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Abstract
In some substructural logics, the memory used by proofs is treated
as a first-class multiplicative resource, but the choices made by
those proofs are not. Since we can convert between space and time
complexity, these “resource conscious” logics are therefore not
actually guaranteed to preserve memory—for example, linear logic
allows the erasure and duplication of natural numbers with time
complexity proportional to their size. In order to fully account for
space-time tradeoffs, we augment contexts to track all information,
not just multiplicative resources. This creates a reversible, fully
resource-preserving logic which allows us to examine the hidden
information effects in linear logic and study reversible computation
from a proof-theoretic perspective.

Categories and Subject Descriptors Theory of computation
[Models of computation]; Theory of computation [Semantics and
reasoning]; Mathematics of computing [Information theory]

General Terms Languages, Theory

Keywords bunched logic, isomorphisms, linear logic

1. Introduction
In the original article introducing linear logic [11], Girard describes
it as “a resource-conscious logic.” Wadler [30] explains this idea as
follows:

Truth is free. Having proved a theorem, you may use this
proof as many times as you wish, at no extra cost. Food, on
the other hand, has a cost. Having baked a cake, you may
eat it only once. If traditional logic is about truth, then linear
logic is about food.

Perhaps more seriously, Wadler continues to explain that linear
logic can be used to reason about memory resources which, in
general, cannot be “freely copied” or “foolishly discarded.”

But whether it is about food or memory, linear logic does not
view truth as a resource in the general case. For example, take the⊕
connective, which represents disjunctive choice: a proof of A⊕ B
is either a proof of A or a proof of B, similar to ∨ in traditional
logic. Consider the following derivation:

[Copyright notice will appear here once ’preprint’ option is removed.]

· ` 1
1R

1 ` 1
1L

· ` 1
1R

1 ` 1
1L

1⊕ 1 ` 1
⊕L

The assumption 1 ⊕ 1 represents a boolean value and hence con-
tains one bit of information. The conclusion represents the unit
value, which has no information. Where did the information con-
tained in the bool value go? One can answer this question more
clearly by looking at the following function of type bool ( 1,
which is the computational counterpart of the above proof:

λ x : bool. if x then () else ()

The information in the input is represented by the choice of which
branch is selected. Linear logic does not recognize choice as a
resource, so it allows us to erase this information. We can even
do the same with natural numbers [24]:

eraseNat zero = ()
eraseNat (succ n) = eraseNat n

Note that this function takes an amount of time linear in its ar-
gument, unlike the earlier function, which ran in constant time.
eraseNat takes a resource consisting of a memory location hold-
ing a natural number and, by a process taking time proportional to
the number, produces a trivial value (). This erases information, not
space, but applying it to both elements of a pair of natural numbers
would have the type 1⊗1, which is equivalent to the type 1. Thus,
it allows us to take two (or more) memory cells containing non-
trivial information and collapse them into one trivial memory cell,
erasing both information and space.

We can also copy a natural number, with a similar result:

copyNat zero = (zero, zero)
copyNat (succ n) =

let (n1, n2) = copyNat n in
(succ n1, succ n2)

This function duplicates information in a way that bypasses the
resource tracking infrastructure of linear logic. Just as eraseNat
produced a trivial value in addition to some extra time, copyNat
consumes both its input and some implicit input time as an extra
argument and produces two natural numbers.

Linear logic may work to preserve resources when their struc-
ture is unknown, but it is not a truly resource-preserving logic. In
order to preserve all resources, we must examine our notions of
“truth” and “resource” more closely.

Martin-Löf [20] argues that “truth” is knowledge or informa-
tion, i.e., that truth requires evidence and that evidence must be
constructed using some resources and finitely communicated using
physical means. More directly, Landauer [17] argues that “infor-
mation is physical” and hence that information is a resource which
must be conserved. Recently, James and Sabry [13] expand on this
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idea and argue that information is a computational resource that
ought to be exposed as such, and furthermore that our computa-
tional models should be founded on the principle of conservation
of information.

As we explain in more detail in the next section and formalize in
the remainder of the paper, linear logic does not recognize choice as
a resource, as it allows choices to be freely created and discarded.
Yet, as the examples above illustrate, these choices encode infor-
mation, which is a resource. Technically, linear logic tracks multi-
plicative resources (that is, physical objects combined with ⊗) but
does not consider additive resources (that is, choices represented
by either⊕ or N). As we explain in Sec. 6, multiplicative resources
can be viewed as representing space (i.e., memory), while additive
resources can be viewed as representing time (i.e., choices). Be-
cause it is possible in computations to trade space for time and vice
versa, this separation of resources is artificial. Instead, we wish to
track spacetime resources, which allow arbitrary mixture of space
and time connectives.

The above considerations lead us to investigate a logic that
maintains information as spacetime resources. By the Landauer
principle [3, 16], we can do this by making the logic reversible
in the sense that every proof of conclusions B from assumptions
A can be reversed to produce A from B. The technical develop-
ment of our logic is inspired by the logic of bunched implications
(BI) [22]. Briefly speaking, we generalize linear logic contexts
(which are built using ⊗ to account for multiplicative resources)
to contexts built using two connectives ⊗ and ⊕, keeping track of
both space and time. At the core of our approach is an explicit rule
in our sequent calculus that provides access to the algebraic struc-
tural rules (hence the name “superstructural logic”):

Γ ∼ Γ′ Γ′ ` C
Γ ` C struct

To summarize, our major contributions are as follows:

• We define in Sec. 3 Reversible Logic (RL), a sequent calculus in
which all entailments are isomorphisms. The methodology used
to define this system exemplifies what we call superstructural
logic, a way of writing sequent calculi that places emphasis on
the structural properties of contexts. This is a generalization of
BI [22] that allows added expressiveness and flexibility when
defining a logic.
• We demonstrate the flexibility of superstructural logic by ex-

tending RL so that it is equivalent to linear logic (Sec. 4). This
presentation exposes the hidden information effects in linear
logic that cause it to preserve only spatial resources.
• We introduce a novel notion of resources, spacetime resources,

which account for both the space and time needed by a com-
putation (Secs. 3 and 6). Our logic can be used to reason about
such resources allowing computations the flexibility of trading
space for time and vice-versa.
• We give a computational interpretation for RL via Curry-

Howard that is equivalent to the reversible Π combinator calcu-
lus (Sec. 5). This equivalence demonstrates that each proof in
Reversible Logic is in fact an isomoprhism.

2. Resource-Conscious Systems
The two resource-conscious systems of computation that have been
most influential on this work are Π [13], a reversible combinator
calculus, and linear logic [11], a logic in which assumptions must
be used exactly once. This contrasts with traditional logic, in which
assumptions are persistent and may be used as many or as few times
as needed; instead, linear assumptions are ephemeral and cannot be
copied or erased inside contexts. We discuss these now to provide

important background for the rest of the paper and motivate the
need for reversible logic.

2.1 Information-preserving Isomorphisms
We review the language Π, as it has heavily influenced the rest of
the paper.1 The terms of Π are not classical values and functions;
rather, the terms witness isomorphisms that act on a separate level
of values. In other words, the terms of Π are proofs that certain
shapes of values are isomorphic to one another.

