉

Fig. 29. The strategy 7→c

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

c 7→c c′

c
cbn
7−→ c′

Reduce by focusing on the consumer:

〈vgc | µ̃r.c〉
cbn
7−→ c[r ← vgc] vgc not a 7→v-redex

〈µk.c | egc〉
cbn
7−→ c[k ← egc] egc 6= µ̃r.c′ and not a 7→e-redex

〈λr.v | vgc · egc〉
cbn
7−→ 〈vgc | µ̃r.〈v | egc ↑

r〉〉 vgc · egc not a 7→e-redex

Fig. 30. The call-by-name strategy :
cbn
7−→

c 7→c c′

c
cbv
7−→ c′

Reduce by focusing on the producer:

〈µk.c | egc〉
cbv
7−→ c[k ← egc] egc not a 7→e-redex

〈vgc | µ̃r.c〉
cbv
7−→ c[r ← vgc] vgc 6= µk.c′ and not a 7→v-redex

〈λr.v | vgc · egc〉
cbv
7−→ 〈vgc | µ̃r.〈v | egc ↑

r〉〉 vgc · egc not a 7→e-redex

Fig. 31. The call-by-value strategy :
cbv
7−→

Proof. There are no inference rules that create a recursive definition of a rela-
tion. For both strategies, all the paths of the dependency graph are as follows:

7→c, 7→e, 7→v , 7→v≤2τ ,→v

7→c, 7→e, 7→e≤2τ ,→e

7→c, 7→v, 7→v≤2τ ,→v

7→c, 7→c≤2τ ,→c

Hence, all reductions specified by the reduction sequences are confined to a bounded
distance from the top of the syntax tree.

A program and an answer are well-formed closed commands. Moreover, an an-
swer is of the form 〈λr.v | tp〉.

Lemma 1. Let p be a program, and a, a′ be answers. We have:

(i) p reduces to an answer a in the call-by-name λµµ̃r↑ if and only if there exists

an answer a′ such that p 7 cbn−−−→→ a′→→a;

(ii) p reduces to an answer a in the call-by-value λµµ̃r↑ if and only if there exists

an answer a′ such that p 7 cbv−−−→→ a′→→a.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 31

Proof. We follow the proof technique of Huet and Lévy [1991]. Let cbn be the
call-by-name reduction p→→a. This reduction needs to contract the descendant of
the standard redex, say u1, occurring in p. One then constructs the projection of
the cbn-reduction with respect to the u1-reduction. We denote this reduction as
cbn/u1. Since the reduction cbn/u1 also leads to an answer, one can proceed by
performing the projection (cbn/u1)/u2, where u2 is the standard redex contracted
by the reduction cbn/u1. As before, also (cbn/u1)/u2 leads to an answer. The
termination of such a process is guaranteed by showing that at each step the weight
associated to each reduction decreases. Pictorially:

p
cbn

-- a

p1

u1

? cbn/u1
-- a

p2

u2

? (cbn/u1)/u2
-- a

...

a′

un

?
(· · · ((cbn/u1)/u2) · · · /un)

-- a

The reduction p→u1 p1 →
u2 p2 · · · →

un a′ is the desired standard reduction.

7. AN ABSTRACT INSTRUCTION SET FOR THE λµµ̃r↑-CALCULUS

The λµµ̃r↑-calculus imposes a useful structure on terms that is closer to the level of
an abstract machine. In this section we introduce a few “macros” over the λµµ̃r↑-
calculus which define an “abstract instruction set” similar to that of typical abstract
machines. We illustrate how the λDB terms can be translated to this abstract
instruction set. In the next section we show that the call-by-name evaluation of
the abstract instruction set corresponds to the Krivine machine, and that its call-
by-value evaluation corresponds to the CEK machine.

7.1 Instruction Set

The instructions and their definitions in terms of λµµ̃r↑ terms are given in Figure 32.
The definition of the instructions is complicated by the weakening steps which
although essential for capturing the proper semantics obscure some of the basic
ideas. The instructions correspond to commands containing context variables α
and γ free. Moreover, the first four instructions have also r free. To understand
the instructions, it is useful to think of the three special variables r, γ, and α

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

Instructions ins ::= Exec | Clear | PushArg | Extend-env |
bind Closure c in c′ | PopArg | Lookup-env

Code c ::= ins; c | ins

Exec = 〈r ↑α↑γ | α ↑r↑γ〉
(Clear; c) = c ↑r

(PushArg; c) = 〈(µα.c) ↑α↑r | (r ↑α↑γ) · (α ↑r↑γ)〉
(Extend-env; c) = 〈(µγ.c) ↑r↑γ | (r ↑α↑γ) · (γ ↑α↑r)〉
(bind Closure c in c′) = 〈(µα.c) ↑α | µ̃r.c′〉
(PopArg; c) = 〈(λr.(µα.c)) ↑α | α ↑γ〉
(Lookup-env; c) = 〈(λr.(µγ.c)) ↑γ | γ ↑α〉

Fig. 32. Instructions and their definitions

as three registers of an abstract machine corresponding to the accumulator, the
current environment (frame pointer), and the current stack pointer.

—The Exec instruction executes the code in the accumulator r using the current
stack α. This could be expressed with the command 〈r | α〉, which however is not
well-formed. To make it well-formed one has to add the appropriate weakenings,
obtaining 〈r ↑α | α ↑r〉. The weakening on γ is added to maintain the invariant
of having α and γ free.

—The Clear instruction corresponds to clearing the accumulator.

—The PushArg and Extend-env instructions correspond to re-binding either α to
a new stack with r on top of it (i.e. the stack r · α) or re-binding γ to a new
environment with r on top of it (i.e. the environment r · γ).

