
The Two Dualities of Computation:
Negative and Fractional Types

Roshan P. James
Indiana University

rpjames@indiana.edu

Amr Sabry
Indiana University
sabry@indiana.edu

Abstract
Every functional programmer knows about sum and product types,
a+b and a×b respectively. Negative and fractional types, a−b and
a/b respectively, are much less known and their computational in-
terpretation is unfamiliar and often complicated. We show that in a
programming model in which information is preserved (such as the
model introduced in our recent paper on Information Effects), these
types have particularly natural computational interpretations. Intu-
itively, values of negative types are values that flow “backwards” to
satisfy demands and values of fractional types are values that im-
pose constraints on their context. The combination of these negative
and fractional types enables greater flexibility in programming by
breaking global invariants into local ones that can be autonomously
satisfied by a subcomputation. Theoretically, these types give rise to
two function spaces and to two notions of continuations, suggesting
that the previously observed duality of computation conflated two
orthogonal notions: an additive duality that corresponds to back-
tracking and a multiplicative duality that corresponds to constraint
propagation.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]; F.3.2 [Semantics of Programming Languages];
F.3.3 [Studies of Program Constructs]: Type structure

General Terms Languages, Theory

Keywords continuations, information flow, linear logic, logic
programming, quantum computing, reversible logic, symmetric
monoidal categories, compact closed categories.

1. Introduction
In a recent paper [16], we argued that, because they include irre-
versible physical primitives, conventional abstract models of com-
putation have inadvertently included some implicit computational
effects which we called information effects. We then developed
a pure reversible model of computation that is obtained from the
type isomorphisms and categorical structures that underlie models
of linear logic and quantum computing and that treats information
as a linear resource that can neither be erased nor duplicated. In this
paper, we show that our pure reversible model unveils deeper and
more elegant symmetries of computation than have previously been

[Copyright notice will appear here once ’preprint’ option is removed.]

reported. In particular, we expose two notions of duality of compu-
tation: an additive duality and a multiplicative duality that give rise
to negative types and fractional types respectively. Although these
types have previously appeared in the literature (see Sec. 6), they
have typically appeared in the context of conventional languages
with information effects, which limited their appeal and obscured
their properties.

Negative Types. Consider the following algebraic manipulation
relating a natural number a to itself (ignoring the dotted line for a
moment):

Although seemingly pointless, this algebraic proof corresponds, in
our model, to an isomorphism of type a ↔ a with a non-trivial
and interesting computational interpretation. The witness for this
isomorphism is a computation that takes a value of type a, say
$20.00, and eventually produces another $20.00 value as its output.
As the semantics of Sec. 4 formalizes, this computation flows along
the dotted line with the following intermediate steps:

• We start at line (0) with $20.00;
• We proceed to line (1) with the same $20.00 but tagged as being

in the left summand of the sum type a+0; we indicate this value
as left 20;

• We continue to line (2) with the same value left 20;
• At line (3), as a result of re-association the tag on the $20.00

changes to indicate that it is in the left-left summand, i.e., the
value is now left (left 20);

• At line (4), we find ourselves needing to produce a value of
type 0 which is impossible; this signals the beginning of a
reverse execution which sends us back to line (3) with a value
left (right 20);

• Execution continues in reverse to line (2) with the value
right (left 20);

• At line (1) we find ourselves again facing an empty type so
we reverse execution again; we go to line (2) with a value
right (right 20);

• We proceed to line (3) and (4) with the value right 20;
• We finally reach line 5 with the value 20.

The example illustrates that the empty type and negative types have
a computational interpretation related to continuations: negative

1 2012/3/18

types denote values that backtrack to satisfy dependencies, or in
other words act as debts that are satisfied by the backward flow of
information.

Fractional Types. Consider a similar algebraic manipulation in-
volving fractional types.

In the case of negatives, the dotted line indicated the flow of con-
trol whereas for fractionals it indicates the flow of constraints. At
the heart of logic programming is the idea of variables that capture
constraints. Hence it is useful to trace the computation correspond-
ing to the algebraic proof above, with the analogy to logic variables
in mind.

As before, the execution begins at line (0) with the value 20.
At line (1) two values, 20 and (), flow forward. One can think
of the value () (of type 1) as “having a credit card.” The credit
card isn’t money, nor is it debt, but is the option to generate a
credit-debt constraint. At line (2) we exercise this option and hence
have three values: the initial value 20 flowing from line (1) and
two entangled values, 1/α and α. The α and 1/α are unspecified
values, i.e., we don’t yet know how much money we need to
borrow, but we do know that what is borrowed must be what is
returned. Hence α denotes the presence of an unknown quantity
and dually 1/α should be thought of as the absence of an unknown
quantity. At line (3), the missing unknown 1/α is brought together
with a value 20 and at line (4) we use the 20 to satisfy the constraint
1/α. In other words, this branch of the computation succeeded
in borrowing 20 which immediately communicates the 20 to the
rightmost branch.

Unlike with negative types, wherein only one value existed at a
time and the computation backtracked, here we have three values
that exist at the same time. In other words, the computation with
fractions is realized with a schedule in which every value indepen-
dently and concurrently proceeds through its subcomputation. The
example illustrates that fractional types also have a computational
interpretation that have some flavor of continuations: the fractional
types denote values (1/α) that represent missing information that
must be supplied in much the same sense that continuations denote
evaluation contexts with holes that must be filled.

There are at least four fundamental points about the examples
above that must be emphasized:

• As the examples illustrate, both negative types and fractional
types corresponds to “debts” but in different ways: negatives
are satisfied by backtracking and fractionals are satisfied by
constraint propagation.

• It would clearly be disastrous if debts could be deleted or du-
plicated. This simple observation explains why these types are
much simpler and much more appealing in a framework where
information is guaranteed to be preserved. In previous work that
used negative types (see Sec. 6), complicated mechanisms are
typically needed to constrain the propagation and use of nega-
tive values because the surrounding computational framework
is, generally speaking, careless in its treatment of information.

• Each of the values −a + b and (1/a) × b can be viewed as
a function that asks for an a and then produces a b. When
viewed as functions, we write these types as a (+ b and
a(× b respectively. Alternatively we can view these values as
first producing a value of type b and then demanding an a and

in that perspective they correspond to delimited continuations.
Evidently, as the discussion above suggests, these two notions
of functions are not the same at all and should not be conflated.
Sec. 3.3 discusses this point in detail.

• The main reason credit card transactions are convenient is be-
cause they disentangle the propagation of the resources (money)
from the propagation of the services. Not every transaction
needs both the resources and services to be brought together:
it is sufficient to have a promise that the demand for resources
will be somehow satisfied, as long as the infrastructure can be
trusted with such promises. This idea that dependencies can be
freely decoupled and propagated can be a powerful program-
ming tool and we leverage this in the construction of a novel
SAT-solver (see Sec. 5).