Data. Π has two levels of data. The first level is traditional values:

v ::= () | left v | right v | (v, v)

which are classified by ordinary types:

b ::= 0 | 1 | b+ b | b ∗ b

Types include the empty type 0, the unit type 1, sum types b1 + b2,
and product types b1 ∗ b2. Values include () which is the only value
of type 1, left v and right v which inject v into a sum type, and
(v1, v2) which builds a value of product type.

Isomorphisms. The second level of data in Π consists of wit-
nesses of type isomorphisms, classified by the type b1 ↔ b2. Fig. 1
defines the base isomorphisms of Π which form the core of the lan-
guage. Each line of Fig. 1 introduces a pair of dual constants2 that
witness the type isomorphism in the middle. Note how these base
isomorphisms have two readings: as a set of typing relations for a
set of constants, and, if these axioms are seen as universally quan-
tified, orientable statements, as transformations of the values. The
(categorical) intuition here is that these axioms have computational
content because they witness isomorphisms rather than merely stat-
ing an extensional equality.

These base isomorphisms are then extended with a small com-
binator language in order to form a congruence relation:

id : b↔ b

c : b1 ↔ b2
sym c : b2 ↔ b1

c1 : b1 ↔ b2 c2 : b2 ↔ b3
c1 # c2 : b1 ↔ b3

c1 : b1 ↔ b3 c2 : b2 ↔ b4
c1 ⊕ c2 : b1 + b2 ↔ b3 + b4

c1 : b1 ↔ b3 c2 : b2 ↔ b4
c1 ⊗ c2 : b1 ∗ b2 ↔ b3 ∗ b4

2.2 Why not Π ?
The language Π works well as a model of reversible computation,
but it is inconvenient both from computational and logical perspec-
tives. Computationally, languages based entirely on combinators
force a “pointfree” style which is often difficult to read and write.
From a logical perspective, Π gives a Hilbert-style system with a
heavy emphasis on axioms, which suffers from the same problems.

Historically, natural deduction and sequent calculi were devel-
oped as more “natural” alternatives to such systems. In order to
understand Π as a deductive system, using proof-theoretic tools,
we explore a sequent calculus formulation of reversible logic and
computation. This formulation has several advantages: it may sug-
gest a more intuitive syntax than a combinator calculus, it would
allow us to reason about reversible logic and computation relative
to other well-understood calculi, and it would make the language
more extensible.

1 The presentation in this section focuses on the simplest version of Π. Other
versions include recursive types and trace operators but these extensions are
orthogonal to the work emphasized in this paper.
2 where swap∗ and swap+ are self-dual.
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identl+ : 0 + b ↔ b : identr+

swap+ : b1 + b2 ↔ b2 + b1 : swap+

assocl+ : b1 + (b2 + b3) ↔ (b1 + b2) + b3 : assocr+

identl∗ : 1 ∗ b ↔ b : identr∗
swap∗ : b1 ∗ b2 ↔ b2 ∗ b1 : swap∗

assocl∗ : b1 ∗ (b2 ∗ b3) ↔ (b1 ∗ b2) ∗ b3 : assocr∗
dist0 : 0 ∗ b ↔ 0 : factor0
dist : (b1 + b2) ∗ b3 ↔ (b1 ∗ b3) + (b2 ∗ b3) : factor

Figure 1. Π base isomorphisms

2.3 Linear logic
There do exist substructural logics [7, 23, 26] that preserve some
resources by restricting the operations that are allowed on contexts.
Linear logic [11] in particular requires that all assumptions be
used exactly once, a property enforced by removing weakening and
contraction. This rules out a generic constant function and restricts
the multiplicative unit 1 to the reversible rule · ` 1. We now
investigate linear logic to explain how it comes close to, but does
not reach, reversibility.

Multiplicative connectives. One of the early claims about linear
logic is that it is “a resource-conscious logic” [11]. In that com-
mon interpretation, usually exemplified with a vending machine
model, the multiplicative propositions represent the simultaneous
availability of distinct physical resources (e.g., candy and gum).
Consider the left and right rules for ⊗ in intuitionistic linear logic:

∆1 ` A ∆2 ` B
∆1,∆2 ` A⊗B

⊗R
∆, A,B ` C

∆, A⊗B ` C ⊗L

In these rules, resources may be shuffled around, but not thrown
away. The right rule splits both the context and the conclusion, anj
the left rule decomposes the connective into the context, allowing
it to be examined more closely. In a classical setting, ⊗’s dual O
behaves similarly.

The rules for 1, the unit of ⊗, are also well-behaved:

· ` 1
1R

Γ ` C
Γ,1 ` C 1L

The right rule allows only the empty context to prove 1. Since
the empty context is the unit of the contextual “,” operation, no
information is lost here. In the left rule, the 1 is thrown away. In
principle we can rewrite this as

Γ, · ` C
Γ,1 ` C 1L′

but this would be identical to the original rule, since linear contexts
may be implicitly shuffled and combined.

If we were to restrict ourselves to the multiplicative fragment,
we would have a reversible logic, but not an interesting one. Note
that all of the types we can denote using only 1 and⊗ have exactly
one inhabitant. In order to be able to express nontrivial types (such
as booleans) we must also have choice in our logic. The additive
connectives in linear logic fulfill this need.

Additive connectives. Unfortunately, the additive connectives ⊕
and N are not as well-behaved as ⊗. Indeed, the misbehavior
begins with their units: the unit > of N is commonly interpreted
as a “wastebasket for irrelevant alternatives”, as it can be proven
from any assumptions, and the unit 0 of ⊕ can be used to prove
anything. Clearly these do not preserve information, but what about
the connectives themselves? Consider one of the right rules for ⊕:

∆ ` A
∆ ` A⊕B ⊕R1

Reading the rule from the bottom up, B disappears. This is
our first indication that linear logic does not preserve choices as
resources, since anything can be injected into a larger choice from
which the original information cannot be recovered. This behavior
is similar to the contraction rule from standard propositional logic:

Γ, A ` C
Γ, A,A ` C CONT

If we want a logic that preserves information, we need to ensure
that we are not allowed to apply rules like weakening or contraction
anywhere. Even though linear logic removes these rules from the
context, forbidding their use on⊗,⊕ and N still admit weakening-
and contraction-like properties.

Another interesting property of the additive rules is that they
are nonlinear at a meta level: not every metavariable is used exactly
once in both the premise and the conclusion. In⊕R1,B is erased in
the premise. In NR, the context itself is duplicated in the premises:

Γ ` A Γ ` B
Γ ` ANB

NR

These rules do have legitimate uses, of course. In particular, we
should be allowed to introduce the units of ⊕ and N whenever we
want. Consider the following proof of A ` A⊕ 0:

A ` A idA

A ` A⊕ 0
⊕R1

It is also possible to write an irreversible proof even between
two equivalent types. Consider the following proof of 1⊕1 ` 1⊕1:

· ` 1
1R

1 ` 1
1L

1 ` 1⊕ 1
⊕R1

· ` 1
1R

1 ` 1
1L

1 ` 1⊕ 1
⊕R1

1⊕ 1 ` 1⊕ 1
⊕L

This proof corresponds to the lambda calculus function λx.true,
albeit with more intermediate steps done to erase the variable from
the context. The problem is subtle: we use ⊕R1 twice, when really
we should have to use each right rule exactly once in order for the
proof to be an isomorphism. This is actually an instance of a gen-
eral fact about linear logic where any proposition A composed of
only the base type operators is equivalent to !A and therefore able
to be duplicated and erased at will [6]. In particular, this affects
booleans and natural numbers.

