
Technical Report No. 546

Recursion is

a Computational E�ect

by

Daniel P. Friedman

Amr Sabry

December 2000

Computer Science Department
Indiana University

Bloomington, Indiana 47405-4101

Recursion is a Computational E�ect

Daniel P. Friedman and Amr Sabry�

December 20, 2000

Abstract

In a recent paper, Launchbury, Lewis, and Cook observe that some Haskell

applications could bene�t from a combinator m�x for expressing recursion over

monadic types. We investigate three possible de�nitions of m�x and implement

them in Haskell.

Like traditional �xpoint operators, there are two approaches to the de�ni-

tion of m�x: an unfolding one based on mathematical semantics, and an up-

dating one based on operational semantics. The two de�nitions are equivalent

in pure calculi but have di�erent behaviors when used within monads.

The unfolding version can be easily de�ned in Haskell if one restricts �x-

points to function types. The updating version is much more challenging to de-

�ne in Haskell despite the fact that its de�nition is straightforward in Scheme.

After studying the Scheme de�nition in detail, we mirror it in Haskell using the

primitive unsafePerformIO. The resulting de�nition of m�x appears to work

well but proves to be unsafe, in the sense that it breaks essential properties of

the purely functional subset of Haskell. We conclude that the updating ver-

sion of m�x should be treated as a monadic e�ect. This observation leads to

a safe de�nition based on monad transformers that pinpoints and exposes the

subtleties of combining recursion with other e�ects and puts them under the

programmer's control to resolve as needed.

The conclusion is that Haskell applications that need the functionality of

m�x can be written safely in any Haskell dialect that supports the multi-

parameter classes necessary for de�ning monad transformers. No other ex-

tensions to standard Haskell are needed, although some syntactic abstractions

and libraries can make the task of writing recursive monadic bindings much

more convenient.

�Supported by National Science Foundation Grant number CCR-9733088. Work started at the

University of Oregon.

1

1 Introduction

In Haskell computational e�ects are isolated to a monadic sublanguage [32]. The
isolation is useful to preserve properties of the purely functional sublanguage: for
example, the call-by-name denotational semantics of Haskell coincides with the call-
by-need implementation despite the presence of e�ects [27]. But the isolation also
implies that not all the constructs of the functional sublanguage are available in the
monadic sublanguage. Most notably the monadic sublanguage lacks recursion over
the results of monadic actions.

Recently Launchbury et al. [19] argue that this lack of recursion somewhat limits
the language. Applications that would be naturally written as systems of mutually
recursive stream computations cannot use the monadic infrastructure. They suggest
the inclusion of a new monadic combinator m�x that can be used to express recursion
over the results of monadic actions but delegate the topic to future research.

In this paper, we investigate three de�nitions of m�x and show how to implement
them in Haskell.

Recursion: Unfolding or Updating The literature explains recursion in one of
two ways. The mathematical view [7] maintains that a recursive de�nition (�x F) is
equivalent to the in�nite unfolding (F (F (F : : :))). The operational view (which dates
back to Landin's SECD machine [17, 18] and is currently implemented in Scheme)
explains a recursive de�nition (�x F) as the following sequence of steps:

1. Take a fresh cell whose address is x.

2. Use x as a spurious argument for F and evaluate the application (F x) to
produce a result v.

3. Update the contents of address x with v; return v as the result.

If the functional F performs no computational e�ects, the two views of recursion are
equivalent. This is formally investigated by Ariola et al. [2, 3, 4, 6] and empirically
validated by Rozas's [26] compiler that can rewrite one form of de�nition to the other
using generic analyses and optimizations. Informally one notes that if the application
of F is known not to perform computational e�ects, then one may confuse (F x)
with the value v, and perform the update to x before evaluating (F x). With this
simpli�cation, the operational de�nition of (�x F) reduces to evaluating the following
graph:

@-�x F
�
F
��
��

2

which is just an e�cient representation of the unfolding de�nition [31].
But like many equivalences that hold in pure calculi, the equivalence of two views

of recursion does not hold in a language with computational e�ects, e.g., Scheme or
the monadic sublanguage of Haskell. We therefore investigate both approaches. In
fact, we de�ne and implement three �xpoint constructs that can be used to de�ne
recursive monadic bindings:

� m�xU: This combinator unfolds recursive de�nitions and is restricted to function
types. Its behavior is di�erent from the next two combinators, which are based
on the updating view of recursion.

� letrecM: This construct uses unsafe primitives to realize the updating view of
recursion. We show that it can be used to violate the \purity" of Haskell.

� m�xM: This last combinator is a monadic version of letrecM. It is the correct
updating combinator that should be used to de�ne recursive monadic bindings
in Haskell.

Embedding in Haskell The combinator m�xU is almost straightforward to de�ne
in Haskell if one is willing to restrict the �xpoint operator to function types. Otherwise
it diverges when applied in any interesting situation.

Before attempting to de�ne the updating versions of m�x in Haskell, we study
the idea in the context of Scheme. Scheme has long provided an updating version of
recursion in the presence of e�ects and the Scheme community is aware of many of
the subtleties of combining recursion and computational e�ects. In particular, it is
folklore in the Scheme community that the update used in the de�nition of recursion
can be exploited to de�ne full-edged reference cells in the presence of call/cc [8]. This
idea that computational e�ects can duplicate the update used in de�ning recursion
provides the insight needed to show that letrecM can be used to break fundamental
properties of the purely functional subset of Haskell. Intuitively the updating step
in the de�nition of recursion may be duplicated by operations in the list monad and
performed several times in an unspeci�ed order.

These problems suggest that recursion is itself an e�ect that should be con�ned to
the monadic sublanguage. Thus, we de�ne a combinatorm�xM that exposes recursion
as an explicit monadic e�ect. The intuition is to use a state monad to manipulate
the location needed to implement the recursion. But since we are taking the �xpoint
of a functional which itself performs computational e�ects in some monad, we now
have two monads to take care of. Fortunately, it is always possible to combine these
two monads into one using monad transformers [22].

In many situations, the combination of a monad m and the state monad used
for recursion is straightforward. But in general, the combination may require a non-
standard operation to lift computations from the monad m to the combined monad.
In the continuation monad, it is possible to lift call/cc in a way that either makes the

3

updates that happen after the continuation is captured visible when the continuation
is invoked or not. In the list monad (which models non-deterministic computations),
it is possible to make the updates that happen in one branch of the non-deterministic
computation visible in other branches or not.

By using monad transformers, the subtleties of combining recursion and other
computational e�ects become better-understood, explicit, and under the program-
mer's control. In particular, it is no longer possible for the recursion e�ects to happen
in unspeci�ed orders, since they are con�ned to the monadic sublanguage. Moreover,
programmers can customize how recursion interacts with other monadic actions.

Recursion and E�ects Although the implementation of recursion in the presence
of arbitrary computational e�ects has long been known, the semantics of such a
combination has long been poorly understood.