Contributions and Outline. To summarize, in a computational
framework that guarantees that information is preserved, negative
and fractional types provide fascinating mechanisms in which com-
putations can be sliced and diced, decomposed and recomposed,
run forwards and backwards, in arbitrary ways. The remainder of
the paper formalizes these informal observations. Specifically our
main contributions are:

• We extend Π our reversible programming language of type
isomorphisms [6, 16] (reviewed in Sec. 2) with a notion of
negative types, that satisfies the isomorphism a + (−a) ↔ 0.
The semantics of this extension is expressed by having a dual
evaluator that reverses the flow of execution for negative values.
(Sec. 3)

• We independently extend Π with a notion of fractional types,
that satisfies the isomorphism a × (1/a) ↔ 1. The semantics
of this extension is expressed by introducing logic variables and
a unification mechanism to model and resolve the constraints
introduced by the fractional types. (Sec. 3)

• We combine the above two extensions into a language, which
we call Πηε, whose type system allows any rational number
to be used as a type. Moreover the types satisfy the same
familiar and intuitive isomorphisms that are satisfied in the
mathematical field of rational numbers. (Sec. 4)

• We develop programming intuition and argue that negative and
fractional types ought to be part of the vocabulary of every
programmer. (Sec. 5)

• We relate our notions of negative and fractional types to previ-
ous work on continuations. Briefly, we argue that conventional
continuations conflate negative and fractional components. This
observation allows us to relate two apparently unrelated lines of
work: the first pioneered by Filinski [12] relating continuations
to negative types and the second [4] relating continuations to
the fractional types of the Lambek-Grishin calculus. (Sec. 6)

Note: All the constructions, semantics, and examples in this pa-
per have been implemented and tested in Haskell. We will make the
URL available once the code is organized for better presentation.

2. The Core Reversible Language: Π
We review our reversible language Π: the presentation in this sec-
tion differs from the one in our previous paper [16] in two aspects.
First, we add the empty type 0 which is necessary to express the
additive duality. Second, instead of explaining evaluation using a
natural semantics, we give a small-step operational semantics that
is more appropriate for the connections with continuations explored
in this paper.

2 2012/3/18

2.1 Syntax and Types
The set of types includes the empty type 0, the unit type 1, sum
types b1 + b2, and products types b1 × b2. The set of values v
includes () which is the only value of type 1, left v and right v
which inject v into a sum type, and (v1, v2) which builds a value
of product type. There are no values of type 0:

value types, b ::= 0 | 1 | b+ b | b× b
values, v ::= () | left v | right v | (v, v)

The combinators of Π are witnesses to the following type iso-
morphisms:

zeroe : 0 + b↔ b : zeroi
swap+ : b1 + b2 ↔ b2 + b1 : swap+

assocl+ : b1 + (b2 + b3)↔ (b1 + b2) + b3 : assocr+

unite : 1× b↔ b : uniti
swap× : b1 × b2 ↔ b2 × b1 : swap×

assocl× : b1 × (b2 × b3)↔ (b1 × b2)× b3 : assocr×

distrib0 : 0× b↔ 0 : factor0

distrib : (b1 + b2)× b3 ↔ (b1 × b3) + (b2 × b3) : factor

Each line of the above table introduces one or two combinators
that witness the isomorphism in the middle. Collectively the iso-
morphisms state that the structure (b,+, 0,×, 1) is a commutative
semiring, i.e., that each of (b,+, 0) and (b,×, 1) is a commutative
monoid and that multiplication distributes over addition. The iso-
morphisms are extended to form a congruence relation by adding
the following constructors that witness equivalence and compatible
closure:

id : b↔ b

c : b1 ↔ b2
sym c : b2 ↔ b1

c1 : b1 ↔ b2 c2 : b2 ↔ b3
c1 # c2 : b1 ↔ b3

c1 : b1 ↔ b3 c2 : b2 ↔ b4
c1 + c2 : b1 + b2 ↔ b3 + b4

c1 : b1 ↔ b3 c2 : b2 ↔ b4
c1 × c2 : b1 × b2 ↔ b3 × b4

To summarize, the syntax of Π is given as follows.

DEFINITION 2.1. (Syntax of Π) We collect our types, values, and
combinators, to get the full language definition.

value types, b ::= 0 | 1 | b+ b | b× b
values, v ::= () | left v | right v | (v, v)

comb. types, t ::= b↔ b
iso ::= zeroe | zeroi

| swap+ | assocl+ | assocr+

| unite | uniti
| swap× | assocl× | assocr×
| distrib0 | factor0 | distrib | factor

comb., c ::= iso | id | sym c | c # c | c+ c | c× c

Adjoint. An important property of the language is that every
combinator c has an adjoint c† that reverses the action of c. This
is evident by construction for the primitive isomorphisms. For the
closure combinators, the adjoint is homomorphic except for the
case of sequencing in which the order is reversed, i.e., (c1 # c2)† =
(c2
†) # (c1

†).

2.2 Graphical Language
The syntactic notation above is often obscure and hard to read. Fol-
lowing the tradition established for monoidal categories [26], we
present a graphical language that conveys the intuitive semantics of
the language (which is formalized in the next section).

The general idea of the graphical notation is that combinators
are modeled by “wiring diagrams” or “circuits” and that values are
modeled as “particles” or “waves” that may appear on the wires.
Evaluation therefore is modeled by the flow of waves and particles
along the wires.

• The simplest sort of diagram is the id : b ↔ b combinator
which is simply represented as a wire labeled by its type b, as
shown on the left. In more complex diagrams, if the type of
a wire is obvious from the context, it may be omitted. When
tracing a computation, one might imagine a value v of type b
on the wire, as shown on the right.

• The product type b1 × b2 may be represented using either one
wire labeled b1 × b2 or two parallel wires labeled b1 and b2. In
the case of products represented by a pair of wires, when tracing
execution using particles, one should think of one particle on
each wire or alternatively as in folklore in the literature on
monoidal categories as a “wave.”

• Sum types may similarly be represented by one wire or using
parallel wires with a + operator between them. When tracing
the execution of two additive wires, a value can reside on only
one of the two wires.

• Associativity is implicit in the graphical language. Three paral-
lel wires represent b1 × (b2 × b3) or (b1 × b2) × b3, based on
the context.

• Commutativity is represented by crisscrossing wires.

By visually tracking the flow of particles on the wires, one can
verify that the expected types for commutativity are satisfied.

3 2012/3/18

• The morphisms that witness that 0 and 1 are the additive and
multiplicative units are represented as shown below. Note that
since there is no value of type 0, there can be no particle on
a wire of type 0. Also since the monoidal units can be freely
introduced and eliminated, in many diagrams they are omitted
and dealt with explicitly only when they are of special interest.

• Finally, distributivity and factoring are represented using the
dual boxes shown below:

Distributivity and factoring are interesting because they rep-
resent interactions between sum and pair types. Distributivity
should essentially be thought of as a multiplexer that redirects
the flow of v : b depending on what value inhabits the type
b1 + b2, as shown below. Factoring is the corresponding adjoint
operation.