Recall that ⊗ preserves information by explicitly interacting
with the context. On the right, it splits the context and passes part to
each premise, and on the left it decomposes into the context. This
works in part because the behavior of contexts preserves that one
variety of information—contexts have · as their unit and can have
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Γ⊕O ∼ Γ
Γ1 ⊕ Γ2 ∼ Γ2 ⊕ Γ1

Γ1 ⊕ (Γ2 ⊕ Γ3) ∼ (Γ1 ⊕ Γ2)⊕ Γ3

Γ⊗ 1 ∼ Γ
Γ1 ⊗ Γ2 ∼ Γ2 ⊗ Γ1

Γ1 ⊗ (Γ2 ⊗ Γ3) ∼ (Γ1 ⊗ Γ2)⊗ Γ3

Γ⊗O ∼ O
Γ1 ⊗ (Γ2 ⊕ Γ3) ∼ (Γ1 ⊗ Γ2)⊕ (Γ1 ⊗ Γ3)

Γ ∼ Γ

Γ1 ∼ Γ2

Γ2 ∼ Γ1

Γ1 ∼ Γ2 Γ2 ∼ Γ3

Γ1 ∼ Γ3

Γ1 ∼ Γ3 Γ2 ∼ Γ4

Γ1 ⊕ Γ2 ∼ Γ3 ⊕ Γ4

Γ1 ∼ Γ3 Γ2 ∼ Γ4

Γ1 ⊗ Γ2 ∼ Γ3 ⊗ Γ4

Figure 2. Contextual equivalences in RL

their elements shuffled around at will, but nothing may be created
or deleted.

The additive connectives exist outside the context and do not in-
teract with it. It stands to reason that adding mechanisms for track-
ing choices in a context whose structural rules are information-
preserving would lead to an information-preserving logic. We in-
vestigate this in the next section.

3. A Reversible Sequent Calculus
The technical development of our fully reversible logic is based on
ideas from both Π and BI. We start from a computational model of
information-preserving fully-reversible isomorphisms [13], which
has two connectives ⊕ and ⊗ denoting choice and spatial conjunc-
tion, and use it to develop a variant of BI [22] with contexts built
from these two connectives. We call the resulting system Reversible
Logic, or RL, though it is just one instance of a logic defined using
techniques that we call superstructural logic.

Throughout this section, we will use ` as the sequent symbol
for RL when it is unambiguously a RL proof. Otherwise, we will
distinguish between linear logic sequents, `LL, and RL sequents,
`RL.

3.1 Spacetime contexts
The logic of bunched implication treat contexts as trees with two
forms of binary connective and their units. In our case, one con-
nective serves as the internalization of spatial conjunction, which
represents having multiple resources in different places at the same
time, and another connective serves as the internalization of tem-
poral conjunction, which represents having one resource that could
be in any of several different states at any particular time. Treated
as a whole, our contexts track spacetime resources.

To make things easier to read, we use ⊕ and ⊗ instead of com-
mas and semicolons for the contextual connectives. The proposi-
tional versions of these connectives are + and ×, since our logic
can also be interpreted as a deductive system for mathematical
equality on these operators:

Propositions A,B ::= 0 | 1 | A+B | A×B
Contexts Γ,∆ ::= O | 1 | A | Γ⊕ Γ | Γ⊗ Γ

3.2 Contextual equivalence
Contexts are subject to the same structural rules as Π combinators,
but lifted to act on the contextual operators, leaving propositional
leaves alone. These modified rules are shown in Fig. 2.

If contexts do not include ⊕, we recover linear logic contexts.
The new rules encode the (monoidal) behavior of additive resources

and, crucially, that multiplicative resources distribute over additive
ones:

Γ1 ⊗ (Γ2 ⊕ Γ3) ∼ (Γ1 ⊗ Γ2)⊕ (Γ1 ⊗ Γ3)

This rule allows multiplicative resources to be traded for additive
ones and vice-versa, reifying the space-time tradeoff that is usually
left implicit in programs. As we will see later, this ability is vital,
both in terms of emulating linear logic’s behavior (Sec. 4) and
trading between space and time complexity (Sec. 6).

At first glance, distributivity appears to violate meta-linearity, as
it duplicates or erases a copy of Γ1. Looking more closely, though,
we find that although it violates syntactic linearity, it does not
violate semantic linearity—since ⊕ represents a choice between
two alternatives, only one Γ1 can exist at any time.

Distributivity and factoring provide a mechanism for choosing
to delay or force choices, at will. This mechanism already exists
implicitly in linear logic: consider an attempt to prove A⊕B,C `
(A⊕ B)⊗ C. Without a predetermined proof search strategy or a
cut rule, there are two choices: first, we could attempt to apply⊕L:

A ` A idA

A ` A⊕B ⊕R1
C ` C idC

A,C ` (A⊕B)⊗ C
⊗R

B ` B idB

B ` A⊕B ⊕R2
C ` C idC

B,C ` (A⊕B)⊗ C
⊗R

A⊕B,C ` (A⊕B)⊗ C ⊕L

However, note that this duplicates one of the branches of the proof.
We might instead choose to apply ⊗R first:

A⊕B ` A⊕B idA⊕B
C ` C idC

A⊕B,C ` (A⊕B)⊗ C ⊗R

The former proof corresponds to deconstructing the choice first
and using the common resource C later (that is, (Γ1⊗Γ2)⊕ (Γ1⊗
Γ3)); the latter proof uses the common resource first, then proceeds
to deconstruct the choice (that is, Γ1 ⊗ (Γ2 ⊕ Γ3)). Both proofs
are, in some sense, the same. In reversible logic, the structure of
the context dictates which choice can be made, but they can be
switched between at will.

3.3 Inference rules
We now define the left and right rules for our reversible sequent
calculus, RL. As in BI, we want the left rules to be able to act
on a proposition nested arbitrarily deeply within the context, so
instead of writing Γ, A as in linear logic, we write Γ[A] to mean
a context Γ with a single hole somewhere in it that is filled by A.
More generally, we can fill a hole with an arbitrary context, Γ[∆].
We can also have a context with multiple holes in it, which we write
with curly braces instead of square braces, Γ{∆}.