Indeed most languages impose restrictions on the combination of recursion and
computational e�ects. In SML the right-hand side of a recursive declaration must
be syntactically restricted to a function, which guarantees that its evaluation will
not cause any computational e�ects. In Objective Caml, the guarantee is achieved
with a slightly weaker restriction: the language also allows recursive declarations of
constructor applications. In Haskell recursion is generally not available for monadic
types, except for some well-behaved monads like the state monad.

In contrast to most languages, Scheme allows arbitrary expressions in recursive
declarations. The only attempt we know of to mathematically study the semantics of
letrec in Scheme is an unpublished note by Duba and Felleisen (1991) but even that
study is restricted to the pure fragment of Scheme.

By recasting both recursion and e�ects into the world of monads, this work reduces
the problem of understanding the combination of recursion and computational e�ects
to the problem of combining monads. The latter problem is rather well-understood
mathematically and has already been studied extensively [10, 14, 22, 23, 30].

Outline The next section reviews the use of monads in Haskell and motivates the
need for m�x. Section 3 investigates the unfolding de�nition m�xU, and provides an
example of its use. In Section 4, the updating de�nition of recursion in Scheme is
analyzed. Section 5 mirrors the Scheme de�nition in Haskell using unsafe primitives.
Section 6 gives the monad-transformer-based de�nition of m�xM. Section 7 provides
three complete examples of the use of m�xM. Section 8 discusses related work and
Section 9 concludes.

2 Monadic E�ects in Haskell

We begin by reviewing the existing support of monads in Haskell and then motivate
the need for something like m�x.

4

2.1 De�nition

Monads can be characterized in several equivalent ways. In Haskell, they are de�ned
using a type constructor and two functions return and >>=. These functions mediate
between the worlds of values (which have no e�ects) and computations (which may
have computational e�ects): return coerces a value to a trivial computation and >>=

glues two computations sequentially. In Haskell syntax, the type constructor and its
associated operations are collected in a type class as follows:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

Individual monads (e.g., input/output, state, continuation, etc.) are instances of
the Monad type class. We discuss de�nitions for three of the monads that we use in
the paper.

2.2 The Continuation Monad

The continuation monad can be de�ned as follows:

data Cont ans a = CPS ((a -> ans) -> ans)

unCont (CPS ecps) = ecps

instance Monad (Cont ans) where

return e = CPS (\k -> k e)

(CPS e1) >>= e2 =

CPS (\k -> e1 (\v -> unCont (e2 v) k))

The type of monadic computations is parameterized by the type ans of answers.
To use the continuation monad in interesting ways, we also de�ne functions that

manipulate the continuation in non-standard ways:

abort :: ans -> Cont ans a

abort e = CPS (_ -> e)

callcc :: ((a -> Cont ans b) -> Cont ans a) ->

Cont ans a

callcc f =

CPS (\k -> unCont (f (\a -> CPS (_ -> k a))) k)

prompt :: Cont ans ans -> ans

prompt (CPS ecps) = ecps id

As a simple example, the following expression evaluates to 10:

5

prompt (return 5 >>= \i ->

abort (i + 5) >>= _ ->

return 42)

Since the >>= notation gets quickly cumbersome, Haskell provides the do form as
syntactic sugar. Using the do notation we can instead write:

prompt (do i <- return 5

abort (i + 5)

return 42)

2.3 The List Monad

The list monad supplied by the Haskell standard library is de�ned as follows:

instance Monad [] where

return e = [e]

e1 >>= e2 = concat (map e2 e1)

The monad models non-deterministic computations, which may return zero or more
results. All possible answers to a computation are propagated in a list data struc-
ture that serves as the type of monadic computations. What makes the list monad
interesting from our perspective is that it relies on a pun between lists used as data
structures and lists used as monadic computations. This pun will prove problematical
in the presence of updates due to recursion.

2.4 The State Monad

If we were to implement the state monad in Haskell, it would have the following
de�nition:

data ST s a = ST (s -> (s,a))

unST (ST f) = f

instance Monad (ST s) where

return e = ST (\s -> (s,e))

(ST e1) >>= e2 =

ST (\s0 -> let (s1,v1) = e1 s0

in unST (e2 v1) s1)

The type of monadic computations is a function mapping an input store to an output
store and a value. The monad arranges for the store to be passed around, which is
rather ine�cient.

Instead of this ine�cient implementation, most Haskell systems provide a built-in
state monad. The built-in state monad hides the type s of the store, uses a global

6

store, and implements the associated operations using destructive updates [20]. In
Hugs, the state monad operations for creating, reading, and updating reference cells
are called newSTRef, readSTRef, and writeSTRef.

The built-in state monad in Hugs provides two additional constructs: �xST and
runST. The �rst construct is a �xpoint operator that specializes m�x to the state
monad. To explain its semantics, we add it to our functional implementation of the
state monad:

fixST :: (a -> ST s a) -> ST s a

fixST f =

ST (\s0 -> let (s1,v) = unST (f v) s0

in (s1,v))

The combinator �xST propagates the store as usual: the function f takes the incoming
store, and the resulting store is returned. The recursion is only performed on the value
part of the result v, which is passed back into f.

The second construct provided by Hugs is runST, which encapsulates a computa-
tion. To explain its semantics, we also add it to our functional implementation of the
state monad. Assume that emptyStore is de�ned appropriately, then the semantics
of runST is:

runST :: ST s a -> a

runST (ST f) = let (_,v) = f emptyStore

in v

Intuitively runST takes a computation, runs it in an initial empty store, ignores the
resulting store, and returns a value of type a. Close examination of runST reveals
that its use might introduce dangling pointers. For example v could be a function
whose body mentions references created during the computation; by returning the
value and ignoring the store, these references become dangling. To address this
problem, the type system is augmented to track the lifetimes of references and reject
the encapsulation of terms which may import or export references.

The detailed analysis of encapsulation and its justi�cation [20, 21, 24, 29] are not
necessary for our purposes, but we must be aware of the augmented type system.
In that augmented type system, computations in the built-in state monad have type
(ST rho a) where rho is a type variable used for enforcing the encapsulation of
references. The type of the store is still abstract and the associated operations are
still implemented using destructive updates. The only change from the previous
description is that rho infects all operations. Thus, a cell holding values of type a

has type (STRef rho a).

2.5 Recursion in Monads

One of the strengths of Haskell is that it naturally supports modeling of deterministic
networks of processes. Such networks are usually speci�ed as systems of recursive

7

equations over streams [15], a task for which Haskell is ideal. More generally, one
might want to specify the networks as systems of recursive equations over a monadic
type. For example, by specifying hardware circuits as systems of recursive equations
over an abstract monad of circuits, it would be possible for di�erent implementations
of the abstract monad to be used to generate net-lists for low-level tools to manipulate,
or to generate logical formulae for input to a theorem prover, or simply to execute the
code for simulation or testing [19]. Unfortunately, Haskell does not have constructs
for de�ning recursive equations over a monadic type.

To remedy this situation, Launchbury et al. [19] propose that Haskell be extended
with a special �xpoint operator for monadic types:

mfix :: Monad m => (a -> m a) -> m a

As mentioned in Section 2.4, the state monad already has a specialized version
of m�x called �xST. Indeed for many monads, it is not too hard to de�ne specialized
versions of m�x. The challenge is to �nd a generic de�nition of m�x that works for
all monads.