Example. We use the type bool as a shorthand to denote the type
1 + 1 and use left () to be true and right () to be false . The
following combinator is represented by the given diagram:
c : b× bool↔ b+ b
c = swap× # distrib # (unite + unite)

2.3 Semantics
The semantics of the primitive combinators is given by the follow-
ing single-step reductions. Since there are no values of type 0, the

rules omit the impossible cases:

swap+ (left v) 7→ right v

swap+ (right v) 7→ left v

assocl+ (left v1) 7→ left (left v1)

assocl+ (right (left v2)) 7→ left (right v2)

assocl+ (right (right v3)) 7→ right v3

assocr+ (left (left v1)) 7→ left v1

assocr+ (left (right v2)) 7→ right (left v2)

assocr+ (right v3) 7→ right (right v3)
unite ((), v) 7→ v
uniti v 7→ ((), v)

swap× (v1, v2) 7→ (v2, v1)

assocl× (v1, (v2, v3)) 7→ ((v1, v2), v3)

assocr× ((v1, v2), v3) 7→ (v1, (v2, v3))
distrib (left v1, v3) 7→ left (v1, v3)
distrib (right v2, v3) 7→ right (v2, v3)
factor (left (v1, v3)) 7→ (left v1, v3)
factor (right (v2, v3)) 7→ (right v2, v3)

The reductions for the primitive isomorphisms above are exactly
the same as have been presented before [16]. The reductions for the
closure combinators are however presented in a small-step opera-
tional style using the following definitions of evaluation contexts
and machine states:

Combinator Contexts, C = � | Fst C c | Snd c C

| L× C c v |R× c v C

| L+ C c |R+ c C
Machine states = 〈c, v, C〉 | [c, v, C]

Start state = 〈c, v, �〉
Stop State = [c, v, �]

The machine transitions below track the flow of particles through
a circuit. The start machine state, 〈c, v,�〉, denotes the particle v
about to be evaluated by the circuit c. The end machine state,
[c, v,�], denotes the situation where the particle v has exited the
circuit c.

〈iso, v, C〉 7→ [iso, v′, C] (1)
where iso v 7→ v′

〈c1 # c2, v, C〉 7→ 〈c1, v, Fst C c2〉 (2)
[c1, v, Fst C c2] 7→ 〈c2, v, Snd c1 C〉 (3)
[c2, v, Snd c1 C] 7→ [c1 # c2, v, C] (4)

〈c1 + c2, left v, C〉 7→
˙
c1, v, L+ C c2

¸
(5)

[c1, v, L+ C c2] 7→ [c1 + c2, left v, C] (6)

〈c1 + c2, right v, C〉 7→
˙
c2, v, R+ c1 C

¸
(7)

[c2, v, R+ c1 C] 7→ [c1 + c2, right v, C] (8)

〈c1 × c2, (v1, v2), C〉 7→
˙
c1, v1, L× C c2 v2

¸
(9)

[c1, v1, L× C c2 v2] 7→
˙
c2, v2, R× c1 v1 C

¸
(10)

[c2, v2, R× c1 v1 C] 7→ [c1 × c2, (v1, v2), C] (11)

Rule (1) describes evaluation by a primitive isomorphism. Rules
(2), (3) and (4) deal with sequential evaluation. Rule (2) says that
for the value v to flow through the sequence c1 # c2, it should
first flow through c1 with c2 pending in the context (Fst C c2).
Rule (3) says the value v that exits from c1 should proceed to
flow through c2. Rule (4) says that when the value v exits c2, it
also exits the sequential composition c1 # c2. Rules (5) to (8) deal
with c1 + c2 in the same way. In the case of sums, the shape of
the value, i.e., whether it is tagged with left or right , determines
whether path c1 or path c2 is taken. Rules (9), (10) and (11) deal
with c1 × c2 similarly. In the case of products the value should
have the form (v1, v2) where v1 flows through c1 and v2 flows
through c2. Both these paths are entirely independent of each other
and we could evaluate either first, or evaluate both in parallel. In
this presentation we have chosen to follow c1 first, but this choice
is entirely arbitrary.

The interesting thing about the semantics is that it represents a
reversible abstract machine. In other words, we can compute the
start state from the stop state by changing the reductions 7→ to run
backwards← [. When running backwards, we use the isomorphism

4 2012/3/18

represented by a combinator c in the reverse direction, i.e., we use
the adjoint c†.

PROPOSITION 2.2 (Logical Reversibility). 〈c, v,�〉 7→ [c, v′,�]
iff

˙
c†, v′,�

¸
7→ [c†, v,�]

3. Negative and Fractional Types
This section introduces the syntax and graphical languages for
negatives and fractionals. The general outline is as follows: 1

• As established in our earlier work [6, 16], the underlying cate-
gorical semantics of our core reversible language Π is based on
two distinct symmetric monoidal structures, one with + as the
monoidal tensor, and one with × as the monoidal tensor.

• We extend each underlying symmetric monoidal structure to a
compact closed structure by adding a dual for each object and
two special morphisms traditionally called η and ε.

The extended language is referred to as Πηε. After presenting
the extension at the syntactic level, we discuss the categorical
semantics informally via the graphical language. The operational
semantics is presented in Sec. 4.

As will be detailed in the remainder of this section, the com-
pact closed structure provides several properties of interest: (i) mor-
phisms or wires are allowed to run from right to left, (ii) the struc-
ture admits a trace that, depending on the situation, can be used
to implement various notions of loops and recursion [14, 15, 17],
(iii) the structure includes an isomorphism showing that the dual
operator is an involution, and (iv) the structure is equipped with ob-
jects representing higher-order functions and a morphism eval that
applies these functional objects. Interestingly each monoidal struc-
ture provides the same ingredients, resulting in two dualities, two
traces, two involutions, and two notions of higher-order functions.

3.1 Syntax and Types
Describing the syntax and types of an extension to Π with additive
and multiplicative duality is fairly straightforward. Basically, for
the additive case, we extend the language with negative types de-
noted −b, negative values denoted −v, and two isomorphisms η+

and ε+. Similarly, for the multiplicative case, we extend the lan-
guage with fractional types denoted 1/b, fractional values denoted
1/v, and two isomorphisms η× and ε×.

Value Types, b = ... | − b | 1/b
Values, v = ... | − v | 1/v

Isomorphisms, iso = ... | η+ | ε+ | η× | ε×

For convenience, we sometimes use the notations b1 − b2 and
b1/b2 to indicate the types b1+(−b2) and b1×(1/b2) respectively.
The types of the new constructs are:

η+ : 0↔ (−b) + b : ε+

η× : 1↔ (1/b)× b : ε×
` v : b
` −v : −b

` v : b
` 1/v : 1/b

For the graphical language, we visually represent η+, ε+, η×,
and ε× as U-shaped connectors. On the left below are η+ and η×

showing the maps from 0 to −b+ b and 1 to 1/b× b. On the right
are ε+ and ε× showing the maps from −b + b to 0 and 1/b × b
to 1. Even though the diagrams below show the 0 and 1 wires
for completeness, later diagrams will always drop them in contexts
where they can be implicitly introduced and eliminated.

1 We refer the reader to Selinger’s excellent survey article of monoidal
categories [26] for the precise definitions.

The usual interpretation of the type b1 + b2 is that we either
have an appropriately tagged value of type b1 or an appropriately
tagged value of type b2. This interpretation is maintained in the
presence of η+ and ε+ in the following sense: a value of type
right v : −b + b flowing into an ε+ on the lower wire switches
to a value left (−v) : −b + b that flows backwards on the upper
wire. The inversion of direction is captured by the negative sign on
the value.