The rules for × work the same as in linear logic and BI, match-
ing on the context on the right and decomposing the connective into
its contextual version on the left:

Γ ` A Γ′ ` B
Γ⊗ Γ′ ` A×B

×R
Γ[A⊗B] ` C
Γ[A×B] ` C ×L

Now that we have a contextual version of +, its rules do the
same thing:

Γ ` A Γ′ ` B
Γ⊕ Γ′ ` A+B

+R
Γ[A⊕B] ` C
Γ[A+B] ` C +L

The units have similar rules, decomposing them into their con-
textual forms:
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O ` 0
0R

Γ[O] ` C
Γ[0] ` C 0L

1 ` 1
1R

Γ[1] ` C
Γ[1] ` C 1L

This is a small departure from linear logic, especially with the
treatment of 0. The decomposition of 1 is also important, however,
since unlike in linear logic, this unit cannot always be eliminated.
Recall the linear 1L rule:

Γ `LL C

Γ,1 `LL C
1L

This only works because there is only one contextual connective,
and ·, the contextual version of 1, is its unit. In RL, we have no such
guarantee that in Γ[1], the hole is appearing as an immediate child
of a ⊗ node, so we must rely on the contextual rules to eliminate it
when possible.

So far, the rules appear tautological, just allowing us to shift
focus from the proposition to the context and vice-versa. This is
also the case for multiplicative linear logic, but in addition to this
shift of focus, the linear logic context can be silently re-ordered.
In our case, we add a rule that explicitly shuffles the resources
in the context using the transformations in Fig. 2. The rule is
similar to one in BI, with the exception that we treat the contextual
equivalence as another derivation rather than a side condition:

Γ ∼ Γ′ Γ′ ` C
Γ ` C struct

For example, a proof that A×B ` B ×A would look as follows:

A⊗B ∼ B ⊗A
B ` B id

A ` A id

B ⊗A ` B ×A ×R

A⊗B ` B ×A struct

A×B ` B ×A ×L

The left and right rules in RL act as wrappers around the combi-
nators that act on contexts. We believe there may be ways to re-
lax these restrictions and make writing proofs in RL more user-
friendly, but for now it is intended just as a basic sequent calculus
for reversible logic.

3.4 Implication
It is also possible to naı̈vely add implication to RL, using an ap-
proach similar to the one in BI:

Γ⊗A ` B
Γ ` A( B

( R
Γ′ ` A Γ[B] ` C

Γ[(A( B)⊗ Γ′] ` C ( L

While there is nothing immediately wrong with these rules, they
are, unfortunately, not reversible. For example, while we can easily
prove (A( B)× A ` B, we cannot prove B ` (A( B)× A.
There has been work done on adding implication to reversible
languages [15], specifically with fractional types. However, any of
the known possibilities would add sufficient complexity to the logic
that we defer their investigation to a later paper in order to focus on
the foundations here.

3.5 Soundness and Completeness
To demonstrate that RL is sound and complete, we show that our
sequent calculus as presented has admissible identity and cut rules.

Theorem 3.1 (Admissibility of identity). For all propositions A,
A ` A.

Proof. By induction on the proposition A.

The proof of a usual statement of cut, unfortunately, does not
proceed smoothly. We must first generalize the cut statement to
multicut, as in the BI metatheory [25], but that is not yet strong
enough for RL. The eventual result hinges on contextual parame-
tericity, as follows:

Lemma 3.2 (Contextual parametericity). For all multi-hole con-
texts Γ and Γ′ with no copies ofA in them, if Γ{A} ∼ Γ′{A}, then
for all contexts ∆, Γ{∆} ∼ Γ′{∆}.
Due to the factoring rule, this lemma only holds with the condition
that A does not occur in the contexts other than as a replacement
in a hole. Otherwise, substituting in ∆ would potentially prevent
factoring from happening, even though it could happen before. For
example, in the context:

(A⊗B)⊕ (A⊗ C)

we can factor out A, but if we replace one copy with ∆, we get:

(∆⊗B)⊕ (A⊗ C)

and the rule can no longer immediately be applied.

Proof. By induction on the context Γ.

With this lemma out of the way, we can finally state and prove cut:

Theorem 3.3 (Admissibility of cut). If ∆ ` A, Γ{A} ` C, and A
does not occur outside a hole in Γ, then Γ{∆} ` C.

Proof. As in BI [25], using the contextual parametericity lemma in
the right commutative case of the struct rule.

3.6 Reversibility
Since we have been writing this logic with the goal of reversibility
in mind, it is important that we show that it is actually reversible.
We will show in Sec. 5 that all proofs are isomorphisms by way of a
translation between the computational interpretation of RL and Π.
For now, we show that every proof is an equivalence.

This proof relies on the p−q operator from contexts to propo-
sitions, which turns each contextual connective and unit into its
propositional counterpart.

Theorem 3.4 (Logical reversibility). If Γ ` A, then A ` pΓq.

Proof. Another simple induction on the structure of the derivation
of Γ ` A.

4. Back to Linear Logic
Now that we have a reversible logic, what does it take to get back
to linear logic? Intuitively, we would like to be able to derive rules
of inference for RL that are similar to those for linear logic. In
this section, we show that this can be done with the addition of
a single connective and a few structural rules, then prove that our
embedding (which we call Linear Contextual Logic, or LCL) is
sound and complete with respect to the appropriate fragment of
judgmental linear logic [6].

4.1 Units: 0 and >
We begin by adding the units, 0 and >, of the linear connectives.
Since we only have one additive unit in RL, we add another propo-
sitional unit, >, and its contextual form, T, to LCL, with the fol-
lowing right and left rules:

T ` > >R
Γ[T] ` C
Γ[>] ` C >L
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We will add structural rules for T as we discover a need for them.
Now, recall the rules3 for 0 and > from linear logic:

Γ,0 `LL C
0L

Γ `LL > >R

We would like to be able to derive similar rules in LCL:

Γ⊗ 0 ` C 0L′
Γ ` > >R

′

Deriving the 0L′ rule proceeds smoothly at first:

Γ⊗O O

...
O ` C

Γ⊗O ` C struct

Γ⊗ 0 ` C 0L

but we cannot yet prove O ` C. In linear logic, the 0L rule allows
us to prove anything from an assumption O; this is an implicit
information effect that is not captured by standard linear contexts.
We can try to add a structural rule to LCL that encapsulates this
effect:

O ∼ Γ

However, this rule makes our logic unsound, as we can trivially
prove equivalence of any two contexts with two applications of it,
one in each direction: Γ ∼ O ∼ Γ′.

The problem here is that RL context equivalences form an
equivalence relation, but in linear logic, information effects make
the effects that occur on temporal resources irreversible. We can fix
this by replacing ∼ with an asymmetric relation  and changing
the structural rule to

Γ Γ′ Γ′ ` C
Γ ` C struct

We can still keep all the rules from RL in LCL, so long as we
treat Γ ∼ Γ′ as syntactic sugar for Γ Γ′ and Γ′  Γ. This new
expressive power allows us to define the correct structural rule for
O:

O Γ

which allows us to prove O ` C with a derived rule we will call
OL:

O C C ` C idC

O ` C struct

thus completing our derivation of the rule 0L′.
With >R′, we get stuck right away, but we can apply a similar

intuition to get a new structural rule forT: since linear logic allows
any context to become > in >R, we need to add a structural rule
that explicitly captures that implicit information effect:

Γ T

and complete the derivation of >R′:

Γ T T ` > >R

Γ ` > struct

4.2 Linear ⊕
Recall the linear logic right4 and left rules for ⊕:

3 In this section, we will use `LL for linear logic entailment and ` or `LCL

for LCL entailment.
4 We will only present one of the right rules here; the other is symmetric
and therefore redundant.