3 Unfolding Recursion

We explore a de�nition of m�x based on unfolding. This de�nition is called m�xU.

3.1 Types

The usual equation for de�ning �xpoints in a call-by-name (need) language like
Haskell is:

fix e = e (fix e)

Adapting this equation directly for m�xU does not make sense from a typing perspec-
tive. Recall that the type of m�xU is:

mfixU :: Monad m => (a -> m a) -> m a

An obvious way to proceed is to rewrite the �xpoint equation using the monadic
combinators instead of function application:

mfixU e = mfixU e >>= e

or using the do notation:

mfixU e = do v <- mfixU e (*)

e v

This at least makes sense as far as the types are concerned, but is completely useless,
as it diverges in any interesting situation. This follows, since the combinator >>= is
usually strict in its left argument.

8

3.2 Delaying Evaluation

All is not lost, however. The problem with equation (*) is reminiscent of the problem
of de�ning the Y -combinator in a call-by-value language. The remedy is to explicitly
delay the argument with an �-expansion [25]. We employ the same approach here.

Instead of computing �xpoints of arbitrary types a, we only compute �xpoints at
types (a -> m b) for which the �-expansion makes sense:

type Fun a m b = a -> m b

mfixU :: Monad m =>

(Fun a m b -> m (Fun a m b)) ->

m (Fun a m b)

mfixU e = do v <- return (\a -> do v <- mfixU e

v a)

e v

The unfolding of the recursion (mfixU e) is delayed using a function (\a->...a) to
avoid the non-termination problem at the expense of restricting �xpoints to function
types. Otherwise this de�nition is identical to the one labeled (*).

3.3 Example

We illustrate how m�xU can be used to de�ne recursive functions in the presence of
e�ects. Our example is a variant of the familiar factorial function that keeps track of
the number of recursive calls performed:

type FactT rho = Int -> ST rho (Int,Int)

factF :: FactT rho -> ST rho (FactT rho)

factF fact =

do b <- newSTRef 0

return

(\n -> if n == 0

then do nc <- readSTRef b

return (1,nc)

else do (pr,nc) <- fact (n-1)

writeSTRef b (nc+1)

return (n*pr, nc+1))

factST :: ST rho (FactT rho)

factST = mfixU factF

9

The type of the factorial function is (FactT rho): it is a function that takes an
integer and returns a computation that uses the store and evaluates to a pair of
integers: the result of the mathematical factorial and the number of calls. The
factorial function is de�ned as the �xpoint of the functional factF. The functional
performs a computational e�ect by allocating a reference cell b and every call to
factorial updates that reference cell.

Since our variant of factorial performs e�ects, it can only be called from within a
monadic expression. For example, one might write:

runST (do fact <- factST

v1 <- fact 5

v2 <- fact 5

v3 <- fact 5

return (v1,v2,v3))

which calls factorial three times and collects the results in a tuple. This expression
evaluates to:

((120,5),(120,5),(120,5))

which clearly shows the unfolding nature of mfixU: each of three calls to (fact 5)

allocates a new reference cell.
The example has another reasonable behavior that might even be more desirable

in some situations: allocate the reference cell once when factST is �rst computed.
This behavior is achievable in Scheme using the updating version of recursion. For
example, the expression:

(letrec

((fact

(let ((b (box 0)))

(lambda (n)

(if (= n 0)

(let ((nc (unbox b)))

(values 1 nc))

(call-with-values

(lambda () (fact (- n 1)))

(lambda (pr nc)

(set-box! b (+ nc 1))

(values (* n pr) (+ nc 1)))))))))

(let ((callFact

(lambda (n)

(call-with-values

(lambda () (fact n))

(lambda (vr vc) (cons vr vc))))))

10

(let* ((v1 (callFact 5))

(v2 (callFact 5))

(v3 (callFact 5)))

(list v1 v2 v3))))

evaluates to:

((120 . 5) (120 . 10) (120 . 15))

Interestingly, replacing m�xU by �xST in the Haskell code also produces the an-
swer:

((120,5),(120,10),(120,15))

which shows that the behavior of �xST is consistent with the updating version of
recursion.

4 Scheme

We now investigate the updating versions of m�x. But before embarking on a def-
inition within Haskell, and to have some concrete starting point, we look at the
implementation of recursion in Scheme. The analysis explains some of the subtleties
in the informal de�nition of Landin [17, 18].

4.1 De�nition

The Scheme report [1] allows recursive de�nitions of the form:

(letrec ((x1 e1) ... (xn en)) e)

where there are no syntactic restrictions on the expressions e1 ... en. In other
words, the evaluation of the right-hand sides may perform any computational e�ects.

For simplicity we focus our attention on the case where there is only one right-
hand side and the body is just x. The semantics of such a use of letrec is made precise
by the following expansion [1]:

(letrec ((x e)) x)

==>

(let ((x (void)))

(let ((v e))

(begin (set! x v) v)))

We use this de�nition as a more accurate speci�cation of the updating de�nition of
recursion than the informal speci�cation given by Landin [17, 18].

11

4.2 Assignment Conversion

As the denotational semantics of Scheme shows, the language uses implicit locations:
every variable binding implicitly allocates a location, and every use of a variable
implicitly dereferences the associated location [1]. The use of locations can be made
explicit using a translation, called assignment conversion [16], which is a standard
part of many Scheme compilers. It is typically explained as follows:

(lambda (x)

... x ... (set! x v) ...)

==>

(lambda (x)

(let ((y (box x)))

... (unbox y) ... (set-box! y v) ...))

The translation introduces reference cells to hold the values of assigned variables. It
is important that every occurrence of x gets replaced by the expression (unbox y):
evaluating the expression (unbox y) once and sharing its value is incorrect. The
translation simpli�es the later phases of the compiler because values may now be
freely substituted for variables without checking whether the variables are assigned.

Applying this transformation to the de�nition of letrec, we get:

(letrec ((x e)) x)

==>

(let ((x (box (void))))

(let ((v e*))

(begin (set-box! x v) v)))

where we have no direct way of expressing the translation of e without access to its
parse tree. The notation e* stands for the result of substituting every free occurrence
of x by (unbox x) and every occurrence of an expression of the form (set! x e')

by (set-box! x e'). Attempts to express the �rst part of the substitution by:

((lambda (x) e) (unbox x))

are incorrect since under the call-by-value parameter-passing mechanism the value of
x would be needed too soon. Even if we assumed a call-by-need parameter-passing
mechanism like in our eventual target language Haskell, the use of the function appli-
cation would still be wrong: the �rst time the value of x is encountered, the expression
(unbox x) would be evaluated and all subsequent uses of x would share that value.

Of course the presence of substitution is not a problem if the transformation is done
within the compiler where one has access to the parse tree of e. The transformation
just cannot be expressed as a source-to-source translation.