As an example, the diagram representing the first isomorphism
in the introduction is:

Similarly, in the usual interpretation of b1 × b2 we have both
a value of type b1 and a value of type b2. This interpretation is
maintained in the presence of fractionals. Hence an η× : 1 ↔
(1/b) × b is to be viewed as a fission point for a value of type b
and its multiplicative inverse 1/b. Operationally, this corresponds
to the creation of two values α and 1/α where α is a fresh logic
variable. The operator ε× then becomes a unification site for these
logic variables:

3.2 Categorical Constructions
All the constructions below are standard: they are collected from
Selinger’s survey paper on monoidal categories [26] and presented
in the context of our language.

For a monoidal category to be compact closed the maps η and ε
must satisfy a coherence condition that is usually visualized as
follows:

where b∗ represents the dual of b. In the case of negatives, the
condition amounts to checking that reversing direction twice is a
no-op. In the case of fractionals, the condition amounts to checking
that creating values α and 1/α and immediately unifying them is
also a no-op. Both checks are straightforward and are essentially
the constructions in the introduction.

We now review several interesting constructions related to loop-
ing, involution, and higher order functions.

5 2012/3/18

Trace. Every compact closed category admits a trace. For the
additive case, we get the following definition. Given f : b1 + b2 ↔
b1 + b3, define trace+f : b2 ↔ b3 as:

trace+f = zeroi # (id + η+) # (f + id) # (id + ε+) # zeroe

We have omitted some of the commutativity and associativity shuf-
fling to communicate the main idea. We are given a value of type
b2 which we embed into 0 + b2 and then (−b1 + b1) + b2). This
can be re-associated into−b1 + (b1 + b2). The component b1 + b2,
which until now is just an appropriately tagged value of type b2, is
transformed to a value of type b1 + b3 by f . If the result is in the
b3-summand, it is produced as the answer; otherwise the result is in
the b1-summand; ε+ is used to make it flow backwards to be fed to
the η+ located at the beginning of the sequence. Iteration continues
until a b3 is produced.

Involution (Principium Contradictiones) In a symmetric com-
pact closed category, we can build isomorphisms that the dual
operation is an involution. Specifically, we get the isomorphisms
b↔ −(−b) and b↔ (1/(1/b)). For the additive case, the isomor-
phism is defined as follows:

(id + η+) # (swap+ + id) # (id + ε+)
where we have omitted the 0 introduction and elimination. The
idea is as follows: we start with a value of type b, embed it into
b+ 0 and use η to create something of type b+ (−(−b) + (−b)).
This is possible because η has the polymorphic type−a+ a which
can be instantiated to −b. We then reshuffle the type to produce
−(−b) + (−b + b) and cancel the right hand side using ε+. The
construction for the multiplicative case is identical and omitted.

Duality preserves the monoidal tensor. As with compact closed
categories, the dual on the objects distributes over the tensor. In
terms of Πηε we have that −(b1 + b2) can be mapped to (−b1) +
(−b2) and that 1/(b1 × b2) can be mapped to (1/b1) × (1/b2).
The isomorphism −(b1 + b2) ↔ (−b1) + (−b2) can be realized
as follows:

The multiplicative construction is similar.

Duality is a functor. Duality in Πηε can map objects to their duals
and morphisms to act on dual objects. In other c : b1 ↔ b2 to
neg c : −b1 ↔ −b2 in the additive monoid and to inv c : 1/b1 ↔
1/b2 in the multiplicative monoid. The idea is simply to reverse the
flow of values and use the adjoint of the operation:

c : b1 ↔ b2
neg c : (−b1)↔ (−b2)

This construction relies on the fact that every Πηε morphism has
an adjoint. The inv construction is similar.

3.3 Functions and Delimited Continuations
Although these constructions are also standard, they are less known
and they are particularly important in our context: we devote a lit-
tle more time to explain them. Our discussion is mostly based on

Abramsky and Coecke’s article on categorical quantum mechan-
ics [1].

In a compact closed category, each morphism f : b1 ↔ b2
can be given a name and a coname. For the additive fragment,
the name pfq has type 0 ↔ (−b1 + b2) and the coname xfy
has type b1 + (−b2) ↔ 0. For the multiplicative fragment, the
name pfq has type 1 ↔ ((1/b1) × b2)) and the coname xfy
has type (b1 × (1/b2)) ↔ 1. Intuitively, this means that for each
morphism, it is possible to construct, from “nothing,” an object in
the category that denotes this morphism, and dually it is possible to
eliminate this object. The construction of the name and coname of
c : b1 ↔ b2 in the additive case can be visualized as follows:

Intuitively the name consists of viewing c as a function and the
coname consists of viewing c as a delimited continuation.

In addition to being able to represent morphisms, it is possible
to express function composition. For the additive case, the compo-
sition is depicted below:

which is essentially equivalent to sequencing both the computa-
tion blocks as shown below:

Applying a function to an argument consists of making the
argument flow backwards to satisfy the demand of the function:

Having reviewed the representation of functions, we now dis-
cuss the similarities and differences between the two notions of
functions and their relation to conventional (linear) functions which
mix additive and multiplicative components. For that purpose, we
use a small example. Consider a datatype color = R|G|B, and let
us consider the following manipulations:

• Using the fact that 1 is the multiplicative unit, generate from the
input () the value ((), ()) of type 1× 1;

• Apply the isomorphism 1 ↔ (1/b) × b in parallel to each
of the components of the above tuple. The resulting value is
((1/α1, α1), (1/α2, α2)) where α1 and α2 are fresh logic vari-
ables;

• Using the fact that × is associative and commutative, we can
rearrange the above tuple to produce the value:
((1/α1, α2), (1/α2, α1)).

6 2012/3/18

At this point we have constructed a strange mix of two b(× b
functions; inputs of one function manifest themselves as outputs
of the other. If (1/α1, α2) is held by one subcomputation and
(1/α2, α1) is held by another subcomputation, these remixed func-
tions form a communication channel between the two concurrent
subcomputations. Unifying 1/α1 with color R in one subcompu-
tation, fixes α1 to be R in the other. The type b thus takes the role
of the type of the communication channel, indicating how much in-
formation can be communicated between the two subcomputations.
Depending on the choice of the type b, an arbitrary number of bits
may be communicated.

Dually, the additive reading of the above manipulations corre-
spond to functions of the form b (+ b, witnessing isomorphisms
of the form 0 ↔ (−b) + b). The remixed additive functions ex-
press control flow transfer between two subcomputations, only one
of which exists at any point, i.e., they capture the essence of corou-
tines.

It should be evident that in a universe in which information is
not guaranteed to be preserved by the computational infrastructure,
the above slicing and dicing of functions would make no sense. But
linearity is not sufficient: one must also recognize that the additive
and multiplicative spaces are different.

3.4 Additional Constructions
The additional constructions below (presented with minimal com-
mentary) confirm that conventional algebraic manipulations in the
mathematical field of rationals do indeed correspond to realizable
type isomorphisms in our setting. The constructions involving both
negative and fractional types are novel.

Lifting negation out of ×. The isomorphisms below state that
the direction is relative. If b1 and b2 are flowing opposite to each
other then it doesn’t matter which direction is forwards and which
is backwards. More interestingly as b1 is moving backwards, it can
“see the past” of b2 which is equivalent to both particles moving
backwards.