Γ ` A
Γ ` A⊕B ⊕R1

Γ, A ` C Γ, B ` C
Γ, A⊕B ` C ⊕L

We would like to be able to derive similar rules for the + connective
in RL:

Γ ` A
Γ ` A+B

+R′1
Γ⊗A ` C Γ⊗B ` C

Γ⊗ (A+B) ` C +L′

The rules we have already added for 0 are enough for the right rule:

Γ Γ⊕O
Γ ` A O ` B OL

Γ⊕O ` A+B
+R

Γ ` A+B
struct

but the left rule will require more work. We can begin a derivation
as follows:

...
(Γ⊗A)⊕ (Γ⊗B) ` C

Γ⊗ (A⊕B) ` C
distrib⊕

Γ⊗ (A+B) ` C +L

Intuitively, we need to be able to apply +R to be able to proceed,
since the primary conjunction on the left is ⊕. We can do this with
an application of cut, but we soon get stuck again:

Γ⊗A ` C Γ⊗B ` C
(Γ⊗A)⊕ (Γ⊗B) ` C + C

+R

...
C ⊕ C ` C
C + C ` C +L

(Γ⊗A)⊕ (Γ⊗B) ` C cut

Recall from section 2 that we made a comparison between linear
logic’s ⊕R rules and the structural rule contraction:

Γ, A ` C
Γ, A,A ` C cont

This is exactly the kind of property we need to hold here on the ⊕
connective: the ability to contract Γ ⊕ Γ into Γ. We can add this
context transition to LCL:

Γ⊕ Γ Γ

and finish the derivation of +L′:

C ⊕ C  C C ` C idC

C ⊕ C ` C struct

4.3 Linear N
Fortunately, adding rules for N is much more straightforward. In
order to avoid confusion with + and ⊕, we add the propositional
connective N and the contextual connective r to LCL, with the
obvious right and left rules for N:

Γ1 ` A Γ2 ` B
Γ1r Γ2 ` ANB

NR
Γ[ArB] ` C
Γ[ANB] ` C NL

We need r to be a monoid with T as its unit, as well as have a
congruence rule like the ones for ⊗ and ⊕. As with T, we will add
additional structural rules forr as we need them.

Recall the rules5 for N from linear logic:

5 Again, we only look at one of the left rules, since the other is symmetric.
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Γ `LL A Γ `LL B

Γ `LL ANB
NR

Γ, A `LL C

Γ, ANB `LL C
NL1

Again, we would like to be able to derive similar rules in LCL:

Γ ` A Γ `LL B

Γ ` ANB
NR′

Γ⊗A ` C
Γ⊗ (ANB) ` C NL′1

As with +L′, we get stuck early on when trying to derive NR′:
we would like to apply NR, since N appears on the right, but
we are unable to at first. Recall, however, that in linear logic,
NR duplicates the context to be able to pass it to both premises.
Therefore, we must add a structural rule that allows us to do the
same thing:

Γ Γr Γ

The derivation now proceeds smoothly:

Γ Γr Γ
Γ ` A Γ ` B
Γr Γ ` ANB

NR

Γ ` ANB
struct

The derivation for NL′1 depends only on the rules we added for the
unit ofr, just as in +R1:

A A B  T

ArB  ArT ArT A

ArB  A Γ⊗A ` C
Γ⊗ (ArB) ` C struct

Γ⊗ (ANB) ` C NL

Of course, since r is a new connective, we must make sure we
have added the structural rules that make T its unit:

ΓrT ∼ Γ

Also, while the case for NL′2 is symmetric, it requires that the
r connective also be symmetric, which we can ensure with the
following rule:

Γ1r Γ2 ∼ Γ2r Γ1

4.4 Linear information effects
To summarize, the unidirectional rules we have added are:

O Γ Γ Γr Γ

Γ T Γ⊕ Γ Γ

These capture the implicit information effects inherent in linear
logic in an explicit way, by allowing contraction for ⊕ and weak-
ening forr, as well as appropriate rules for their units.

4.5 Correctness
We now prove that superstructural linear logic is equivalent to
intuitionistic linear logic. In order to do this, we need two operators:
J−K , which translates linear contexts and propositions into their
counterparts in RL, and [−], which translates RL contexts and
propositions into linear propositions. Both are defined in Fig. 3.

Theorem 4.1 (Completeness of the embedding). If Γ `LL A, then
JΓK `LCL JAK

Proof. All of the heavy lifting of the proof is done by the derived
rules from the previous subsection: we replace rules for the additive
connectives N and ⊕ with their derived versions, rules for ⊗ with
their corresponding rules in LCL, and applications of exchange
with a structural application of swap⊗.

The proof of the embedding’s soundness is more complicated.
Unlike the completeness proof, we cannot define a simple transla-
tion on contexts, since there is no equivalent of ⊕ orr in a linear
context. Instead, we turn LCL contexts directly into LL proposi-
tions.

Theorem 4.2 (Soundness of the embedding). If Γ `LCL A, then
[Γ] `LL [A]

Proof. Most cases proceed straightforwardly, but the case of struct
bears closer investigation:

D1

Γ ≡ Γ′
D2

Γ′ `LCL C

Γ `LCL C
struct

We can apply the inductive hypothesis to D2 to get [Γ′] `LL

[C], but we still need to be able to replace [Γ′] with [Γ]. To proceed,
we must prove a lemma relating context transitions and linear logic
proofs:

Lemma 4.3 (Soundness of contextual transitions). If Γ ∆, then
[Γ] `LL [∆]

Since our context transition rules have been chosen carefully,
this proof proceeds straightforwardly, and we can apply the new
lemma to D1 to get a proof that [Γ] `LL [Γ′]. This means we can
apply the cut rule of linear logic to get the following derivation:

[Γ] `LL [Γ′] [Γ′] `LL [C]

[Γ] `LL C
cut

This completes the proof of the embedding’s soundness, but
more importantly, it suggests a general technique: when embedding
a language into CL, we should be able to use any deductive system
for that language in place of a contextual combinator calculus. This
enables us to keep the expressive power of CL’s contexts without
having to use a combinator calculus to act on contexts. In particular,
the structural rule would change to:

Γ `′ ∆ ∆ ` C
Γ ` C struct′

where `′ is the contextual notion of entailment (in our example
here, this would be linear logic).

5. Computational Interpretation
We assign a computational interpretation to RL’s proofs via the
Curry-Howard correspondence [12], creating a programming lan-
guage we call λR. As usual, we will assume that all variable names
are unique, achieving this property by tacitly renaming variables
when needed [2].