12

4.3 Special Form or Combinator

Instead of the letrec special form, it is tempting to use a combinator schemeFix to
make the correspondence with m�x more direct. One might attempt the following
natural de�nition:

(schemeFix f)

==>

(letrec ((x (f x))) x)

but this is incorrect since after assignment conversion, it produces:

(let ((x (box (void))))

(let ((v (f* (unbox x))))

(begin (set-box! x v) v)))

where it is clear that the location x is dereferenced prematurely.
Another possibility for a combinator version proposed by Honsell et al. [13] and

described as \essentially equivalent to the one suggested by Landin" is:

exception Undefined

fun updatingFix f =

let val x = ref (fn _ => raise Undefined)

val _ = (x := (fn a => f (!x) a))

in !x

end

The de�nition is written in ML. The type of updatingFix is:

(('a -> 'b) -> 'a -> 'b) -> 'a -> 'b

which shows that the de�nition of updatingFix restricts �xpoints to function types.
More importantly by using an �-expansion around the application of the functional,
the computational e�ects of f end up being duplicated on every recursive call. Rewrit-
ing the factorial example of Section 3.3 in ML using updatingFix produces:

((120,5),(120,5),(120,5))

which shows that updatingFix implements the unfolding semantics like m�xU.
To avoid the problems with the combinator versions, we focus on the special form

letrec and its Haskell counterpart letrecM.

13

4.4 Recursion and Continuations

Continuations are the most powerful computational e�ect: not only can they rep-
resent other computational e�ects [11], but any equation that is invalidated by any
computational e�ect is also invalidated within the continuation monad [28]. Much
insight about the interaction of recursion and computational e�ects can be gained by
studying how letrec interacts with call/cc.

We begin by examining the situation abstractly. Consider the following expression:

(letrec ((x (call/cc (lambda (k) e)))) x)

This expression is equivalent to:

(let ((x (void)))

(let ((v (call/cc (lambda (k) e))))

(begin (set! x v) v)))

which in turn is equivalent to:

(let ((x (void)))

(call/cc (lambda (k')

(let ((v ((lambda (k) e)

(lambda (z)

(k' (begin (set! x z) z))))))

(begin (set! x v) v)))))

The �rst equivalence follows from the de�nition of letrec. The second equivalence is
justi�ed by the following axiom describing the behavior of call/cc [28]:

E[call/cc �k:e] = call/cc �k0:E[(�k:e) (�z:k0E[z])]

In the axiom, E can be any evaluation context (even the empty one) which intuitively
represents part of the continuation. The call/cc in the left-hand side of the equation
captures that part of the continuation and another call/cc is used to capture the rest
of the continuation and bind it to k0. The continuation bound to k is a procedure that
when invoked aborts its calling context, but re-installs the part of the continuation
represented by E as well as the rest of the continuation represented by k0.

A close examination of the last Scheme code fragment reveals an important point:
the assignment used to tie the recursive knot has been exported to the user code as
part of the continuation. This suggests that judicious manipulation of the continua-
tion may cause the update used to tie the recursive knot to happen more than once.
It is part of folklore in the Scheme community that this can be exploited to simulate
reference cells.

The following code illustrates the idea:

14

(define boxi

(lambda (v)

(letrec

((box_def

(call/cc (lambda (dk)

(list

(lambda (x) x)

v

(letrec

((ms

(lambda (msg)

(case msg

[read box_def]

[write (lambda (nv)

(call/cc (lambda (rk)

(dk (list rk nv ms)))))]

))))

ms))))))

((car box_def) box_def))))

(define unboxi

(lambda (b)

(cadr ((caddr b) 'read))))

(define setboxi

(lambda (b nv)

(begin (((caddr b) 'write) nv) (void))))

In the code, a reference cell is represented as a list of three elements: the �rst element
is a procedure that forwards the reference to clients, the second element contains
the current value of the reference, and the third provides two \methods" to read the
contents of the reference and to update it with a new value. There are two uses of
call/cc: the �rst one captures the update that is used in the de�nition of letrec in
order to implement updates to the reference. The second call/cc arranges for the new
updated reference cell to be returned to the caller of setboxi.

To see the code in action, consider the following test expression:

(define test

(lambda (n)

(let* ((x (boxi n))

(f (lambda () (unboxi x)))

(g (lambda ()

(setboxi x

15

(add1 (unboxi x))))))

(begin

(setboxi x (* 2 (unboxi x)))

(g)

(f)))))

The evaluation of (test 6) produces 13, which is the expected result from a correct
implementation of references. What is important for our purposes is that continuation
e�ects interfered with the de�nition of recursion and caused the update used to de�ne
the recursion to happen more than once. This idea will be exploited again when we
move to Haskell.

5 A Haskell Implementation

The study of recursion in Scheme resulted in the following two facts:

� If the use of locations becomes explicit and we assume that the right-hand side
does not include assignments to the variable being de�ned, the de�nition of
letrec is:

(letrec ((x e)) x)

==>

(let ((x (box (void))))

(let ((v e[x:=(unbox x)]))

(begin (set-box! x v) v)))

The expression e[x:=(unbox x)] denotes the substitution of every free occur-
rrence of x by (unbox x).

� Computational e�ects may interfere with the above de�nition of recursion in
unexpected ways. In particular it is possible for the assignment used to de�ne
the recursion to happen more than once under certain conditions.

We use the �rst fact to guide the implementation of a construct letrecM in Haskell.
Then we use the second fact to show that letrecM breaks the purity of Haskell.

5.1 Types

Our goal is to de�ne a construct:

letrecM x = e in e'

The types of the components are as expected. Assuming the type of x is a, then the
expression e should have type (m a). The expression e' should have type (m b) for
some b.

16

5.2 Unsafe Primitives

The intent is to extend Haskell with a construct letrecM whose de�nition mirrors the
de�nition of letrec in Scheme. Since this latter de�nition uses references freely, letrecM
cannot be de�ned in the Haskell source language; the de�nition must be relegated to
the compiler or runtime system using unsafe primitives.

In the Hugs runtime system, we can de�ne unsafe primitives for manipulating
references as follows:

ref :: a -> IORef a

ref e = unsafePerformIO (newIORef e)

deref :: IORef a -> a

deref e = unsafePerformIO (readIORef e)

setref :: IORef a -> a -> ()

setref e1 e2 = unsafePerformIO (writeIORef e1 e2)

The combinator unsafePerformIO enables us to use computational e�ects outside
of the monadic sublanguage and is inherently dangerous (it can be used to de�ne
a function that casts between any two types [19]). But for the time being we do
not worry about this since we only intend to use these primitives to de�ne another
primitive construct.

Again for simplicity we focus on the simple case of letrecM, which has one right-
hand side, and whose body is just a variable. Rewriting the Scheme de�nition using
monadic combinators instead of function composition, we get:

letrecM x = e in return x

==>

let x = ref (error "Undefined")

in do v <- e[x:=(deref x)]

return (seq (setref x v) v)

The function seq is a recent addition to Haskell: it is a sequencing operator that is
strict in its �rst argument. Naturally we assume that the unsafe primitives do not
directly appear in e. Hence it is su�cient to do the �rst part of the substitution.