—The bind Closure c in c′ instruction sequence corresponds to 〈µα.c | µ̃r.c′〉. The
static nature of the environment is captured by the static scope of variable γ.
The dynamic nature of the working stack instead is captured by the fact that
variable α is redefined in c, and is thus bounded at activation time.

—The PopArg and Lookup-env correspond to rebinding r and α or rebinding r
and γ.

7.2 Translating λDB-terms

The compilation in Figure 33 maps λDB terms to the abstract instruction set defined
in the previous section. Variable lookups are compiled to a sequence of instructions
that traverse the environment the specified number of times in the de Bruijn index.
For example, the compilation of (• ↑) ↑ is

Lookup-env; Clear; Lookup-env; Clear; Lookup-env; Exec

The first two elements in the environment get thrown away. The third element gets
executed.

A λ-abstraction is compiled to a sequence of instructions which once executed
grabs the argument from the stack, pushes it on the environment, and then executes
the body. For example, the compilation of λλ• is:

PopArg; Extend-env; PopArg; Extend-env; Lookup-env; Exec

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 33

[[•]] = Lookup-env; Exec

[[t ↑]] = Lookup-env; Clear; [[t]]
[[λt]] = PopArg; Extend-env; [[t]]
[[t1 t2]] = bind Closure [[t2]] in PushArg; [[t1]]

Fig. 33. Compilation of λDB into λµµ̃r↑

An application is compiled to instructions for building a closure of the argument,
saving it on the stack, and then evaluating the term in the function position. At
this point, it is unspecified if the closure corresponding to the argument is evaluated
before the call or not. This depends on whether we choose the call-by-name or the
call-by-value semantics.

Proposition 4. Given a λDB term t, [[t]] is a well-formed λµµ̃r↑ command
closed with respect to r:

[[t]] : (` α, γ)

7.3 Translating λ-terms

Had we started with the regular λ-calculus instead of the λDB-terms, the com-
pilation of terms would have been slightly more complicated. In particular, the
translation would have needed to be parameterized with respect to the sequence Γ.
This is necessary since the compilation of y : B, x : A ` x : A should be dif-
ferent from the compilation of x : A, y : B ` x : A. This is already taken care
when using de Bruijn indices, since the two distinct judgments above correspond
to B, A ` 1 : A and A, B ` 2 : A, respectively.

8. THE λµµ̃r↑-CALCULUS AND ABSTRACT MACHINES

As stated in Proposition 4, the compilation of a λDB term is not a program since
it contains α and γ free. To make it a program one will have to initialize those
variables. That is indeed what happens in the translation of an abstract machine.
In this section we consider the (call-by-name) Krivine machine [Krivine 2007] and
the (call-by-value) CEK machine [Felleisen and Friedman 1986]. Both machines are
translated to well-formed λµµ̃r↑ programs. The call-by-name evaluation of these
programs corresponds to the execution of the Krivine machine (see Section 8.1).
Whereas, the call-by-value evaluation corresponds to the right-to-left CEK machine
(see Section 8.2). Both results are shown by making use of an intermediate machine.

8.1 Correspondence with the Krivine Machine

We establish the correspondence between the λµµ̃r↑ and the Krivine machine in two
steps: we first give in Section 8.1.1 a call-by-name interpretation to the instruction
set given above, this results in a call-by-name intermediate abstract machine. We
relate this intermediate machine to the call-by-name strategy of the λµµ̃r↑ calculus.
Next, in Section 8.1.2 we relate the Krivine machine to the call-by-name interme-
diate abstract machine. We thus obtain that the Krivine machine corresponds to
the call-by-name reduction strategy of the λµµ̃r↑-calculus.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

34 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

Syntax:

state st ::= (c, e, s) | (c, e, s, v)
environment e ::= v · e | tp
stack s ::= v · s | tp
closure v ::= c[e]

Well-formed states:

c : (r ` α, γ) | e ` | s ` ` v |

(c, e, s, v) : `

c : (` α, γ) | e ` | s `

(c, e, s) : `

| tp `

` v | | e `

| v · e `

` v | | s `

| v · s `

c : (` α, γ) | e `

` c[e] |

Transition rules:

(Exec, e, s, c[e′]) → (c, e′, s)
(Clear; c, e, s, v) → (c, e, s)
(bind Closure c in c′, e, s) → (c′, e, s, c[e])
(PushArg; c, e, s, v) → (c, e, v · s)
(PopArg; c, e, v · s) → (c, e, s, v)
(Extend-env; c, e, s, v) → (c, v · e, s)
(Lookup-env; c, v · e, s) → (c, e, s, v)

Fig. 34. The call-by-name λµµ̃r↑ abstract machine

8.1.1 Call-by-Name Abstract Machine. As shown in Figure 34, the call-by-name
intermediate machine has two kinds of states:

(c, e, s) and (c, e, s, v)

where c stands for the code or sequence of instructions as introduced in Figure 32;
e and s stand for the environment and stack, respectively, and v is the accumulator.
The basic value manipulated by the machine is a closure which as usual consists of
code and an environment. The accumulator holds a closure. Both the environment
and the stack are sequences of closures ending with the top-level continuation.

(c, e, s, v) is a well-formed configuration (written (c, e, s, v) : `) if c is expecting
something in the accumulator, in other words, r occurs free in c. Likewise, (c, e, s)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 35

(c, e, s)◦n = c[γ ← e◦n ↑α][α← s◦n]
(c, e, s, v)

◦n = c[γ ← e◦n ↑α↑r][α← s◦n ↑r][r ← v◦n]
(v · e)

◦n = v◦n · e◦n

(v · s)◦n = v◦n · s◦n

(c[e])
◦n = µα.c[γ ← e◦n ↑α]

tp◦n = tp

Fig. 35. Translation of the call-by-name λµµ̃r↑ abstract machine in λµµ̃r↑

is well-formed (written (c, e, s) : `) if r does not occur free in c. The well-
formedness of the code is directly derived from the definition of the instructions.
For example, the states

(Extend-env; c, e, s) and (Lookup-env; c, e, s, v)

are not well-formed, since one has:

(Extend-env; c) : (r ` α, γ) and (Lookup-env; c) : (` α, γ)

Also, the closure (PushArg; c)[e] is not well-formed since r occurs free in PushArg; c.