To update contexts, we add variable annotations to propositions,
leaving the other forms alone:

Γ ::= 1 | O | Γ1 ⊗ Γ2 | Γ1 ⊕ Γ2 | x : A

For proof terms, we need multiplicative and additive pairs, unit
expressions, and let-notation for each of the left rules:
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J·K = 1
JΓ, AK = JΓK⊗ JAK

J1K = 1
J>K = >
J0K = 0

JA⊗BK = JAK× JBK
JANBK = JAK N JBK
JA⊕BK = JAK + JBK

[1] = 1
[T] = >
[O] = 0

[Γ1 ⊗ Γ2] = [Γ1]⊗ [Γ2]
[Γ1r Γ2] = [Γ1] N [Γ2]
[Γ1 ⊕ Γ2] = [Γ1]⊕ [Γ2]

[1] = 1
[>] = >
[0] = 0

[A×B] = [A]⊗ [B]
[ANB] = [A] N [B]
[A+B] = [A]⊕ [B]

Figure 3. Converting back and forth between LL and LCL contexts and propositions

x : A ` x : A
id

Γ `M : A Γ′ ` N : B

Γ⊗ Γ′ ` 〈M,N〉 : A×B
×R Γ `M : A Γ′ ` N : B

Γ⊕ Γ′ ` [M,N ] : A+B
+R

Γ[(y : A)⊗ (z : B)] `M : C

Γ[x : A×B] ` let 〈y, z〉 = x in M : C
×L

Γ[(y : A)⊕ (z : B)] `M : C

Γ[x : A+B] ` let [y, z] = x in M : C
+L

O ` 0 : 0
0R

Γ[O] `M : C

Γ[x : 0] ` let 0 = x in M : C
0L

1 ` 1 : 1
1R

Γ[1] `M : C

Γ[x : 1] ` let 1 = x in M : C
1L

c : Γ ∼ Γ′ Γ′ `M : C
Γ ` do c in M : C

struct

Figure 4. Proof term assignments

M ::= x | 1 | 0
| 〈M1,M2〉 | [M1,M2]
| let 1 = x in M | let 0 = x in M
| let 〈y, z〉 = x in M | let [y, z] = x in M
| do c in M

The c in “do c in M” is a combinator, with syntax as defined
in Sec. 2 and typing rules as defined in Fig. 2. As before, the
combinator’s job is to shuffle the context so it has the right shape
to be passed in to M .

Proof term assignments are shown in Fig. 4. Using the sequent
calculus for a proof term assignment means that variables act as
locations within the context; in theory we could create an equivalent
natural deduction system and assign proof terms to it, but this
would add extra complexity to the terms and semantics.

Note that the pair form introduced in the +R rule, [M1,M2],
is different from the value forms for +. This is because it ends up
acting as a restricted form of case analysis based on which branch
of the context is “really” active. A term [M1,M2] can be applied
to a left value or a right value, activating either M1 or M2, but not
both.

5.1 Values and Environments
Since it is not higher-order, λR maintains a distinction between
proof terms and the values on which they act. In order to evaluate
an application of a term to a value, we also need to maintain an

〈〉 : 1

v1 : A v2 : B

〈v1, v2〉 : A×B

v1 : A

inl(v1) : A+B

v2 : B

inr(v2) : A+B

v : A
(x = v) : (x : A) 〈〈〉〉 : 1

E1 : Γ1 E2 : Γ2

〈〈E1, E2〉〉 : Γ1 ⊗ Γ2

E1 : Γ1

inl(E1) : Γ1 ⊕ Γ2

E2 : Γ2

inr(E2) : Γ1 ⊕ Γ2

Figure 5. Value and environment typing rules

environment. This will act like a dynamic version of type contexts,
storing the same information as values on a separate syntactic level.
As with static contexts, values can be bound to variables inside
environments, but values cannot refer to variables or contexts.

As an alternative to environments, we may wish to use a
substitution-based semantics, but due to the way in which we must
treat sums, as well as the lack of first-class terms, this would be
difficult, if not outright impossible. The usual presentation of envi-
ronments just treats them as finite functions, which is also inade-
quate for our purposes, again due to the extra structure required by
our treatment of sums. Just as we have nontrivial type contexts, we
must also admit nontrivial environments at runtime.

v ::= 〈〉 | 〈v1, v2〉 | inl(v) | inr(v)
E ::= 〈〈〉〉 | 〈〈E1, E2〉〉 | inl(E) | inr(E) | x = v

The typing rules for values and environments are shown in Fig. 5.
The type of a value is a proposition, and the type of an environment
is a type context. Note that they are declarative—in particular,
the rules for injections into sum types are back to creating and
erasing information. We allow this because runtime objects do not
represent interesting proofs; information only needs to be preserved
in the main proof terms, not the objects on which they act.

5.2 Operational Semantics
We now define a small step judgment, M@E 7→ M ′@E′, for the
dynamic semantics, shown in Fig. 6. In the rules, whenever we en-
counter a let-expression, i.e., a binder, we create the appropriate
bindings in the environment. If there was a choice between two
possible bindings (as in the rules for let [y, z] = x in M ) and one
of them was chosen based on the value of x then the environment
entry is itself tagged with the choice. The evaluation of pairs can
in principle be done in parallel since the pair components do not,
by construction, share any resources. The rules realize this by pro-
viding a non-deterministic choice: when evaluating 〈M1,M2〉 one
can either evaluation M1 or M2. A novel aspect of the semantics is
that whenever we encounter an expression do c in M we dynami-
cally use c to restructure the environment. The rules for this action
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(let 〈y, z〉 = x in M)@E[x = 〈v1, v2〉] 7→M@E[〈〈y = v1, z = v2〉〉]
c E ⇓ E′

(do c in M)@E 7→M@E′

M1@E1 7→M ′1@E′1

〈M1,M2〉@〈〈E1, E2〉〉 7→ 〈M ′1,M2〉@〈〈E′1, E2〉〉
M2@E2 7→M ′2@E′2

〈M1,M2〉@〈〈E1, E2〉〉 7→ 〈M1,M
′
2〉@〈〈E1, E

′
2〉〉

(let [y, z] = x in M)@E[x = inl(v1)] 7→M@E[inl(y = v1)] (let [y, z] = x in M)@E[x = inr(v2)] 7→M@E[inr(y = v2)]

M1@E1 7→M ′1@E′1

[M1,M2]@inl(E1) 7→ [M ′1,M2]@inl(E′1)

M2@E2 7→M ′2@E′2

[M1,M2]@inr(E2) 7→ [M1,M
′
2]@inr(E′2)