(−b1)× b2 ↔ −(b1 × b2)↔ b1 × (−b2)
To build these isomorphisms, we first build an intermediate

construction which we call εfst : (−b1)× b2 + b1 × b2 ↔ 0.

The isomorphism (−b1)×b2 ↔ −(b1×b2) can be constructed
in terms of εfst as shown below.

The second isomorphism can be built in the same way by merely
swapping the arguments.

Multiplying Negatives. b1 × b2 ↔ (−b1)× (−b2)
This isomorphism is a consequence of the fact that − is an

involution: it corresponds to the algebraic manipulation:
b1× b2 = −(−(b1× b2)) = −((−b1)× b2) = (−b1)× (−b2)

Multiplying and Adding Fractions. An isomorphism witnessing:
b1/b2 × b3/b4 ↔ (b1 × b3)/(b2 × b4)
is straightforward. More surprisingly, it is also possible to con-

struct isomorphisms witnessing:
b1/b+ b2/b↔ (b1 + b2)/b
b1/b2 + b3/b4 ↔ (b1 × b4 + b3 × b2)/(b2 × b4)

4. Computing in the Field of Rationals : Πηε

In this section we develop an operational semantics for Π ex-
tended with negative and fractional types, Πηε. The operational
semantics takes the abstract categorical diagrams which were pre-
viously known but gives them a computational interpretation based
on reverse execution for negative types and unification for frac-
tional types. Even though this computational interpretation appears
straightforward in retrospect, it constitutes a breakthrough because
it breaks the preconceived idea that there is only one notion of dual-
ity and hence that both negative and fractional types should be im-
plemented using the same underlying mechanism. In some sense,
the folklore literature on monoidal categories describing the evalu-
ations for additive and multiplicative fragments are “particle-style”
and “wave-style” can be seen to suggest either a unified or separate
implementations. But, since de Morgan, we have been predisposed
to think of only one notion of duality which persisted to even linear
logic. (See Sec. 6 for further discussion of duality.)

For the purposes of this section, we start with the semantics
for Π defined in Sec 2, and we will systematically rewrite it to
achieve the desired Πηε semantics. This rewriting consists of two
main steps:

1. We rewrite the semantics in Sec 2 using unification of the
values instead of direct pattern matching. This gives us the
necessary infrastructure for fractional types. We assume the
reader is familiar with the idea of unification as realized using
logic variables, substitutions, and reification as presented in any
standard text on logic programming.

2. We write a reverse interpreter by reversing the direction of the
7→ reductions. This gives us the necessary infrastructure for
negative types.

4.1 Unification
Previously the reductions of the primitive isomorphisms were spec-
ified in the following form:

iso vinput pattern 7→ voutput pattern

Instead of relying on pattern-matching, we rewrite the rules to
accept an incoming substitution to which the required pattern-
matching rules are added as constraints. The general case is:

iso s v′ 7→ (voutput pattern , s[v
′ ≈ vinput pattern])

Using the same idea, the entire semantics can be extended to
thread the substitution as shown below:

〈iso, v, C, s〉. 7→ [iso, v′, C, s′].
where iso s v 7→ (v′, s′)

〈c1 # c2, v, C, s〉. 7→ 〈c1, v,Fst C c2, s〉.
[c1, v,Fst C c2, s]. 7→ 〈c2, v,Snd c1 C, s〉.
[c2, v,Snd c1 C, s]. 7→ [c1 # c2, v, C, s].
〈c1 + c2, v

′, C, s〉. 7→
˙
c1, v,L

+ C c2, s[v
′ ≈ left v]

¸
.

[c1, v,L
+ C c2, s]. 7→ [c1 + c2, left v, C, s].

〈c1 + c2, v
′, C, s〉. 7→

˙
c2, v,R

+ c1 C, s[v
′ ≈ right v]

¸
.

[c2, v,R
+ c1 C, s]. 7→ [c1 + c2, right v, C, s].

〈c1 × c2, v′, C, s〉. 7→
˙
c1, v1,L

× C c2 v2, s
′¸
.

where s′ = s[v ≈ (v1, v2)]
[c1, v1,L

× C c2 v2, s]. 7→
˙
c2, v2,R

× c1 v1 C, s
¸
.

[c2, v2,R
× c1 v1 C, s]. 7→ [c1 × c2, (v1, v2), C, s].

Most of the rules look obviously correct but there is a subtle
point. Consider the case for c1 + c2. Previously the shape of
the value determined which of the combinators c1 or c2 to use.
Now the incoming value could be a fresh logical variable, and
indeed we have two rules with the same left hand side, and only
depending on the success or failure of some further unification, can
we decide which of them applies. The situation is common in logic

7 2012/3/18

programming in the sense that it is considered a non-deterministic
process that keeps searching for the right substitution if any. Typical
implementations of logic programming languages further provide
top-level mechanisms to manipulate this non-deterministic search,
for example by returning one answer and giving the user the option
to ask for more answers. We abstract from this top-level semantics
and view the rules above as being applied non-deterministically.

4.2 Reverse Execution
Given that our language is reversible (Prop. 2.2), a backward evalu-
ator is relatively straightforward to implement: using the backward
evaluator to calculate c v is equivalent c

†
v in the forward evaluator.

[iso, v, C, s]/ 7→ 〈iso, v′, C, s′〉/
where iso

†
s v 7→ (v′, s′)

〈c1, v,Fst C c2, s〉/ 7→ 〈c1 # c2, v, C, s〉/
〈c2, v,Snd c1 C, s〉/ 7→ [c1, v,Fst C c2, s]/

[c1 # c2, v, C, s]/ 7→ [c2, v,Snd c1 C, s]/˙
c1, v,L

+ C c2, s
¸
/
7→ 〈c1 + c2, left v, C〉/

[c1 + c2, v
′, C, s]/ 7→ [c1, v,L

+ C c2, s[v
′ ≈ left v]]/˙

c2, v,R
+ c1 C, s

¸
/
7→ 〈c1 + c2, right v, C〉/

[c1 + c2, v
′, C, s]/ 7→ [c2, v,R

+ c1 C, s[v
′ ≈ right v]]/˙

c1, v1,L
× C c2 v2, s

¸
/
7→ 〈c1 × c2, (v1, v2), C, s〉/˙

c2, v2,R
× c1 v1 C, s

¸
/
7→ [c1, v1,L

× C c2 v2, s]/
[c1 × c2, v, C, s]/ 7→ [c2, v2,R

× c1 v1 C, S
′]/

where s′ = s[v ≈ (v1, v2)]

4.3 Semantics of Πηε

Combining the two constructions above, we get the semantics of
the full Πηε language by adding the rules for the two variants of η
and ε.

1. To add multiplicative duality, we add the following rules to the
set of primitive isomorphisms:

(a) η×s () 7→ ((1/v, v), s) where v is a fresh logic variable.
As explained previously η× creates two values 1/v and 1/v
from a single logic variable.

(b) ε×s v 7→ (1, s[v ≈ (1/v′, v′)]) where v′ is a fresh logic
variable.
Similarly, ε× unifies the values on incoming wires. The
incoming value v represents the values of both wires and
hence unifying them is accomplished in terms of an inter-
mediate logic variable v′.

2. To add negative types we add the following rules to the reduc-
tions above. The additions formalize our previous discussions
and should not be surprising at this point.