The machine starts with the empty environment and empty stack which are
both represented with the top-level continuation. Its execution leads to well-formed
configurations.

Proposition 5. If st is well-formed and st→ st′ then st′ is well-formed.

Machine states are translated in the λµµ̃r↑-calculus as shown in Figure 35. Start-
ing from well-formed states the translation produces well-formed programs.

Proposition 6. If st is a well-formed state of the call-by-name λµµ̃r↑ abstract
machine then st◦n is a well-formed λµµ̃r↑ program.

The machine transitions correspond to the call-by-name evaluation strategy of
the λµµ̃r↑-calculus under the given translation.

Proposition 7. Let st1 and st2 be well-formed states of the call-by-name λµµ̃r↑

abstract machine. If st1 → st2 then (st1
◦n) 7 cbn−−−→→ st′2 such that (st2

◦n) and st′2 are
equal up to permutation of substitutions.

Proof. By cases on the transition. We only show three cases.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

36 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

(Exec)

(Exec, e, s, c[e′])

= (Exec)[γ ← e ↑α↑r][α← s ↑r][r ← µα.c[γ ← e′ ↑α]]

= 〈r ↑α↑γ | α ↑r↑γ 〉[γ ← e ↑α↑r][α← s ↑r][r← µα.c[γ ← e′ ↑α]]

cτ 7 cbn−−−→→ 〈r ↑α↑γ [γ ← e ↑α↑r][α← s ↑r][r ← µα.c[γ ← e′ ↑α]] |

α ↑r↑γ [γ ← e ↑α↑r][α← s ↑r][r← µα.c[γ ← e′ ↑α]]〉

e ↑k 1
cbn
7−→ 〈r ↑α↑γ [γ ← e ↑α↑r][α← s ↑r][r ← µα.c[γ ← e′ ↑α]] |

α ↑r [α← s ↑r][r ← µα.c[γ ← e′ ↑α]]〉

e ↑r 2
cbn
7−→ 〈r ↑α↑γ [γ ← e ↑α↑r][α← s ↑r][r ← µα.c[γ ← e′ ↑α]] |

(α[α← s]) ↑r [r← µα.c[γ ← e′ ↑α]]〉

e ↑r 1
cbn
7−→ 〈r ↑α↑γ [γ ← e ↑α↑r][α← s ↑r][r ← µα.c[γ ← e′ ↑α]] | (α[α← s])〉

kτ
cbn
7−→ 〈r ↑α↑γ [γ ← e ↑α↑r][α← s ↑r][r ← µα.c[γ ← e′ ↑α]] | s〉

v ↑k 1
cbn
7−→ 〈r ↑α [α← s ↑r][r ← µα.c[γ ← e′ ↑α]] | s〉

v ↑k 1
cbn
7−→ 〈r[r← µα.c[γ ← e′ ↑α]] | s〉

rτ
cbn
7−→ 〈µα.c[γ ← e′ ↑α] | s〉

µ
cbn
7−→ c[γ ← e′ ↑α][α← s]

Notice how after moving the substitutions inside the command, we start simplifying
the consumer. After the consumer does not have any more 7→e-redexes the producer is
reduced. At the end, since s is not a µ̃ term, the µ reduction is possible.

(Closure)

(bind Closure c in c′, e, s)

= (bind Closure c in c′)[γ ← e ↑α][α← s]

= 〈(µα.c) ↑α | µ̃r.c′〉[γ ← e ↑α][α← s]

7 cbn−−−→→ 〈(µα.c) ↑α [γ ← e ↑α][α← s] | (µ̃r.c′)[γ ← e ↑α][α← s]〉

7 cbn−−−→→ 〈(µα.c) ↑α [γ ← e ↑α][α← s] | µ̃r.(c′[γ ← e ↑α↑r][α← s ↑r])〉

cbn
7−→ 〈((µα.c)[γ ← e]) ↑α [α← s] | µ̃r.(c′[γ ← e ↑α↑r][α← s ↑r])〉

cbn
7−→ 〈(µα.c)[γ ← e] | (µ̃r.c′[γ ← e ↑α↑r][α← s ↑r])〉

cbn
7−→ 〈µα.(c[γ ← e ↑α]) | (µ̃r.c′[γ ← e ↑α↑r][α← s ↑r])〉

cbn
7−→ c′[γ ← e ↑α↑r][α← s ↑r][r ← (µα.c[γ ← e ↑α])]

Notice how we resolve the critical pair in favor of the µ̃-rule.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 37

st ::= 〈t, e, s〉
t ::= • | λt | (t t′) | (t ↑)
e ::= v :: e | nil
s ::= v :: s | nil
v ::= [t, e]

〈•, [t, e′] :: e, s〉 → 〈t, e′, s〉
〈t ↑, v :: e, s〉 → 〈t, e, s〉
〈t u, e, s〉 → 〈t, e, [u, e] :: s〉
〈λt, e, v :: s〉 → 〈t, v :: e, s〉

Fig. 36. The Krivine abstract machine

(PopArg)

(PopArg; c, e, v · s)

= (PopArg; c)[γ ← e ↑α][α← v · s]

= 〈(λr.µα.c) ↑α | α ↑γ〉[γ ← e ↑α][α← v · s]