Figure 6. Dynamic semantics

id E ⇓ E
c1 E ⇓ E′ c2 E

′ ⇓ E′′

(c1 # c2) E ⇓ E′′
c1 E1 ⇓ E′1 c2 E2 ⇓ E′2

(c1 ⊗ c2) 〈〈E1, E2〉〉 ⇓ 〈〈E′1, E′2〉〉

c1 E1 ⇓ E′1
(c1 ⊕ c2) inl(E1) ⇓ inl(E′1)

c2 E2 ⇓ E′2
(c1 ⊕ c2) inr(E2) ⇓ inr(E′2)

identl⊕ inl(E) ⇓ E identr⊕ E ⇓ inl(E) identl⊗ 〈〈E, 〈〈〉〉〉〉 ⇓ E identr⊗ E ⇓ 〈〈E, 〈〈〉〉〉〉

swap⊕ inl(E) ⇓ inr(E) swap⊕ inr(E) ⇓ inl(E) swap⊗ 〈〈E1, E2〉〉 ⇓ 〈〈E2, E1〉〉

assocl⊕ inl(E) ⇓ inl(inl(E)) assocl⊕ inr(inl(E)) ⇓ inl(inr(E)) assocl⊕ inr(inr(E)) ⇓ inr(E)

assocr⊕ inl(inl(E)) ⇓ inl(E) assocr⊕ inl(inr(E)) ⇓ inr(inl(E)) assocr⊕ inr(E) ⇓ inr(inr(E))

assocl⊗ 〈〈E1, 〈〈E2, E3〉〉〉〉 ⇓ 〈〈〈〈E1, E2〉〉, E3〉〉 assocr⊗ 〈〈〈〈E1, E2〉〉, E3〉〉 ⇓ 〈〈E1, 〈〈E2, E3〉〉〉〉

dist 〈〈E1, inl(E2)〉〉 ⇓ inl(〈〈E1, E2〉〉) dist 〈〈E1, inr(E3)〉〉 ⇓ inr(〈〈E1, E3〉〉)

factor inl(〈〈E1, E2〉〉) ⇓ 〈〈E1, inl(E2)〉〉 factor inr(〈〈E1, E3〉〉) ⇓ 〈〈E1, inr(E3)〉〉

(no rule for distO or factorO)

Figure 7. Environment evaluation

x@(x = v) final 1@〈〈〉〉 final

M1@E1 final M2@E2 final

〈M1,M2〉@〈〈E1, E2〉〉 final

M1@E1 final

[M1,M2]@inl(E1) final

M2@E2 final

[M1,M2]@inr(E2) final

Figure 8. Final configurations

on environments are essentially the same rules for the operational
semantics of Π [13]: they are in Fig. 7.

We also define a judgment M@E final for when M is finished
evaluating in the environment E, shown in Fig. 8. Note that the
additive pair [M1,M2] might be final in one environment but not
in another; only one branch will be evaluated, but we still keep both
around. We can now define the full evaluation of an application of

an expression to a value, written M@E 7→∗ M ′@E′, in the usual
way:

M@E final
M@E 7→∗ M@E

M@E 7→M ′@E′ M ′@E′ 7→∗ M ′′@E′′

M@E 7→∗ M ′′@E′′
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5.3 Safety
We prove progress and preservation [32] lemmas to demonstrate
that λR is typesafe. Both proofs proceed straightforwardly by in-
duction, so we omit them here.

Theorem 5.1 (Progress). If E : Γ and Γ ` M : A, then either
M@E final or there existM ′ andE′ such thatM@E 7→M ′@E′.

Theorem 5.2 (Preservation). If E : Γ, Γ `M : A, and M@E 7→
M ′@E′, then E′ : Γ′ and Γ′ `M ′ : A.

5.4 Equivalence to Π

We now show that λR is equivalent to Π. Proving that any Π
combinator has an equivalent λR term is simple, since it involves
only decomposing the proposition in the context and ending with
an application of the input combinator to the structural rule. The
other direction requires slightly more effort. First, we must define
a translation π from λR terms into Π combinators. The translation
removes all the names and the associated let-expressions:

π(x) = id
π(1) = id
π(0) = id

π(〈M1,M2〉) = π(M1)⊗ π(M2)
π([M1,M2]) = π(M1)⊕ π(M2)
π(let in M) = π(M)
π(do c in M) = c # π(M)

Theorem 5.3 (Soundness of types over translation). If Γ `M : A,
then π(M) : pΓq↔ A, where pΓq views a context Γ as a type.

Proof. The proof proceeds by induction on the derivation Γ `M :
A. Note that this justifies our collapsing of all the let forms (i.e.,
the left rules) into one case, since the context in the premise and
conclusion both reify to the same type.

Theorem 5.4 (Equivalence to Π). If E : Γ, Γ ` M : A,
π(M) = c, and M@E 7→∗ M ′@E′, then c pEq ⇓ pE′q, where
pEq views an environment as a value.

Proof. This also proceeds by induction on M .

Now that we know λR is equivalent to Π, we also know that it
is a reversible language. To get the reversal of a proof M , we just
have to convert the inverse of π(M) back into λR, in the manner
described above.

6. Resource Interpretation
Categorically, RL models a bimonoidal category, i.e., a category
with two symmetric monoidal structures (0,+) and (1, ∗) and
with multiplication distributing over addition. In this section, we
investigate a model based on consistent timelines and create a
visual notation for them in order to explore the space-time tradeoffs
present in RL more concretely.

6.1 Consistent timelines
Intuitively, we want to think of the types in our system as possible
events, and values as consistent timelines of events. From this
perspective, A ∗ B denotes spatial composition, where both A
and B must happen in any order, and A + B denotes temporal
composition, where exactly one ofA andB must happen at a given
time. The event 1 is then trivial, and 0 is the impossible event.
Spatial composition can be thought of creating two locations in
which events must happen, whereas temporal composition creates
an event that is a choice between two sub-events.

Take the type 2 = 1 + 1, representing a choice between two
trivial events. There are two possible timelines here, just as we
would hope. What happens in 2 + 2 and 2 ∗ 2? In the former
case, we are given an immediate choice between two lesser choices,
resulting in a total of four possible timelines; in the latter case, we
must make two different choices simultaneously, which also results
in four possible timelines.

Both encodings represent the same number of possibilities, but
our denotation distinguishes between them. 2 + 2 only takes up
one “cell” of space, but contains two temporally-sequenced events,
whereas 2 ∗ 2 creates two cells whose events may happen concur-
rently. This suggests that each type has a depth—an upper bound
on the number of events that need to occur (or alternatively, checks
that need to be made) in order to reach the end of a timeline—and
a size—an upper bound on the number of memory cells (created by
spatial conjunction) that will be created over the course of a time-
line. We can define these metrics as follows:

depth 1 = 0
depth 0 = 0
depth (A * B) = max (depth A, depth B)
depth (A + B) = 1 + max (depth A, depth B)

size 1 = 1
size 0 = 0
size (A * B) = size A + size B
size (A + B) = max (size A, size B)

Concretely, the depth and size of 2+2 are 2 and 1, respectively,
whereas the depth and size of 2∗2 are 1 and 2. Thus, we can choose
between otherwise equivalent representations of a type with four
alternatives in order to minimize either space or time complexity,
at the expense of the other.

As presented earlier, the isomorphisms provide the mechanism
for making this tradeoff. If we wish to convert 2 ∗ 2 into 2 + 2
in order to save some space, we must first apply distributivity,
resulting in the type (2 ∗ 1) + (2 ∗ 1). This intermediate step is
actually much worse than either alternative—its depth and size
are both two—but there are also two superfluous multiplications
by 1 being done. Removing these converts the type to 2 + 2.
Distributivity was the first step towards making the representation
more space-efficient; conversely, factoring out a common number
is important when making something more time-efficient.