(a) The rules for ε+ essentially transfer control from the for-
ward evaluator (whose states are tagged by .) to the back-
ward evaluator (whose states are tagged by /). In other
words, after an ε+ the direction of the world is reversed.
The pattern matching done by the unification ensures that a
value on the right wire is tagged to be negative and trans-
ferred to the left wire, and vice versa.˙
ε+, v, C, s

¸
.
7→

˙
ε+, left (−v′), C, s[v ≈ right v′]

¸
/˙

ε+, v, C, s
¸
.
7→

˙
ε+, right v′, C, s[v ≈ left (−v′)]

¸
/

Note that there is no evaluation rule for η+ in the forward
evaluator. This corresponds to the fact that there is no value
of type 0 and hence the forward evaluator can never execute
an η+.

(b) The rules for η+ are added to the backward evaluator. A
program executing backwards starts executing forwards af-
ter the execution of the η+. Dual to the previous case, there
is no rule for ε+ in the backward evaluator since the output
type of ε+ is 0.˙
η+, v, C, s

¸
/
7→

˙
η+, left (−v′), C, s[v ≈ right v′]

¸
.˙

η+, v, C, s
¸
/
7→

˙
η+, right v′, C, s[v ≈ left (−v′)]

¸
.

Observability. The reductions above allow us to apply a program
c : b1 ↔ b2 to an input v1 : b1 to produce a result v2 : b2 on
termination. Execution is well defined only if b1 and b2 are entirely
positive types. If either b1 or b2 is a negative or fractional type,
the system has “dangling” unsatisfied demands or constraints. For
this reason, we constrain entire programs to have positive non-
fractional types. This is similar to the constraint that Zeilberger
imposes to explain intuitionistic polarity and delimited control [30].

5. Advanced Example: SAT Solver in Πηε

We illustrate the expressive power of first-class constraints repre-
sented by fractional types. To understand the intuition, recall the
definition of trace for the multiplicative fragment of Πηε. Given
f : a× c↔ b× c, we have trace×f : a↔ b:

trace×f = uniti # (id × η×) # (f × id) # (id × ε×) # unite
This circuit uses η× to generate all possible c-values together with
an associated (1/c)-constraint. It then applies f to the pair (a, c).
The function f must produce an output (b, c′) for each such input.
If the input c and the output c′ are the same they can be annihilated
by ε×; otherwise the execution gets stuck and this particular choice
of c is pruned.

A large class of constraint satisfaction problems can be ex-
pressed using trace×. We illustrate the main ideas with the imple-
mentation of a SAT-solver. We proceed in small steps, reviewing
some of the necessary constructions presented in our earlier pa-
per [16].

5.1 Booleans and Conditionals
Given any combinator c : b ↔ b we can construct a combinator
called if c : bool × b ↔ bool × b in terms of c, where if c
behaves like a one-armed if -expression. If the supplied boolean
is true then the combinator c is used to transform the value of
type b. If the boolean is false , then the value of type b remains
unchanged. We can write down the combinator for if c in terms of
c as distrib # ((id × c) + id) # factor .
The diagram below shows the input value of type (1 + 1) × b
processed by the distribute operator distrib, which converts it into a
value of type (1×b)+(1×b). In the left branch, which corresponds
to the case when the boolean is true (i.e. the value was left ()), the
combinator c is applied to the value of type b. The right branch
which corresponds to the boolean being false passes along the
value of type b unchanged.

The combinator if not has type bool × bool ↔ bool × bool
and negates its second argument if the first argument is true . This
gate if not is often referred to as the cnot gate. An equivalent
construction that is useful is elsenot where we negate the second
argument only if the first is false .

Similarly, we can iterate the construction of if c to check several
bits. The gate if cnot , which we may also write as if 2

not , checks

8 2012/3/18

two booleans and negates the result wire only if they are both true .
The gate if 2

not is well known as the Toffoli gate and is a universal
reversible gate. We can generalize this construction to if nnot which
checks n bits and negates the result wire only if they are all true .

5.2 Cloning
Although cloning is generally not allowed in reversible languages,
it is possible at the cost of having additional constant inputs.
For example, consider the gate elsenot . Generally, the gate maps
(false, a) to (false,not a) and (true, a) to (true, a). Focus-
ing on the cases in which the second input is true , we get that
the gate maps (false, true) to (false, false) and (true, true) to
(true, true), i.e., the gate clones the first input. A circuit of n par-
allel elsenot gates can hence clone n bits. They also consume n
true inputs in the process. Let us call this construction clonenbool.

5.3 Construction of the Solver
The key insight underlying the construction comes from the fact
that we can build annihilation circuits such as the one below:

The circuit constructs a boolean b and its dual 1/b, negates one of
them and attempts to satisfy the constraint that they are equal which
evidently fails.

With a little work, we can modify this circuit to only annihi-
late values that fail to satisfy the constraints represented by a SAT-
instance f . In more detail, an instance of SAT is a function/circuit f
that given some boolean inputs returns true or false which we in-
terpret as whether the inputs satisfy the constraints imposed by the
structure of f . Because we are in a reversible world, our instance of
SAT must be expressed as an isomorphism: this is easily achieved
as shown in Sec. 5.4 below. Assuming that f is expressed as an
isomorphism, we have enough information to reconstruct the input
from the output. This can be done by using the adjoint of f . At this
point we have, the top half of the construction below:

To summarize, the top half of the circuit is the identity func-
tion except that we have also managed to produce a boolean wire
labeled satisfied? that tells us if the inputs satisfy the desired con-
straints. We can take this boolean value and use it to decide whether
to negate the control wire or not. Thus, the circuit achieves the
following goal: if the inputs do not satisfy f , the control wire is
negated. We can now use trace× to annihilate all these bad val-
ues because the control wire acts like the closed-loop not in the
previous construction.

5.4 Final Details
Any boolean expression f : booln → bool can be compiled into
the isomorphism isof : boolh × booln ↔ boolg × bool where
the extra bits boolh and boolg are considered as heap and garbage.
Constructing such an isomorphism has been detailed before [16,
27]. The important relation to note is that applying isof to some
special heap values and an input bs produces some bits that can be
ignored and the same output that f would have produced on bs .
We can ensure that the heap has the appropriate initial values by

checking the heap and negating a second control wire, if the values
do not match, i.e., the dotted part in the diagram below.

Let us call the above construction which maps inputs, heap, and
control wires to inputs, heap, and control wires as satf . The SAT-
solver is is completed by tracing the satf and cloning the inputs
using clonenbool.

When the solver is fed inputs initialized to true , it clones only
those inputs to satf that satisfy f and the heap constraints. In the
case of unique-SAT the solver will produce exactly 0 or 1 solu-
tions. In the case of general SAT, the solver will produce solutions
as determined by the semantics of the top-level interaction (see dis-
cussion in Sec. 4).

6. Related Work
The idea of “negative types” has appeared many times in the lit-
erature and has often been related to some form of continuations.
Fractional types are less common but have also appeared in rela-
tion to parsing natural languages. Although each of these previous
occurrences of negative and fractional types is somewhat related
to our work, our results are substantially different. To clarify this
point, we start by reviewing the salient point of the major pieces of
related work and conclude this section with a summary contrasting
our approach to previous work.