7 cbn−−−→→ 〈(λr.µα.c) ↑α [γ ← e ↑α][α← v · s] | α ↑γ [γ ← e ↑α][α← v · s]〉

7 cbn−−−→→ 〈(λr.µα.c) ↑α [γ ← e ↑α][α← v · s] | v · s〉

cbn
7−→ 〈(λr.µα.c)[γ ← e] ↑α [α← (v · s)] | v · s〉

cbn
7−→ 〈(λr.µα.c)[γ ← e] | v · s〉

cbn
7−→ 〈λr.(µα.c)[γ ← e ↑r] | v · s〉

cbn
7−→ 〈v | µ̃r.〈(µα.c)[γ ← e ↑r] | s ↑r〉〉

cbn
7−→ 〈(µα.c)[γ ← e ↑r] | s ↑r〉[r← v]

7 cbn−−−→→ 〈(µα.c)[γ ← e ↑r][r ← v] | s ↑r [r← v]〉

cbn
7−→ 〈(µα.c)[γ ← e ↑r][r ← v] | s〉

7 cbn−−−→→ 〈µα.c[γ ← e ↑r↑α][r ← v ↑α] | s〉

cbn
7−→ c[γ ← e ↑r↑α][r← v ↑α][α← s]

The above is equivalent to c[γ ← e ↑r↑α][α← s ↑r][r ← v].

For multiple reduction steps the result follows since the order of the substitutions
does not mask any potential redex.

8.1.2 The Krivine Machine. The Krivine machine [2007] is a simple machine for
implementing normal weak-head reduction of λ-terms. It has been shown correct by
Wand [2007]. Its description is given in Figure 36. Our presentation of the machine
is slightly different from the original presentation [Krivine 2007]: we restrict all λs
to have one argument and we implement the environment lookup step-by-step. The
state of the machine is represented by three components: the current λDB-term,
the current environment, and the current argument stack. In contrast to the λµµ̃r↑
abstract machine there is no accumulator. The evaluation of • causes the evaluation
of the closure on top of the stack. The code and environment saved in the closure
become the current instructions and environment. The evaluation of t ↑ removes

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

38 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

〈t, e, s〉•n = ([[t]], e•n , s•n)
nil•n = tp

(v :: e)
•n = v•n · e•n

(v :: s)•n = v•n · s•n

([t, e])
•n = [[t]][e•n]

Fig. 37. Translating the Krivine machine into the call-by-name λµµ̃r↑ abstract
machine

the top element of the environment. To evaluate an application, the machine saves
on the stack a closure made of the argument and the current environment, and
proceeds with the term in function position. To evaluate a lambda-abstraction, the
value (if any) on top of the stack is moved in the environment.

We translate the Krivine into the λµµ̃r↑ abstract machine, as shown in Figure 37.
The translation faithfully represents the machine transitions.

Proposition 8. Let st be a Krivine machine state.

(i) st•n is a well-formed state of the call-by-name λµµ̃r↑ abstract machine;

(ii) If st→ st1 then st•n→→st1
•n .

We conclude that the Krivine machine transitions can be simulated by λµµ̃r↑
call-by-name standard reduction.

Lemma 2. The call-by-name semantics of the λµµ̃r↑-calculus is such that: if

st→ st1 in the Krivine machine, then st•n
◦n 7 cbn−−−→→ st•n

◦n .

Final states of the Krivine machine are of the form 〈λt, e, nil〉. As shown in the
following example they correspond to answers in the calculus modulo substitution.

Example 7. Let v be µα.Extend-env; [[t]]. We have:

〈λt, e, nil〉
•n

◦n =
〈(λr.v) ↑α | α ↑γ〉[γ ← e•n◦n ↑α][α← tp] →→
〈(λr.v) ↑α [γ ← e•n

◦n ↑α][α← tp] | α ↑γ [γ ← e•n
◦n ↑α][α← tp]〉 →→

〈(λr.v)[γ ← e•n◦n] | tp〉 →
〈λr.(v[γ ← e•n

◦n ↑r)] | tp〉

8.2 Correspondence with the CEK Machine

The previous development applies with minor changes to the call-by-value case.
We only present the main points. As before, we make use of an intermediate
abstract machine. The call-by-value version of this intermediate machine is given
in Figure 38. The environment is a sequence of closures. The stack does not only
hold closures but also delayed contexts. Both closures and contexts are sequences
of instructions paired with an environment. What distinguishes them is the tag:
arg in case of a closure and fun in case of a context. We do not present the
full definition of well-formed state which is similar to the one for the call-by-name
machine. Note that the accumulator is free in a delayed context, since it is waiting
for a value. The transition rules are similar to the call-by-name ones, with the
exception of the bind Closure c in c′, PushArg and PopArg instructions. The

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 39

Syntax:

state st ::= (c, e, s) | (c, e, s, v)
environment e ::= v · e | tp
stack s ::= fr · s | tp
frame fr ::= fun(v) | arg(v)
closure v ::= c[e]

Well-formed states:

c : (r ` α, γ) | e `

` fun(c[e])

c : (` α, γ) | e `

` arg(c[e])

Transition rules:

(Exec, e, s, c[e′]) → (c, e′, s)
(Clear; c, e, s, v) → (c, e, s)
(bind Closure c in c′, e, s) → (c, e, fun(c′[e]) · s)
(PushArg; c, e, s, v) → (c, e, arg(v) · s)
(PopArg; c, e, fun(c′[e′]) · s) → (c′, e′, s, (PopArg; c)[e])
(PopArg; c, e, arg(v) · s) → (c, e, s, v)
(Extend-env; c, e, s, v) → (c, v · e, s)
(Lookup-env; c, v · e, s) → (c, e, s, v)

Fig. 38. The call-by-value λµµ̃r↑ abstract machine

bind Closure c in c′ instruction executes c and delays the execution of c′ by making
a delayed context and saving it on the stack. The PushArg instruction tags the
accumulator’s value and moves it on top of the stack. The PopArg instruction
behaves differently depending on the top of the stack: if it is a closure, it removes
the tag and moves the value in the accumulator, since it does not need any further
evaluation; If it is a delayed context, then that context gets executed in the saved
environment. The execution preserves well-formed states.