5.3 Breaking Purity

As Section 4.4 showed there is the possibility that some computational e�ects may
duplicate the update used to de�ne the recursion. Indeed we can use letrecM and the
continuation monad to simulate reference cells much like in Scheme. (See Section 7.3
for a variant of this code in Haskell using m�xM instead of letrecM.) This is not a
disturbing fact in itself since the use of reference cells is still constrained by the con-
tinuation monad. However by doing the same trick in the list monad, and exploiting

17

the pun between lists used as data structures and lists used as monadic computations,
it is possible for the use of references to happen unpredictably.

Consider the following expression:

letrecM xs = [2:xs, 3:xs]

in return xs

Using rewriting steps based on the call-by-need calculus [5], we can symbolically follow
the evaluation as follows:

= by definition of letrecM

let x = ref (error "Undefined")

in do v <- [2 : (deref x), 3 : (deref x)]

return (seq (setref x v) v)

= expanding do; list monad

let x = ref (error "Undefined")

in concat

(map (\v -> [seq (setref x v) v])

[2 : (deref x), 3 : (deref x)])

= definitions of map; concat

let x = ref (error "Undefined")

in [let v2 = 2:(deref x)

in seq (setref x v2) v2,

let v3 = 3:(deref x)

in seq (setref x v3) v3]

The symbolic evaluation shows that the result is a list of two expressions that each
evaluate to a list of integers. The update used to implement the recursion has been
mapped over the outermost list. As we show, judicious use of lazy evaluation can
cause the updates to happen unpredictably.

For example, consider the following sequence of demands:

� Demand the �rst element of the �rst list of numbers: this assigns v2 to x, and
returns 2.

� Then demand two elements from the second list of numbers: this assigns v3 to
x, and returns 3 and 3.

� Then go back and demand the second element of the �rst list of numbers. This
forces the evaluation of (deref x). Since x has just been overwritten to v3,
this returns a list whose �rst element is 3.

18

Had we switched the last two steps by keeping the demands from the �rst list of
numbers contiguous, the evaluation of (deref x) would have returned a list whose
�rst element is 2.

Using this idea, it is possible to construct a Haskell context that breaks the com-
mutativity of addition:

addLR m n = m+n

addRL m n = n+m

context add =

let [is1 , is2] =

letrecM xs = [2:xs, 3:xs]

in return xs

(v1a:v1bl) = take 2 is1

[v2a,v2b] = take 2 is2

[v1b] = take 2 v1bl

in v1a + add v2a v1b

Evaluating (context addLR) gives the answer 8 but evaluating (context addRL)

gives the answer 7. This is unacceptable!

5.4 Recursion is an E�ect

What should be by now becoming obvious is that the common implementation of
recursion using updates makes recursion a computational e�ect. When used freely
this e�ect interacts in unpredictable ways with other e�ects. For the Haskell language,
the solution is standard: con�ne the recursion e�ect into a monad. This motivates
the de�nition of m�xM.

6 A Correct and Safe De�nition

The basic idea is to de�ne a state monad in which one can perform the update needed
to implement the recursion. Then one de�nes a monad transformer that takes any
monad m and combines it with the state monad to yield a new monad, in which one
can perform the e�ects in m and de�ne an updating version of recursion. We now
turn to the details.

6.1 Monad Transformers

Our presentation of monad transformers closely follows that of Liang et al. [22].
A monad transformer t takes a monad m and produces a new monad (t m). For

example, a state monad transformer could take a continuation monad and produce
a state-and-continuation monad in which one may use both assignments and jumps.

19

The challenge in de�ning monad transformers is what to do with non-trivial compu-
tations in the underlying monad m. Thus when applying the state monad transformer
to the continuation monad, the functions abort, callcc, and prompt need to be lifted
to operate in the combined state and continuation monad.

We postpone the de�nition of the function lift for now and just state the required
signature of monad transformers:

class (Monad m, Monad (t m)) => MonadT t m where

lift :: m a -> t m a

The de�nition states that if both m and (t m) are known to be monads, then t is a
monad transformer. Additionally a monad transformer must have a function lift

of the appropriate type to map computations in m to computations in (t m). The
de�nition is a type class of two parameters, which is non-standard Haskell.

6.2 Combining monads

Having the de�nition of monad transformers in place, we de�ne a speci�c monad
transformer that takes an arbitrary monad m and combines it with a state monad for
implementing recursion.

Computations in a monad combining state and m are described using the following
datatype:

data STM s m a = STM (s -> m (s,a))

unSTM (STM f) = f

The computations are state transformers as usual: they take an input store s and
return an output store and a value. What is di�erent here is that the output store
and value are not returned directly. Instead what is returned is a computation in
monad m whose result is the output store and value.

To keep things modular, we introduce a class that describes the type of stores
that are acceptable arguments to STM:

type Loc = Int

class Store s a | s -> a where

alloc :: s -> a -> (Loc,s)

look :: s -> Loc -> a

upd :: s -> Loc -> a -> s

The type (Store s a) describes stores represented using type s (perhaps a list of
locations and values), and whose contents are all of type a. The operations we
require for stores are standard and have the obvious meaning. For convenience the
class de�nition uses the functional dependency s->a. Functional dependencies were

20

recently added to Hugs as a way to resolve the ambiguity problems of multi-parameter
classes.

Putting things together, we can build a new monad from a monad m and a store
(Store s a) as follows:

instance

(Monad m, Store s a) =>

Monad (STM s m) where

return e = STM (\s -> return (s,e))

(STM e1) >>= e2 =

STM (\s0 -> do (s1,v1) <- e1 s0

unSTM (e2 v1) s1)

In the new monad, computations have type (STM s m a). The de�nitions of return
and >>= are more subtle than they appear because of overloading. For example the
de�nition of return appears to refer to itself, but careful examination of the types
reveals that in fact they are di�erent occurrences of the same overloaded name. The
return being de�ned is for the monad (STM s m a); the return on the right is for
the monad m.

Since (STM s m) is a monad for any monad m, it follows that (STM s) is a monad
transformer:

instance

(Monad m, Monad (STM s m)) =>

MonadT (STM s) m where

lift ma = STM (\s -> do v <- ma

return (s,v))

To complete the de�nition of the monad transformer, we provide a default de�nition of
lift. As the de�nition shows, lift takes a computation ma in the underlying monad,
an initial store, executes the computation of the underlying monad, and returns the
old store unchanged irrespective of what happened during the execution of ma. As we
will soon see, this may not be appropriate for all operations.

6.3 Adding Recursion to a Monad

Not surprisingly, the use of monadic e�ects to implement the update needed for
recursion a�ects the types. Consider the de�nition of letrecM once again:

letrecM x = e in return x

==>

let y = ref (error "Undefined")

in do v <- e[x:=(deref y)]

return (seq (setref y v) v)

21

Assume the variable x has some type a. The variable ymust have type (IORef a).
Using the unsafe version of deref, the expression (deref y) has type a and the
substitution makes sense. If we instead use a state monad to implement deref, the
type of (deref y) would be (ST ...) and the substitution would be ill-typed. To
regain typing, we change the type of x to match the type of (deref y). This changes
the type of the �xpoint construct. Intuitively the use of monads forces all e�ects to
infect the types, and clients of the recursion combinator must now be aware of these
e�ects.