Informally, we note that the depth and size operations corre-
spond nicely with the operational semantics: the depth of a type is
an upper bound on the number of times the +L rule must do a case
analysis on a value of that type and its subterms, and the size of a
type is an upper bound on the number of pairs 〈v1, v2〉 that occur
in a value and its subterms. Put differently, given a value v : A,
size A represents the numbers of cells used by v in the environ-
ment, and depth A represents the maximum number of times the
dynamic semantics could pattern match on v and its subterms using
let [y, z] = x in M .

6.2 Modeling timelines
We formalize the notion of resources using a graphical notation for
events and timelines.

The denotation of 1 is an endpoint; the denotation of 0 is empty
space. The denotation ofA+B is the denotation ofA drawn on top
of the denotation ofB and separated by a border, and the denotation
of A ∗ B is just the denotation of A written next to the denotation
of B:
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AA

AB

A B

To simplify drawings and emphasize that + is associative, we
will write multiple consecutive applications of + as a single stack
of cells. For example, the denotations of 2, 2 + 2, and 2 ∗ 2 would
be as follows:

A

A

A

A

A

A

A

A

A

A

Now we can formally define a consistent timeline recursively
on the structure of a diagram:

• An endpoint (the denotation of 1) has exactly one timeline
through it. Empty space (the denotation of 0) has no timelines
through it.
• A timeline through a stack of alternatives A1 +A2 + ...+An

is a timeline through exactly one of the possible alternatives.
• A timeline through a spatial composition of cellsA1 ∗A2 ∗ ...∗
An is a timeline through all of the cells, in any order6.

For example, the following would be a consistent timeline
through the diagram for ((2 + 2) ∗ (2 + 2)) + ((2 + 2) ∗ (2 + 2))
times itself:

A

A

A

A

A

A

A

A

but the following would not, since it attempts to skip between
multiple disjoint alternatives at once in the second cell:

A

A

A

A

A

A

A

A

From this definition, it is evident that simple rules such as
commutativity, associativity, and units hold, but we take a closer

6 If we were exploring a noncommutative structure, we would want this to
be explicitly sequential, but since spatial composition in RL is commutative
we allow this to happen in any order. This is consistent with our intuition
that spatial composition creates memory cells that may be accessed in
parallel.

look at distributivity, which says that the following two diagrams
should admit the same number of paths:

A

A

AB

AC

AA AB

AA AC

Since a timeline must pass through a column in exactly one
point, this must be true, since the lower diagram cannot pass
through both copies of A. Going from the bottom diagram to the
top (via factoring) then acts as a sort of hash-consing by factoring
out the common occurrences of A.

7. Related Work
Reversibility. The history of reversible logic goes back to the
papers by Toffoli and Fredkin in the early eighties [9, 29]. These
papers and much of the following research focused on designing
energy efficient hardware circuits.

Recently, reversibility has taken a more central, even founda-
tional role in the sense that there appears to be a convergence of
ideas from several distinct research communities (physics, mathe-
matics, and computer science) towards replacing equalities by iso-
morphisms. The combined programme has sparked a significant
amount of research that unveiled new and surprising connections
between geometry, algebra, logic, and computation (see [1] for an
overview of some of the connections). In the physics community,
Landauer [16, 18], Feynman [8], and others have interpreted the
laws of physics as fundamentally related to computation. The great
majority of these laws are formulated as equalities between differ-
ent physical observables which is unsatisfying: different physical
observables should not be related by an equality. It is more appro-
priate to relate them by an isomorphism that witnesses, explains,
and models the process of transforming one observable to the other.

In the mathematics and logic community, Martin-Löf developed
an extension of the simply typed λ-calculus originally intended to
provide a rigorous framework for constructive mathematics [19].
This theory has been further extended with identity types represent-
ing the proposition that two terms are “equal.” (See [28, 31] for a
survey.) Briefly speaking, given two terms a and b of the same type
A, one forms the type IdA(a, b) representing the proposition that a
and b are equal: in other words, a term of type IdA(a, b) witnesses,
explains, and models the process of transforming a to b and vice-
versa. In the computer science community, the theory and practice
of type isomorphisms is well-established. Originally, such type iso-
morphisms were motivated by the pragmatic concern of searching
large libraries of functions by providing one of the many possible
isomorphic types for the desired function [27].

More recently, type isomorphisms have taken a more central
role as the fundamental computational mechanism from which
more conventional, i.e., irreversible computation, is derived. Work
on the Π combinator calculus [4, 13–15] started with the notion of
type isomorphism and developed from it a family of programming
languages in which computation is an isomorphism preserving
information-theoretic entropy.

Contextual logics. Reversible logic is not the first logic to take
a superstructural approach to logic definition, though we believe
ourselves to be the first to name the approach and embrace it fully.
Deep inference [5] goes in a similar direction by focusing more on
the structure and manipulation of contexts than a traditional logic.
Bunched implications [22] also takes contexts more seriously and
adds an extra connective, which was the original inspiration for su-
perstructural logic’s treatment of contexts. BI, however, explicitly
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eschews distributivity, which is central to RL; its contextual forms
are distinguished by whether or not they allow weakening and con-
traction. Some work in mathematical logic [10] has an approach
similar to superstructural logic, replacing propositional connectives
with separate connectives on which structural rules are allowed to
act.

8. Conclusion
We have demonstrated a general approach for writing substructural
or otherwise resource-conscious that is places a heavy emphasis on
the structural rules of the logic and that subsumes prior approaches.
We have used this superstructural approach to develop a sequent
calculus for reversible logic. We have given this sequent calculus a
computational interpretation, which we used to show that it is com-
putationally equivalent to prior approaches to reversible computing,
and a resource interpretation to show that it preserves a combined
notion of spatial and temporal resources.

One of the major contributions of this approach to viewing
logic is that it provides insight into some of the problems with
linear logic. Linear logic’s preservation of spatial resources but not
temporal resources is implicit in usual presentations, but becomes
clear when viewed through superstructural logic. We hope this will
aid in the development of linear-like logics that explicitly track
information creation and deletion.

Using the machinery developed here, we plan to investigate
reversible computation from a proof-theoretic perspective, which
we believe will provide a huge advantage for understanding how to
add more type-level features to a reversible programming language.
In particular, the translation from a language with information
effects to Π given by James and Sabry [13] was syntax-directed
rather than type-directed; we believe that we may be able to use
existential types, as in closure conversion [21], to fix this problem
and make sure source language terms of the same type translate to
target language terms of the same type.

There are also opportunities for creating a more robust, user-
friendly programming language out of λR. Right now, it is a com-
binator calculus with slightly more syntax; we aim to create a more
lambda calculus-like language with more intuitive syntax, but the
same semantics. There are a few ways in which we feel we could
make the combinators act implicitly rather than explicitly, lighten-
ing the burden on the programmer. This would also make it more
feasible to create a λR DSL in an existing programming language,
such as Haskell or Agda.

One of the major drawbacks of λR is its lack of higher-order
functions. As investigated in a recent paper [15], the basic idea is to
add fractional types which are duals to product types. The technical
details are however non-trivial. James et. al [15] only partially solve
the problem by restricting the language (removing the empty type)
and achieve reversibility only in a trivial, relational sense. We plan
on investigating this idea from a proof-theoretic perspective.
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