The translation of the call-by-value λµµ̃r↑ abstract machine (written as ·◦v) is
given in Figure 39; given a well-formed state it returns a well-formed program.
A result similar to Proposition 7 shows the correspondence of the call-by-value
abstract machine and the call-by-value strategy of λµµ̃r↑.

Proposition 9. Let st1 and st2 be well-formed states of the call-by-value λµµ̃r↑

abstract machine. If st1 → st2 then (st1
◦v) 7 cbv−−−→→ st′2 such that (st2

◦v) and st′2 are
equal up to permutation of substitutions.

Proof. In the proof of Proposition 7, notice how all the steps in the simulation
of the Exec instruction are also valid for the call-by-value strategy. The same is true
for the PopArg instruction when the stack contains a closure, and for the Extend-env
and Lookup-env instructions. Instead, the bind Closure c in c′ instruction depends

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

40 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

(c, e, s)◦v = c[γ ← e◦v ↑α][α← s◦v]
(c, e, s, v)

◦v = c[γ ← e◦v ↑α↑r][α← s◦v ↑r][r ← v◦v]
(v · e)

◦v = v◦v · e◦v

(fun(c[e]) · s)◦v = µ̃r.c[γ ← e◦v ↑α↑r][α← s◦v ↑r]
(arg(v) · s)

◦v = v◦v · s◦v

((PopArg; c)[e])
◦v = λr.(µα.c)[γ ← e◦v ↑r]

(c[e])
◦v = µα.c[γ ← e◦v ↑α]

tp◦v = tp

Fig. 39. Translation of the call-by-value λµµ̃r↑ abstract machine in λµµ̃r↑

on the strategy:

(bind Closure c in c′, e, s)
◦v

= (bind Closure c in c′)[γ ← e ↑α][α← s]

= 〈(µα.c) ↑α | µ̃r.c′〉[γ ← e ↑α][α← s]

7 cbv−−−→→ 〈µα.(c[γ ← e ↑α]) | µ̃r.(c′[γ ← e ↑α↑r][α← s ↑r])〉
cbv
7−→ c[γ ← e ↑α][α← µ̃r.c′[γ ← e ↑α↑r][α← s ↑r]]

Notice how in the last step the µ̃ is given priority.
The simulation of the other case of the PopArg instruction is as follows:

(PopArg; c, e, fun(c′[e′]) · s)
◦v

= (PopArg; c)[γ ← e ↑α][α← µ̃r.c′[γ ← e′ ↑α↑r][α← s ↑r]]

= 〈(λr.µα.c) ↑α | α ↑γ〉[γ ← e ↑α][α← µ̃r.c′[γ ← e′ ↑α↑r]]

7 cbv−−−→→ 〈(λr.µα.c) ↑α [γ ← e ↑α][α← µ̃r.c′[γ ← e′ ↑α↑r]] |

α ↑γ [γ ← e ↑α][α← µ̃r.c′[γ ← e′ ↑α↑r][α← s ↑r]]〉

7 cbv−−−→→ 〈λr.(µα.c)[γ ← e ↑r] | µ̃r.c′[γ ← e′ ↑α↑r][α← s ↑r]〉

7 cbv−−−→→ c′[γ ← e′ ↑α↑r][α← s ↑r][r ← λr.(µα.c)[γ ← e ↑r]]

The call-by-value λµµ̃r↑ abstract machine corresponds to the right-to-left CEK
machine given in Figure 40. The state of the machine is described by two kinds of
states: 〈t, e, s〉 and 〈v, s〉. As before, the environment is a list of closures, and the
stack is a list of two types of delayed contexts: (t 2)[e] indicates a computation
waiting for the argument to be computed, and (2 v) indicates a computation waiting
for the function to be applied.

The embedding (written as ·•v) of a CEK machine state is given in Figure 41.
As for the Krivine machine, final states are of the form 〈λt, e, nil〉. As shown in
Example 7, they correspond to answers modulo substitution.

Proposition 10. Let st and st1 be states of the right-to-left CEK machine. If
st→ st1 then st•v→→st1

•v .

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 41

st ::= 〈t, e, s〉 | 〈v, s〉
v ::= t[e]
e ::= v :: e | nil
f ::= (t 2)[e] | (2 v)
s ::= f :: s | nil

〈•, v :: e, s〉 → 〈v, s〉
〈t ↑, v :: e, s〉 → 〈t, e, s〉
〈λt, e, s〉 → 〈(λt)[e], s〉
〈t1 t2, e, s〉 → 〈t2, e, (t1 2)[e] :: s〉
〈(λt)[e], (t1 2)[e′] :: s〉 → 〈t1, e

′, (2 (λt)[e]) :: s〉
〈(λt)[e], (2 v) :: s〉 → 〈t, v :: e, s〉

Fig. 40. Right-to-left CEK abstract machine

〈t, e, s〉
•v = ([[t]], e•v , s•v)

〈t[e], s〉
•v = ([[t]], e•v , s•v)

nil•v = tp

(v :: e)
•v = v•v · e•v

t[e]
•v = [[t]][e•v]

(f :: s)
•v = f•v · s•v

((t 2)[e])
•v = fun((PushArg; [[t]])[e•v])

(2 v)•v = arg(v•v)

Fig. 41. Translation of the right-to-left CEK abstract machine into the call-by-value
λµµ̃r↑ abstract machine

Lemma 3. The call-by-value semantics of the λµµ̃r↑-calculus is such that: if

st→ st′ in the right-to-left CEK machine, then st•v
◦v 7 cbv−−−→→ st′

•v◦v .