Another consequence of using monadic style is that the unsafe side-e�ecting ex-
pression (deref y) is replaced by a state transformer: a function that takes a store
and looks up the value of y in that store. This means that we can safely express the
substitution as a function application since duplicating or sharing a value is equivalent
in the call-by-need calculus [5].

Everything is now in place to de�ne m�xM. Given a monad m, we �rst use the
(STM s) monad transformer to add state to m, and then implement m�xM in the
resulting monad. The class RecMonad describes this resulting monad.

class Monad m => RecMonad m a where

mfixM :: (m a -> m a) -> m a

The type of m�xM reects the fact that we have made the e�ects used to implement
recursion explicit. In more detail, the functional whose �xed point we are taking
has type (m a -> m a) where m is the combination of the original monad and the
state monad. The domain of this functional has type (m a) because it involves a
computation that reads the location holding the (initially unde�ned) result of the
recursion. The range of this functional has type (m a) because the functional per-
forms computational e�ects in the original monad and these operations have been
lifted to the combined monad, and because the body of the functional may access
the location holding the result of the recursion. The entire application of m�xM to a
functional has type (m a) because the application of the functional performs e�ects
and because m�xM itself performs an assignment to the location holding the result of
the recursion.

Putting these ideas together, we have:

instance

(Monad m, Store s a) =>

RecMonad (STM s m) a where

mfixM f =

STM (\s ->

let (x,s') = alloc s (error "Undefined")

derefx = STM (\s ->

return (s, look s x))

in do (s'',v) <- unSTM (f derefx) s'

return (upd s'' x v, v))

22

The de�nition of m�xM uses the operations next, alloc, look, and upd, that come
with the store type. It closely follows the operational de�nition of recursion but uses
proper monadic style instead of unsafe primitives.

6.4 Correctness

We do not prove any formal results about m�xM. Informally we argue for the cor-
rectness of m�xM as follows. The updating de�nition of recursion due to Landin and
implemented in Scheme is taken for granted. Starting from the Scheme de�nition,
m�xM is derived in three steps:

1. Assignment conversion to make the use of locations explicit.

2. Translation of expressions including assignments to the state monad.

3. Combining the state monad with another monad.

Because each of these steps is well-understood, we argue that the de�nition of m�xM
correctly implements the updating de�nition of recursion. The next section shows
that it behaves as expected with several complex examples.

7 Examples

We now present examples that use m�xM. Since m�xM has a di�erent type than
m�xU and letrecM, it is not possible to directly reuse old examples. Instead a certain
amount of work is needed. In more detail, the previous examples assumed that the
recursion had no e�ect or had an implicit e�ect. Now the recursion has an explicit
monadic e�ect and all the code that uses recursion must be converted to monadic
style.

7.1 Functional Store

In the examples we refer to a type FuncStore, which is an instance of the class
(Store s a) that implements stores. For completeness we include the code:

type FuncStore a = [(Loc,a)]

instance Store (FuncStore a) a where

alloc s e = let i = length s + 1

in (i, (i,e):s)

look s i =

case lookup i s of

Just v -> v

Nothing -> error "Can't look"

23

upd s i e =

case s of

[] -> error "Can't upd"

(j,e'):s | i==j -> (i,e) : s

(j,e'):s -> (j,e') : upd s i e

7.2 Factorial

We revisit the factorial function that uses a reference cell to count the number of
times it is called. We rewrite this code in monadic style to use m�xM. The relevant
type de�nitions are:

type FactStore rho = FuncStore (FactT rho)

type STST rho = STM (FactStore rho) (ST rho)

data FactT rho = FactT (Int -> STST rho (Int,Int))

unFactT (FactT e) = e

First we de�ne the store used for the recursion. The store is used to hold a value
describing the modi�ed factorial function. This value has type (FactT rho): it takes
an integer and returns a computation that may perform side-e�ects and return a pair
of integers. The �rst element of the pair is the result of factorial and the second is
the number of calls. The computation occurs in the monad described by STST, which
augments the built-in ST monad with recursion.

Next we need to decide how the operations in the built-in state monad interact
with the recursion store. The default behavior of lift provides no interaction and is
appropriate:

lnewSTRef :: a -> STST rho (STRef rho a)

lnewSTRef = lift . newSTRef

lreadSTRef :: STRef rho a -> STST rho a

lreadSTRef = lift . readSTRef

lwriteSTRef :: STRef rho a -> a -> STST rho ()

lwriteSTRef r = lift . (writeSTRef r)

The case of runST is slightly complicated because of the encapsulation provided
by runST:

lrunST :: (forall rho. STST rho a) -> a

lrunST sf =

let (STM f) = sf

(_,e) = runST (do (_,e) <- f []

returnST ([],e))

in e

24

To run a computation in the combined monad, we �rst pass the empty recursion store
to get a computation in the underlying state monad. Unfortunately this computation
cannot be directly passed to runST since the result of that computation contains a
recursion store that mentions the universally quanti�ed type variable rho. To get
around this, we explicitly run the state computation and throw away the recursion
store.

With these preliminary steps done, the actual factorial function is straightforward
to write. Syntactically it is almost identical to the version in Section 3.3, but of
course the minor syntactic di�erences have major semantic consequences. This point
is however important since it suggests that the overhead in using m�xM is not much
of a burden.

factF factLoc =

do b <- lnewSTRef 0

return (FactT

(\n ->

if n == 0

then do nc <- lreadSTRef b

return (1,nc)

else do (FactT fact) <- factLoc

(pr,nc) <- fact (n-1)

lwriteSTRef b (nc+1)

return (n*pr, nc+1)))

test =

lrunST (do (FactT fact) <- mfixM factF

v1 <- fact 5

v2 <- fact 5

v3 <- fact 5

return (v1,v2,v3))

As expected the test expression evaluates to:

((120,5),(120,10),(120,15))

7.3 Continuations

Our next example simulates reference cells by using continuations to exploit the up-
date used in de�ning the recursion. We proceed following the same steps of the
previous section. First the relevant types are:

type BoxStore = FuncStore Box

type STCont = STM BoxStore (Cont Int)

25

data Msg = Read | Write Int

type Sender = Box -> STCont Box

type Contents = Int

type Methods = Msg -> STCont Box

data Box = Box (Sender, Contents, Methods)

The types express the fact that the �xpoint we are interested in computing is of type
Box, and that we are combining recursion with the continuation monad.