Declarative Continuations. In his Masters thesis [12], Filinski
proposes that continuations are a declarative concept. He, further-
more, introduces a symmetric extension of the λ-calculus in which
call-by-value is dual to call-by-name and values are dual to contin-
uations. In more detail, the symmetric calculus contains a “value”
fragment and a “continuation” fragment which are mirror images.
Pairs and sums are treated as duals in the sense that the “value”
fragment includes pairs whose mirror image in the “continuation”
fragment are sums. In contrast, our language includes pairs and
sums in the value fragment and two symmetries: one that maps the
pairs to fractions and another that maps the sums to subtractions.

The Duality of Computation. The duality between call-by-name
and call-by-value was further investigated by Selinger using control
categories [25]. Curien and Herbelin [10] also introduce a calculus
that exhibits symmetries between values and continuations and
between call-by-value and call-by-name. The calculus includes the
type A − B which is the dual of implication, i.e., a value of
type A − B is a context expecting a function of type A → B.
Alternatively a value of type A − B is also explained as a pair
consisting of a value of type A and a continuation of type B. This
is to be contrasted with our interpretation of a value of that type
as either a value of A or a demand for a value of type B. This
calculus was further analyzed and extended by Wadler [28, 29].
The extension gives no interpretation to the subtraction connective
and like the original symmetric calculus of Filinski, introduces a
duality that relates sums to products and vice-versa.

9 2012/3/18

Subtractive Logic. Rauszer [20–22] introduced a logic which
contains a dual to implication. Her work has been distilled in the
form of subtractive logic [8] which has recently been related to
coroutines [9] and delimited continuations [3]. In more detail, Cro-
lard explains the type A − B as the type of coroutines with a lo-
cal environment of type A and a continuation of type B. The de-
scription is complicated by what is essentially the desire to enforce
linearity constraints so that coroutines cannot access the local envi-
ronment of other coroutines.

Negation in Classical Linear Logic Filinski [11] uses the nega-
tive types of linear logic to model continuations. Reddy [23] gener-
alizes this idea by interpreting the negative types of linear logic as
acceptors, which are like continuations in the sense that they take
an input and return no output. Acceptors however are also similar in
flavor to logic variables: they can be created and instantiated later
once their context of use is determined. Although a formal connec-
tion is lacking, it is clear that, at an intuitive level, acceptors are
entities that combine elements of our negative and fractional types.

The Lambek-Grishin Calculus. The “parsing-as-deduction” style
of linguistic analysis uses the Lambek-Grishin calculus with the
following types: product, left division, right division, sum, right
difference, and left difference [4]. The division and difference types
are similar to our types but because the calculus lacks commutativ-
ity and associativity and only has limited notions of distributivity,
each connective needs a left and right version. The Lambek-Grishin
exhibits two notions of symmetry but they are unrelated to our no-
tions. In particular, the first notion of symmetry expresses commu-
tativity and the second relates products to sums and divisions to
subtractions. In contrast, our two symmetries relate sums to sub-
tractions and products to divisions.

Our Approach. The salient aspects of our approach are the fol-
lowing:

• Negative and fractional types have an elementary and familiar
interpretation borrowed from the algebra of rational numbers.
One can write any algebraic identity that is valid for the rational
numbers and interpret it as an isomorphism with a clear com-
putational interpretation: negative values flow backwards and
fractional values represent constraints on the context. None of
the systems above has such a natural interpretation of negative
and fractional types.

• Because we are not in the context of the full λ-calculus, which
allows arbitrary duplication and erasure of information, values
of negative and fractional types are first-class values that can
flow anywhere. The information-preserving computational in-
frastructure guarantees that, in a complete program, every neg-
ative demand will be satisfied exactly once, and every constraint
imposed by a fractional value will also be satisfied exactly once.
This property is shared with systems that are based on linear
logic; other systems must impose ad hoc constraints to ensure
negative and fractional values are used exactly once.

• In contrast to all the work that takes continuations as primitive
entities of negative types, we view continuations as a derived
notion that combines a demand for a value with constraints on
how this value will be used to proceed with the evaluation (to
the closest delimiter or to the end of the program). In other
words, we view a continuation as a non-elementary notion that
combines the negative types to demand a value and the frac-
tional types to explain how this value will be used to continue
the evaluation. As a consequence, the previously observed du-
ality between values and continuations can be teased into two
dualities: a duality between values flowing in one direction or
the other and a duality between aggregate values composing

and decomposing into smaller values. Arguably each of the du-
alities is more natural than a duality that maps regular values
to a conflated notion of negative and fractional types, and hence
requires notions like “additive pairs” and “multiplicative sums.”

7. Conclusion and Future Work
We have extended the language Π that expressed computation in
the commutative semiring of whole numbers to Πηε that expresses
computation in the field of rationals. Every algebraic identity that
holds for the rational numbers corresponds to a type isomorphism
with a computational interpretation in our model. We have exam-
ined the two function spaces that arise in this model and developed
non-trivial constructions such as a SAT-solver that relies on a mul-
tiplicative trace.

In another sense however, this paper is about the nature of dual-
ity in computation. The concept of duality is deep and significant:
we have opened the door for us to consider, not one but two notions
of duality. Surprisingly this makes things substantially simpler. In
particular, instead of conflating pairs as dual to sums, the tradition
in mathematics has long been to consider fields with two notions of
duality: one for sums and one for pairs. This double notion of du-
ality has a crisp semantics, clear computational interpretation, and
an information theoretic basis.

Our work has barely scratched the surface of an area of comput-
ing which has been explored in depth before but without the com-
bined reversible information-preserving framework and the two no-
tions of duality. The new insights point to further new areas of in-
vestigation, of which we mention the three most significant ones
(in our opinion).

Geometry of Interaction (GoI). Geometry of Interaction was de-
veloped by Girard [13] as part of the development of linear logic.
It was given a computational interpretation by Abramsky and Ja-
gadeesan [2], and was developed into a reversible model of com-
puting by Mackie [18, 19]. Preliminary investigations suggest that
many of the GoI machine constructions can be simulated in Πηε

by treating Mackie’s bi-directional wires as pairs of wires in Πηε

and replacing the machine’s global state with a typed value on the
wire that captures the appropriate state. This connection is exciting
because when viewed through a Curry-Howard lens it suggests that
the logical interpretation of Πηε would be a linear-like logic with
a notion of resource preservation and with a natural computational
interpretation.

Computing in the Field of Algebraic Numbers. Algebraically,
the move from Π to Πηε corresponds to a move from a ring-like
structure to a full field. Our language Πηε captures the structure
of one particular field: that of the rational numbers. As we have
seen, computation in this field is quite expressive and interesting
and yet, it has two fundamental limitations. First it cannot express
any recursive type, and second it cannot express any datatype def-
initions. We believe these to be two orthogonal extensions: recur-
sive types were considered in our previous paper [16]; arbitrary
datatypes are however even more exciting that plain rationals as
each datatype definition can be viewed as a polynomial (see be-
low) which essentially means that we start computing in the field
of algebraic numbers, which includes square roots and imaginary
numbers. As crazy as it might seem, the type

√
2 and even the type

(1/2) + i(
√

3/2) “make sense.” In fact the latter type is the solu-
tion to the polynomial x2 − x+ 1 = 0 which if re-arranged looks
like x = 1 + x × x and perhaps more familiarly as the datatype
of binary trees µx.(1 + x × x). These types happen to have been
studied extensively following a paper by Blass [5] which used the
above datatype of trees to infer an isomorphism between seven bi-
nary trees and one!