9. TYPE PRESERVATION

Compilation is essentially a proof transformation [Ohori 2005]. It embeds the proof
system of Figure 11 into the one of Figure 42, as shown next.

Proposition 11. Given a well-typed λDB term t, [[t]] is well-typed. Moreover,
if A1, · · · , An ` t : B and T is an atomic type then

[[t]] : (` α : B, γ : An → · · · → A1 → T)

Proof. The proof is by rule induction and proceeds by cases:

(Axiom) Let us assume A1, · · · , An, B ` • : B. We have:

Exec : (r : B ` α : B, γ : An → · · · → A1 → T)

Lookup-env; Exec : (` α : B, γ : B → An → · · · → A1 → T)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

42 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

Exec : (r : A ` α : A, γ : B)

c : (` α : B, γ : C)

(Clear; c) : (r : A ` α : B, γ : C)

c : (` α : A→ B, γ : C)

(PushArg; c) : (r : A ` α : B, γ : C)

c : (` γ : A→ B, α : C)

(Extend-env; c) : (r : A ` γ : B, α : C)

c : (` α : A, γ : D) c′ : (r : A ` α : C, γ : D)

(bind Closure c in c′) : (` α : C, γ : D)

c : (r : A ` α : B, γ : C)

(PopArg; c) : (` α : A→ B, γ : C)

c : (r : A ` γ : B, α : C)

(Lookup-env; c) : (` γ : A→ B, α : C)

Fig. 42. Typing the instructions

(Weakening) Let us assume A1, · · · , An, B ` t↑ : C.

[[t]] : (` α : C, γ : An → · · · → A1 → T)

Clear; [[t]] : (r : B ` α : C, γ : An → · · · → A1 → T)

Lookup-env; Clear; [[t]] : (` α : C, γ : B → An → · · · → A1 → T)

(→e) Let us assume A1, · · · , An ` t1 t2 : B. We let C stands for An → · · · →
A1 → T ′. We have:

[[t2]] : (` α : A, γ : C)

[[t1]] : (` α : A→ B, γ : C)

PushArg; [[t1]] : (r : A ` α : B, γ : C)

bind Closure [[t2]] in PushArg; [[t1]] : (` α : B, γ : C)

(→i) Let us assume A1, · · · , An ` λt : A → B. We let C stands for An → · · · →
A1 → T ′.

[[t]] : (` α : B, γ : A→ C)

Extend-env; [[t]] : (r : A ` α : B, γ : C)

PopArg; Extend-env; [[t]] : (` α : A→ B, γ : C)

A compiler error can be captured as a type error. For example, if one erroneously
compiles the term λ• as:

PopArg; Extend-env; PopArg; Extend-env; Lookup-env; Exec

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 43

an error is raised since it is not possible to derive the following judgment:

PopArg; Extend-env; PopArg; Extend-env; Lookup-env; Exec :
(` α : A→ A, γ : C)

One can define the notion of well-formed instruction by removing the type infor-
mation from Figure 42. Even this notion can help in finding compiler errors. For
example, if one compiles the λDB term ((λ•) t1) as

bind Closure [[t1]] in PopArg; Extend-env; Lookup-env; Exec

one would not be able to derive the judgement:

bind Closure [[t1]] in PopArg; Extend-env; Lookup-env; Exec : (` α, γ)

since the following is not derivable:

PopArg; Extend-env; Lookup-env; Exec : (r ` α, γ)

Also correctness of optimizations can be based on proofs transformations. For
example, the compilation of a known call:

[[(λt)t′]] = bind Closure [[t′]] in PushArg; PopArg; Extend-env; [[t]]

can be optimized as follows:

bind Closure [[t′]] in Extend-env; [[t]]

This optimization corresponds to an elimination of a detour. The proof:

[[t]] : (` α : β, γ : A → C)

Extend-env; [[t]] : (r : A ` α : B, γ : C)

PopArg; Extend-env; [[t]] : (` α : A → B, γ : C)

PushArg; PopArg; Extend-env; [[t]] : (r : A ` α : B, γ : C) [[t′]] : (` α : A, γ : C)

bind Closure [[t′]] in PushArg; PopArg; Extend-env; [[t]] : (` α : B, γ : C)

is transformed to:
[[t]] : (` α : β, γ : A → C)

Extend-env; [[t]] : (r : A ` α : B, γ : C) [[t′]] : (` α : A, γ : C)

bind Closure [[t′]] in Extend-env; [[t]] : (` α : B, γ : C)

Next, we define a type system for the Krivine and the CEK machines and show
that well-typed states translate to well-typed commands. The typing of the Krivine
machine is given in Figure 43. It makes use of the following judgements:

Γ ` t : A st : (`) | s : A ` | e : A ` ` v : A |

The first judgement is defined in Figure 11. A Krivine state 〈t, e, s〉 is well-typed if
the stack’s type corresponds to the type of t, the environment’s type corresponds
to the types of the assumptions used in typing t. T stands for an atomic type, this
guarantees that if n is the number of assumptions then e must contain n elements.
For example,

〈•, nil, nil〉 〈(• ↑) ↑, v :: nil, nil〉

are not well-typed. Also, if ` λ• : A→ A and ` v : B then

〈λ•, nil, v :: nil〉

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

44 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

A1, · · · , An ` t : C | s : C ` | e : An → · · · → A1 → T `

〈t, e, s〉 : (`)

| nil : A `

` v : A | | s : B `

| v :: s : A→ B `

` v : A | | e : B `

| v :: e : A→ B `

A1, · · · , An ` t : C | | e : An → · · · → A1 → T `

` [t, e] : C |

Fig. 43. Type system for the Krivine machine

A1, · · · , An ` t : C | s : C ` | e : An → · · · → A1 → T `

〈t, e, s〉 : (`)