Next we must decide how the operations of the continuation monad interact with
the recursion store. For prompt, the situation is much like runST: we supply the initial
empty recursion store, run the computation in the continuation monad, throw away
the recursion store, and return the resulting value. For call/cc there are two choices: if
a continuation is captured, and the recursion store is updated before the continuation
is invoked, should the invocation be given the original store or the updated store? The
standard semantics of call/cc is that the continuation invocation takes the updated
store, but the other choice is clearly \programmable" if needed. In any case the
default lift operation is not appropriate here.

lprompt :: STCont Int -> Int

lprompt (STM f) =

prompt (do (_,s) <- f []

return s)

lcallcc :: ((a -> STCont b) -> STCont a)

-> STCont a

lcallcc f =

STM

(\s0 ->

callcc (\k ->

unSTM (f (\a ->

STM (\s1 -> k(s1,a))))

s0))

With these preliminary decisions, the Scheme code of Section 4.4 can be easily
adapted to Haskell:

boxF :: Contents -> STCont Box -> STCont Box

boxF v box_def_loc =

lcallcc (\dk ->

return

(Box

(\x -> return x,

26

v,

let ms Read = box_def_loc

ms (Write nv) =

lcallcc (\rk ->

dk (Box (rk, nv, ms)))

in ms)))

boxi :: Contents -> STCont Box

boxi v =

do box_def@(Box(send_k,_,_)) <- mfixM (boxF v)

send_k box_def

unboxi :: Box -> STCont Int

unboxi (Box(_,_,ms)) =

do (Box(_,v,_)) <- ms Read

return v

setboxi :: Box -> Int -> STCont ()

setboxi (Box(_,_,ms)) nv =

do ms (Write nv)

return ()

test n =

lprompt

(do x <- boxi n

let f () = unboxi x

g () = do c <- unboxi x

setboxi x (c+1)

in do c <- unboxi x

setboxi x (c*2)

g ()

f ())

As expected the expression (test 6) evaluates to 13.

7.4 Lists

The goal here is to understand the subtleties of combining non-determinism and
recursion that were mentioned in Section 5.3. We rewrite the example from that
section properly using monadic style and study its evaluation. The original example
was:

letrecM xs = [2:xs, 3:xs]

27

in return xs

As usual we begin by giving the types of the �xpoint and of the combined monad:

type ListStore = FuncStore ListT

type STList = STM ListStore []

data ListT = Base (STList ListT) | Cons Int ListT

The declarations state that the new monad combines recursion with the list monad
and that the type of the �xpoint is ListT. This latter type is essentially a list of inte-
gers but it may contain references to the location holding the result of the recursion.

Next we examine how to lift the operations of the list monad. The only operation
used in the example is [], which takes a collection of elements and returns a non-
deterministic computation whose result is one of these elements. (Again it is confusing
that both the collection of the elements and the non-deterministic computation are
represented using list data structures.) The lifted version should arrange for the
non-deterministic computation to take the recursion store and distribute it among all
possible values. The default lift operation achieves this:

llist :: [ListT] -> STList ListT

llist = lift

Now the original example can be rewritten as the following non-deterministic
recursive computation:

listc :: STList ListT

listc =

mfixM (\xs ->

llist [Cons 2 (Base xs),

Cons 3 (Base xs)])

So far there are no surprises. However as explained in Section 5.3, once we start
demanding the elements of the list, we can produce di�erent answers. But by moving
to a monadic style, the sequence of demands must be explicitly encoded and cannot
happen implicitly using two versions of addition that evaluate their arguments in
di�erent orders.

To be explicit, here are two ways to extract lists of integers from the monadic
computation listc:

runRecList_one :: STList ListT -> [[Int]]

runRecList_one (STM f) =

do (rs,fp) <- f []

return (runFP rs fp)

runRecList_two :: STList ListT -> [[Int]]

28

runRecList_two (STM f) =

let svs@((s,_):_) = f []

in map (\(_,fp) -> runFP s fp) svs

runFP :: ListStore -> ListT -> [Int]

runFP rs (Cons i fp) = i : (runFP rs fp)

runFP rs (Base (STM rlf)) =

do (rs',fp') <- rlf rs

runFP rs' fp'

The �rst function runRecList_one provides the initial empty store to the non-
deterministic computation and uses the monadic combinators to distribute that store
over all possible answers. This causes each possible branch of the non-deterministic
computation to get its own copy of the store. No interactions happen between the
various branches of the non-deterministic computation. Indeed,

map (take 3) (runRecList_one listc)

evaluates to [[2,2,2],[3,3,3]] as if we had distributed the �xpoint computation
over the list.

In contrast, runRecList_two provides the empty store to the non-deterministic
computation but exploits the pun between the use of lists as monadic computations
and as data structures. It uses regular list operations to access the leftmost store
and distributes that store to every branch of the non-deterministic computation. The
result is that we get the following behavior. The expression:

map (take 3) (runRecList_two listc)

evaluates to [[2,2,2],[3,2,2]] where it is apparent that the second non-deterministic
branch used the store supplied by the �rst branch. This exhibits the same behavior
of interference among the branches of a non-deterministic computation that broke
the purity of Haskell in Section 5.3. Here the di�erent results only occur in explicitly
di�erent contexts, which is not a problem.

8 Related Work

The most closely related work is a concurrent investigation of m�x by Launchbury and
Erk�ok [9]. Instead of pursuing an operational understanding of recursion based on
updates like we do, they pursue an axiomatic approach. They postulate three axioms
to characterize the behavior of m�x and take them as the starting point. Then they
show that these axioms can be satis�ed in several individual monads (called recursive
monads), and that they are invariant under monad embeddings.

Although they successfully provide de�nitions of m�x for several individual mon-
ads, one might question whether their axioms really describe the behavior of m�x. In

29

particular the second axiom they postulate is at odds with continuation e�ects. The
axiom is:

mfix (\x -> e >>= \y -> f x y)

= e >>= \y -> mfix (\x -> f x y)

(if x is not free in e)

Intuitively the axiom states that a computation e that does not involve the recursion
variable can be lifted out of the recursive de�nition. A long time ago, Bawden [8]
wondered in a message to the Scheme mailing list

. . . if any real compilers make this mistaken optimization?

Indeed anyone familiar with continuations would note that although e does not men-
tion x it can perform arbitrary computational e�ects, and in particular, it is possible
for e to capture the continuation. In this situation, the two sides of the axiom are not
equal. In the left-hand side, the continuation captured by e is within the recursive
de�nition and can be used to re-bind a new value to x. In the right-hand side, the
continuation captured by e is outside the recursive de�nition and cannot interfere
with it. Indeed Launchbury and Erk�ok do not show that the continuation monad is
recursive.

Their treatment of recursion in the list monad also deserves some discussion.
Our approach shows that recursion in the list monad may produce di�erent results
depending on the amount of interference among the di�erent branches of the non-
deterministic computation. Their postulated axioms are just strong enough to elim-
inate the interference. For example their de�nition of m�x in the list monad would
only produce the result:

[[2,2,2],[3,3,3]]

for the example in Section 7.4.
Otherwise their de�nitions of m�x for the individual monads they consider appear

to agree with our generic one. Formal proofs of correspondence are not immediately
possible since our �nal m�xM has a di�erent type. Of course specializing m�x to
individual monads sometimes provides more elegant de�nitions though.

9 Conclusion

Motivated by a problem posed by Launchbury et al. [19], we have explained how in
Haskell, one can combine recursion and monadic programming without any extensions
to the language (other than multi-parameter classes). Our solution is to simply adapt
the following operational de�nition of recursion to Haskell: allocate a reference cell
to hold the result of the recursive declaration, evaluate the declaration, and update

30

the cell with the result. The adaptation relies on a monad transformer that combines
any monad with facilities for handling the e�ects of recursion.