10 2012/3/18

We have confirmed that we can extended Πηε with the datatype
declaration for binary trees and build a witness for this isomor-
phism that works as expected. However not every isomorphism
constructed from algebraic manipulation is computationally mean-
ingful. To understand the issue in more detail, consider the follow-
ing algebraically valid proof of the isomorphism in question:

x3 = x2x = (x− 1)x = x2 − x = −1
x6 = 1
x7 = x6x = x

The question is why such an algebraic manipulation makes sense
type theoretically, even though the intermediate step asking for
an isomorphism between x6 and 1 has no computational context.
In the setting of Πηε, this isomorphism can be constructed but it
diverges on all inputs (in both ways). This suggests that, in the field
of algebraic numbers, some algebraic manipulations are somehow
“more constructive” than others.

A related issue is that not all meaningful recursive types are
meaningful polynomials. For instance nat = µx.(1 + x) implies
the polynomial x = 1+xwhich has no algebraic solutions without
appeal to more complex structures with limits etc.

Quantum Computing. One understanding of quantum comput-
ing is that it exploits the laws of physics to build faster machines
(perhaps). Another more foundational understanding is that it pro-
vides a computational interpretation of physics, and in particular
directly addresses the question of interpretation of quantum me-
chanics. In a little known document, Rozas [24] uses continuations
to implement the transactional interpretation of quantum mechan-
ics [7] which includes as its main ingredient a fixpoint calculation
between waves or particles traveling forwards and backwards in
time. Our work sheds no light on whether this interpretation is the
“right one” but it is interesting that we can directly realize it using
the primitives of Πηε.

The multiplicative structure of Πηε also has a direct connection
to entangled quantum particles, or perhaps entangled particles and
anti-particles. The idea of entanglement, that an action on one par-
ticle is “instantaneously” communicated to the other, is analogous
to how unifying one value affects its dual pair which is possibly in
another part of the computation. Again our model sheds no light
on whether this is related to how nature computes but it is again
interesting that we can directly realize the idea using the primitives
of Πηε.

Acknowledgments
We thank Jacques Carette for stimulating discussion, and Michael
Adams, Will Byrd, Lindsey Kuper, and Yin Wang for helpful com-
ments and questions. This project was partially funded by Indiana
University’s Office of the Vice President for Research and the Of-
fice of the Vice Provost for Research through its Faculty Research
Support Program. We also acknowledge support from Indiana Uni-
versity’s Institute for Advanced Study.

References
[1] S. Abramsky and B. Coecke. Categorical quantum mechanics, 2008.

[2] S. Abramsky and R. Jagadeesan. New foundations for the geometry
of interaction. Inf. Comput., 111:53–119, May 1994.

[3] Z. M. Ariola, H. Herbelin, and A. Sabry. A type-theoretic foundation
of delimited continuations. Higher Order Symbol. Comput., 22:233–
273, September 2009.

[4] R. Bernardi and M. Moortgat. Continuation semantics for the
Lambek–Grishin calculus. Inf. Comput., 208:397–416, May 2010.

[5] A. Blass. Seven trees in one. Journal of Pure and Applied Algebra,
103(1-21), 1995.

[6] W. J. Bowman, R. P. James, and A. Sabry. Dagger Traced Symmetric
Monoidal Categories and Reversible Programming. In Workshop on
Reversible Computation, 2011.

[7] J. Cramer. The transactional interpretation of quantum mechanics.
Reviews of Modern Physics, 58:647–688, 1986.

[8] T. Crolard. Subtractive logic. Theoretical Computer Science, 254(1-
2):151–185, 2001.

[9] T. Crolard. A formulae-as-types interpretation of subtractive logic.
Journal of Logic and Computation, 14(4):529–570, 2004.

[10] P.-L. Curien and H. Herbelin. The duality of computation. In ICFP,
pages 233–243, New York, NY, USA, 2000. ACM.

[11] A. Filinski. Linear continuations. In POPL, pages 27–38. ACM Press,
Jan. 1992.

[12] A. Filinski. Declarative continuations: an investigation of duality in
programming language semantics. In Category Theory and Computer
Science, pages 224–249, London, UK, 1989. Springer-Verlag.

[13] J. Girard. Geometry of interaction 1: Interpretation of system f. Studies
in Logic and the Foundations of Mathematics, 127:221–260, 1989.

[14] M. Hasegawa. Recursion from cyclic sharing: Traced monoidal cate-
gories and models of cyclic lambda calculi. In TLCA, pages 196–213.
Springer-Verlag, 1997.

[15] M. Hasegawa. On traced monoidal closed categories. MSCS, 19:217–
244, April 2009.

[16] R. P. James and A. Sabry. Information effects. In POPL, 2012.
[17] A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Math.

Proc. Camb. Philos. Soc., 119(3):447–468, 1996.
[18] I. Mackie. The geometry of interaction machine. In POPL, pages

198–208, 1995.
[19] I. Mackie. Reversible higher-order computations. In Workshop on

Reversible Computation, 2011.
[20] C. Rauszer. Semi-boolean algebras and their applications to intuition-

istic logic with dual operators. Fundamenta Mathematicae, 83:219–
249, 1974.

[21] C. Rauszer. An algebraic and Kripke-style approach to a certain ex-
tension of intuitionistic logic. In Dissertationes Mathmaticae, volume
167. Institut Mathématique de l’Académie Polonaise des Sciences,
1980.

[22] C. Rauszer. A formalization of the propositional calculus of H-B logic.
Studia Logica, 33:23–34, 1974.

[23] U. S. Reddy. Acceptors as values: Functional programming in classi-
cal linear logic. Manuscript, Dec. 1991.

[24] G. J. Rozas. A computational model for observation in quantum
mechanics. Technical report, MIT, Cambridge, MA, USA, 1987.

[25] P. Selinger. Control categories and duality: on the categorical seman-
tics of the lambda-mu calculus. Mathematical. Structures in Comp.
Sci., 11:207–260, April 2001.

[26] P. Selinger. A survey of graphical languages for monoidal categories.
In B. Coecke, editor, New Structures for Physics, volume 813 of Lec-
ture Notes in Physics, pages 289–355. Springer Berlin / Heidelberg,
2011.

[27] T. Toffoli. Reversible computing. In Proceedings of the Colloquium
on Automata, Languages and Programming, pages 632–644. Springer-
Verlag, 1980.

[28] P. Wadler. Call-by-value is dual to call-by-name - reloaded. In J. Giesl,
editor, RTA, volume 3467 of Lecture Notes in Computer Science, pages
185–203. Springer, 2005.

[29] P. Wadler. Call-by-value is dual to call-by-name. In ICFP, pages 189–
201, New York, NY, USA, 2003. ACM.

[30] N. Zeilberger. Polarity and the logic of delimited continuations. In
LICS, pages 219–227, Los Alamitos, CA, USA, 2010. IEEE Computer
Society.

11 2012/3/18