` v : A | | s : A `

〈v, s〉 : (`)

| nil : A `

A1, · · · , An ` t : A→ C | | s : C ` | e : An → · · · → A1 → T `

| (t 2) [e] :: s : A `

` v : A | | s : B `

| (2 v) :: s : A→ B `

` v : A | | e : B `

| v :: e : A→ B `

A1, · · · , An ` t : C | | e : An → · · · → A1 → T `

` t[e] : C |

Fig. 44. Type system for the CEK machine

is not well-typed. The Krivine machine satisfies subject reduction.

Proposition 12. Given Krivine states s and s′, if s : (`) and s→ s′ then
s′ : (`).

Lemma 4. Given a Krivine state s. If s is well-typed then s•n
◦n is well-typed.

Proof. It follows from the above proposition and by rule induction.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 45

c : (r : A ` α : B, γ : C) | e : C ` | s : B ` ` v : A |

(c, e, s, v) : `

c : (` α : B, γ : C) | e : C ` | s : B `

(c, e, s) : `

| tp : A `

` v : A | | e : B `

| v · e : A→ B `

` v : A | | s : B `

| v · s : A→ B `

c : (` α : B, γ : C) | e : C `

` c[e] : B |

Fig. 45. Type system for the call-by-name λµµ̃r↑ abstract machine

The typing for the CEK machine is given in Figure 44. The CEK machine satisfies
subject reduction.

Proposition 13. Given CEK states s and s′, if s : (`) and s → s′ then
s′ : (`).

Lemma 5. Given a CEK state s. If s is well-typed then s•v
◦v is well-typed.

Proof. It follows from Proposition 11 and by rule induction.

The typing for the λµµ̃r↑ abstract machines are easily derived from Figures 34
and 38. For example, the typing rules for the call-by-name λµµ̃r↑ abstract machine
are given in Figure 45.

10. CONCLUSIONS AND FUTURE WORK

Natural deduction is usually taken as the logical foundation of λ-calculus. We
have shown that the sequent calculus offers a better correspondence with abstract
machines. This translates into the ability to define a call-by-name and a call-
by-value semantics in a non-recursive manner, unlike the corresponding semantics
defined in a natural deduction setting. This means that the next redex to be
executed always occurs at a bounded distance from the root of the syntax tree.
In other words, the semantics defines a tail-recursive evaluator. To demonstrate
that our semantics lead to an answer we have shown they correspond to standard
reductions of a call-by-name and call-by-value λµµ̃r↑ calculi which are defined by
orienting a critical pair. Moreover, we have shown that Krivine and the right-to-left
CEK abstract machines are implementations of these standard reductions.

This work constitutes our first step towards providing a Curry-Howard isomor-
phism for low-level code. Next, we plan to build on λµµ̃r↑ to create a suitable logic
for embedding “real” machines. We will consider the JVM, and the different levels
of the TAL abstract machines [Morrisett et al. 2002]. We would like to explain the
certifying compilation as a transformation among different proof systems.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

46 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

By interpreting the machine code as a term in a suitable logic, we also envision an
alternative approach of proof-carrying code based on program extraction. Instead
of sending a program and a proof of its safety, the program and the proof are sent
together in a single proof-term. In other words, the program itself is a proof. This
is all one needs for both type checking the proof and recovering the underlying
program. The safety of execution is guaranteed by the subject reduction property.
The correctness of the entire approach is guaranteed by the embedding of the non-
standard logics into well established logics.

We also plan to make use of these kinds of logics, which naturally embed run-
time data-structures such as the notions of control stack and environment, in the
formalization of analysis such as stack inspection [Fournet and Gordon 2002] and
access control [Pottier et al. 2001]. These formalizations will be inside the logic itself
rather than on top of it. Thus permitting a better understanding of the interaction
between these analysis, optimizations and alternative reduction strategies.

REFERENCES

Abadi, M., Cardelli, L., Curien, P.-L., and Lévy, J.-J. 1990. Explicit substitutions. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press, New
York, 31–46.

Ager, M. S., Biernacki, D., Danvy, O., and Midtgaard, J. 2003. A functional correspondence
between evaluators and abstract machines. Research Series RS-03-13, BRICS. March. 26 pp.

Appel, A. 2001. Foundational proof-carrying code. In IEEE Symposium on Logic in Computer
Science. IEEE Computer Society Press, Los Alamitos, Calif. http://www.cs.princeton.edu/

~appel/papers/fpcc.pdf.

Barthe, G., Dufay, G., Jakubiec, L., Serpette, B. P., and de Sousa, S. M. 2001. A formal
executable semantics of the JavaCard platform. In Proceedings of the European Symposium on
Programming Languages and Systems. Springer-Verlag, Berlin, 302–319.

Curien, P.-L., Hardin, T., and Lévy, J.-J. 1996. Confluence properties of weak and strong
calculi of explicit substitutions. Journal of the ACM 43, 2, 362–397.

Curien, P.-L. and Herbelin, H. 2000. The duality of computation. In Proceedings of the ACM
SIGPLAN International Conference on Functional Programming. ACM Press, New York, 233–
243.

Danos, V., Joinet, J.-B., and Schellinx, H. 1993. A new deconstructive logic: linear logic. In
Proceedings of the Workshop on Linear Logic, J.-Y. Girard, Y. Lafont, and L. Régnier, Eds.
Cornell, Ithaca, NY.