Although this approach requires no changes to the language, it could be made
more convenient and e�cient with a few extensions. In particular, programming
recursive de�nitions explicitly with m�x and its variants is not as intuitive as the �do
notation proposed by Launchbury and Erk�ok [9]. Also much of the code needed to
implement monad transformers can be encapsulated in a library.

Other than extending the range of Haskell applications, our work �nally suggests
a mathematical approach to studying the poorly understood combination of recursion
and computational e�ects. Studying recursion in combination with even as mild an
e�ect as sharing is already challenging [12] and other combinations appear not to
have been studied at all. Explaining recursion as a monadic e�ect may open the door
for a more manageable approach based on combining monads. For example it may
be possible to formally characterize the computational e�ects that do not interfere
with recursion as the ones that can be lifted naturally.

The study of recursion and computational e�ects also has applications in compil-
ing. In particular it simpli�es the derivation of a call-by-need continuation-passing
style transformation, and brings closer the worlds of compiling call-by-value and call-
by-need languages.

Acknowledgments

We have bene�ted from discussions with Levent Erk�ok and John Launchbury.

References

[1] Abelson, H., Dybvig, R. K., Haynes, C. T., Rozas, G. J., IV, N. I. A.,
Friedman, D. P., Kohlbecker, E., Steele Jr., G. L., Bartley, D. H.,

Halstead, R., Oxley, D., Sussman, G. J., Brooks, G., Hanson, C.,

Pitman, K. M., and Wand, M. Revised report on the algorithmic language
Scheme. Higher-Order and Symbolic Computation 11, 1 (Aug. 1998), 7{105.

[2] Ariola, Z. M. Relating graph and term rewriting via B�ohm models. Applicable
Algebra in Engineering, Communication and Computing 7, 5 (1996), 401{426.

[3] Ariola, Z. M., and Arvind. Properties of a �rst-order functional language
with sharing. Theoret. Comput. Sci. 146 (1995).

[4] Ariola, Z. M., and Blom, S. Cyclic lambda calculi. In the International
Symposium on Theoretical Aspects of Computer Software (TACS) (1997).

31

[5] Ariola, Z. M., Felleisen, M., Maraist, J., Odersky, M., and Wadler,
P. A call-by-need lambda calculus. In the ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (1995), ACM Press, New York,
pp. 233{246.

[6] Ariola, Z. M., and Klop, J. W. Cyclic lambda graph rewriting. In Proc. of
the Eighth IEEE Symposium on Logic in Computer Science, Paris (1994).

[7] Barendregt, H. P. The Lambda Calculus: Its Syntax and Semantics, re-
vised ed., vol. 103 of Studies in Logic and the Foundations of Mathematics. El-
sevier Science Publishers B.V., Amsterdam, 1984.

[8] Bawden, A. Letrec and callcc implement references. Appeared in
comp.lang.scheme, 1988.

[9] Erk�ok, L., and Launchbury, J. Recursive monadic bindings. ACM SIG-
PLAN Notices 35, 9 (Sept. 2000), 174{185.

[10] Espinosa, D. Semantic Lego. PhD thesis, Columbia University, 1995.

[11] Filinski, A. Representing monads. In the ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (1994), pp. 446{457.

[12] Hasegawa, M. Models of Sharing Graphs: A Categorical Semantics of let and
letrec. PhD thesis, University of Edinburgh, 1997.

[13] Honsell, F., Mason, I. A., Smith, S., and Talcott, C. A variable typed
logic of e�ects. Information and Computation 119, 1 (15 May 1995), 55{90.

[14] Jones, M. P., and Duponcheel, L. Composing monads. Tech. Rep.
YALEU/DCS/RR-1004, Department of Computer Science, Yale University, Dec.
1993.

[15] Kahn, G. The semantics of a simple language for parallel programming. In
Proceedings of the IFIP Congress (1974), J. L. Rosenfeld, Ed., North-Holland,
pp. 471{475.

[16] Kranz, D., Kelsey, R., Rees, J., Hudak, P., Philbin, J., and Adams,

N. Orbit: An optimizing compiler for Scheme. In ACM SIGPLAN Symposium
on Compiler Construction (1986), Sigplan Notices, 21, 7, pp. 219{233.

[17] Landin, P. The mechanical evaluation of expressions. Comput. J. 6, 4 (1964),
308{320.

[18] Landin, P. J. A �-calculus approach. In Advances in Programming and Non-
Numerical Computation (1966), L. Fox, Ed., Pergamon Press, pp. 97{141.

32

[19] Launchbury, J., Lewis, J. R., and Cook, B. On embedding a microarchi-
tectural design language within Haskell. In the ACM SIGPLAN International
Conference on Functional Programming (1999), ACM Press, New York, pp. 60{
69.

[20] Launchbury, J., and Peyton Jones, S. L. State in Haskell. Lisp Symbol.
Comput. 8 (1995), 193{341.

[21] Launchbury, J., and Sabry, A. Monadic state: Axiomatization and type
safety. In the ACM SIGPLAN International Conference on Functional Program-
ming (1997), ACM Press, New York, pp. 227{238.

[22] Liang, S., Hudak, P., and Jones, M. Monad transformers and modular
interpreters. In the ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (1995), pp. 333{343.

[23] Moggi, E. An abstract view of programming languages. Tech. Rep. ECS-
LFCS-90-113, Laboratory for Foundations of Computer Science, Department of
Computer Science, University of Edinburgh, Edinburgh, EH9 3JZ, 1990.

[24] Moggi, E., and Palumbo, F. Monadic encapsulation of e�ects: A revised
approach. In the Third International Workshop on Higher Order Operational
Techniques in Semantics (Oct. 1999).

[25] Reynolds, J. C. GEDANKEN|A simple typeless language based on the
principle of completeness and the reference concept. Communications of the
ACM 13, 5 (1970), 308{319.

[26] Rozas, G. J. Taming the Y operator. In ACM Conference on Lisp and Func-
tional Programming (1992), ACM Press, New York, pp. 226{234.

[27] Sabry, A. What is a purely functional language? J. Functional Programming
8, 1 (Jan. 1998), 1{22.

[28] Sabry, A., and Felleisen, M. Reasoning about programs in continuation-
passing style. Lisp Symbol. Comput. 6, 3/4 (1993), 289{360. Also in the ACM
Conference on Lisp and Functional Programming (1992) and Tech. Rep. 92-180,
Rice University.

[29] Semmelroth, M., and Sabry, A. Monadic encapsulation in ML. In the ACM
SIGPLAN International Conference on Functional Programming (1999), ACM
Press, New York, pp. 8{17.

[30] Steele, Jr., G. L. Building interpreters by composing monads. In Conference
Record of POPL '94: 21st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Portland, Oregon (Jan. 1994), ACM, pp. 472{492.

33

[31] Turner, D. A. A new implementation technique for applicative languages.
Software { Practice and Experience 9 (1979), 31{49.

[32] Wadler, P. Comprehending monads. In ACM Conference on Lisp and Func-
tional Programming (1990), pp. 61{78.

34