Douence, R. and Fradet, P. 1998. A systematic study of functional language implementations.
ACM Transactions on Programming Languages and Systems 20, 2 (March), 344–387.

Felleisen, M., Friedman, D., and Kohlbecker, E. 1987. A syntactic theory of sequential
control. Theoretical Computer Science 52(3), 205–237.

Felleisen, M., Friedman, D., Kohlbecker, E., and Duba, B. 1986. Reasoning with continu-
ations. In First Symposium on Logic and Computer Science. IEEE Computer Society Press,
Los Alamitos, Calif., 131–141.

Felleisen, M. and Friedman, D. P. 1986. Control operators, the SECD-machine and the λ-
calculus. In Formal Description of Programming Language Concepts III. Elsevier, Amsterdam,
The Netherlands, 193–217.

Fournet, C. and Gordon, A. D. 2002. Stack inspection: theory and variants.
In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
ACM Press, New York, 307–318. http://research.microsoft.com/~fournet/papers/

stack-inspection-theory-and-variants-popl-02.pdf.

Gentzen, G. 1969. Investigations into logical deduction. In Collected Papers of Gerhard Gentzen,
M. Szabo, Ed. Elsevier, Amsterdam, The Netherlands, 68–131.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Sequent Calculi and Abstract Machines · 47

Griffin, T. G. 1990. The formulae-as-types notion of control. In ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. ACM Press, New York, 47–57.

Hardin, T., Maranget, L., and Pagano, B. 1996. Functional back-ends within the lambda-
sigma calculus. In International Conference on Functional Programming. ACM Press, New
York, 25–33.

Herbelin, H. 1994. A lambda-calculus structure isomorphic to Gentzen-style sequent calculus
structure. In Proc. Annual Conference of the European Association for Computer Science
Logic, Kazimierz, Poland. Lecture Notes in Computer Science, vol. 933. Springer-Verlag, Berlin.

Higuchi, T. and Ohori, A. 2002. Java bytecode as a typed term calculus. In ACM SIGPLAN
International Conference on Principles and Practice of Declarative Programming. ACM Press,
New York, 201–211. http://www.jaist.ac.jp/~ohori/research/jvmcalc.ps.

Howard, W. 1980. The formulae-as-types notion of construction. In To H. B. Curry: Essays
in Combinatory Logic, Lambda Calculus and Formalism, J. R. Hindley and J. P. Seldin, Eds.
Elsevier, Amsterdam, The Netherlands, 479–490.

Huet, G. and Lévy, J.-J. 1991. Computations in orthogonal rewriting systems, i. In Computa-
tional Logic: Essays in Honor of Alan Robinson, J.-L. Lassez and G. Plotkin, Eds. MIT Press,
Cambridge, MA, 395–414.

Jones, M. P. 1998. The functions of Java bytecode. In Proceedings of the OOPSLA Wokshop
on the Formal Underpinnings of Java. Imperial College of Science, Technology, and Medicine,
London.

Klein, G. and Strecker, M. 2004. Verified bytecode verification and type-certifying compilation.
Journal of Logic Programming 58, 1-2, 27–60. citeseer.ist.psu.edu/article/klein03verified.html.

Krivine, J.-L. 2007. A call-by-name lambda calculus machine. To appear in Higher Order and
Symbolic Computation.

Lescanne, P. 1994. From λσ to λv a journey through calculi of explicit substitutions. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press, New
York, 60–69.

Liu, H. and Moore, J. S. 2004. Java program verification via a JVM deep embedding in ACL2.
In 17th International Conference on Theorem Proving in Higher Order Logics (TPHOLs2004).
Lecture Notes in Computer Science, vol. 3223. Springer-Verlag, Berlin, 184–200.

Morrisett, J. G., Crary, K., Glew, N., and Walker, D. 2002. Stack-based typed assembly
language. In Journal of Functional Programming. Cambridge University Press, Cambridge,
Mass. http://www.cs.cornell.edu/talc/papers/stal-tic-abstract.html.

Ohori, A. 2005. A proof theory for machine code. Available from http://www.pllab.riec.

tohoku.ac.jp/~ohori/research/LogicalMachineRevOct2005.pdf.

Parigot, M. 1993. Classical proofs as programs. Computational Logic and Theory 713, 263–276.

Plotkin, G. D. 1975. Call-by-name, call-by-value, and the lambda-calculus. Theoretical Computer
Science 1, 2 (December), 125–159.

Polonovski, E. 2004. Strong normalization of λµµ̃-calculus. In Foundations of Software Science
and Computation Structures (FOSSACS 2004). Lecture Notes in Computer Science, vol. 2987.
Springer-Verlag, Berlin, 423–437.

Pottier, F., Skalka, C., and Smith, S. F. 2001. A systematic approach to static ac-
cess control. In Proceedings of the European Symposium on Programming Languages
and Systems. Springer-Verlag, Berlin, 30–45. http://www.cs.uvm.edu/~skalka/skalka-pubs/

fpottier-skalka-smith-toplas03.pdf.

Prawitz, D. 1965. Natural Deduction, a Proof-Theoretical Study. Almquist and Wiksell, Stock-
holm.

Reus, B. and Streicher, T. 1998. Classical logic, continuation semantics and abstract machines.
J. Funct. Prog. 8, 6, 543–572.

Wadler, P. 2003. Call-by-value is dual to call-by-name. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming. ACM Press, New York.

Wand, M. 2007. On the correctness of the Krivine machine. To appear in Higher Order and
Symbolic Computation Special Issue on the Krivine Machine.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

48 · Zena M. Ariola, Aaron Bohannon, and Amr Sabry

Yelland, P. M. 1999. A compositional account of the Java virtual machine. In ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages. ACM Press, New York, 57–69.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

