
Quantum Effects

Juliana K. Vizzotto1 Thorsten Altenkirch2

Amr Sabry3

1 Federal University of Rio Grande do Sul

2 The University of Nottingham

3 Indiana University

20 January 2005

Yale CS Colloquium Page 1

Quantum mechanics

Real Black Magic Calculus — Albert Einstein

If quantum mechanics hasn’t profoundly shocked you, you

haven’t understood it yet — Niels Bohr

I think I can safely say that nobody today understands

quantum mechanics — Richard Feynman

I can’t possibly know what I am talking about — Amr Sabry

Yale CS Colloquium Page 2

Models of (quantum) computation

Abstract (Compositional) — Values and functions

Circuits — Vectors and matrices

Physics — Particle spins and electromagnetic fields

Yale CS Colloquium Page 3

Abstract models of (quantum) computation

Semantic foundation for functional quantum programming language:

• Category theory — categorical models of quantum computation

[Abramsky, Selinger, van Tonder]

• λ-calculus — quantum λ-calculus [Van Tonder]

• Domain theory, logic, etc — [Birkhoff, von Neumann]

• Haskell (not perfect but rich executable language)

Yale CS Colloquium Page 4

Plan

• Quantum computation (I): unitary operations on state vectors
• Embedding in Haskell using monads
• What to do with measurement?

• Quantum computation (II): superoperators on density matrices
• Arrows
• Embedding in Haskell using arrows

• QML [Altenkirch and Grattage]
• Open problems; related work; conclusions

Yale CS Colloquium Page 5

Quantum Computing (I)

Yale CS Colloquium Page 6

Example: Toffoli circuit

 Not

V

 Not

V HVT.
.
.

.

.

.
0
0
0
0
0
0
1
0

.

.

.
0
0
0
0
1
i
0
0

0
0
0
0
0
0
1
−1

0
0
0
0
0
0
1
1

.

.

.

.

.

.
0
0
0
0
0
0
1
i

0
0
0
0
1
i
0
0

.

.

.
0
0
0
0
0
0
1
i

.

.

.
0
0
0
0
0
0
0
1

.

.

.

H

FFF
FFT
FTF
FTT
TFF
TFT
TTF
TTT

• In this example, input is |TTF 〉
• After first step, state vector is a superposition |TTF 〉 + |TTT 〉
• Result: Negate the last bit

Yale CS Colloquium Page 7

Entanglement

• The state vector of multiple qubits can sometimes be teased into

the product of simpler state vectors:

|FF 〉 + |FT 〉 = |F 〉 ∗ (|F 〉 + |T 〉)

• If the qubits are entangled, this is impossible:

|FF 〉 + |TT 〉 6= (|F 〉 + |T 〉) ∗ (|F 〉 + |T 〉)
(or any other product we might try)

•Must basically manipulate the global state at all times

even if we want to apply an operation to only one qubit

Yale CS Colloquium Page 8

QCL [Knill]

• A global state with n qubits

• Registers are realized using pointers to the global state

• Apply operation U to register r using Π†.(U × I(n−m)).Π

where Π† is the inverse of Π and I is the identity

0 1 2 3 4

0 1

Global
state

Reg r

Π

Yale CS Colloquium Page 9

Flowchart notation [Selinger]

• A global state with n variables

that can be assigned once

• To apply operation U to part

of the state, use the same idea

that is used in QCL:

– re-order the variables to

bring relevant variables to

the front

– compose U with the iden-

tity and apply it to the entire

state

input q1,q2,q3 : qubit

qubit

permute φ 1

q1, q2, q3 :

q3, q2, q1: qubit

q3, q2, q1 *=

q3, q2, q1: qubit

q2, q3, q1 : qubit

H x Id

cV x Idq2, q3, q1 *=

permute φ 2

.

..

Yale CS Colloquium Page 10

Lambda-calculus extension [Valiron and Selinger]

Idea: the lambda term gives classical control over the quantum data

which is accessed via pointers to a global data structure.

• The state is a triple [Q,Qf , M]

• Q is the state vector

•M is a lambda term with free variables

• Qf is a linking function which maps every free variable of M to

a qubit in Q

Yale CS Colloquium Page 11

Virtual values and adaptors [Sabry]

• Also uses a global state and pointers mediated using adaptors

• Hides the management of pointers using virtual values

• Adaptors can almost be derived from the types but their actual
generation is tedious and ugly

toffoli state =
let b = virt state adaptor0

mb = virt state adaptor1

tm = virt state adaptor2

tb = virt state adaptor3
in do app hadamard b

app cv mb
app cnot tm
app cvt mb
app cnot tm
app cv tb
app hadamard b

Yale CS Colloquium Page 12

Can we do better than pointers to a global state?

Common theme so far:

• A global state vector accessed via pointers

• Each operation transforms the global state to a new state

•Monads are often used to structure and reason about computa-

tional effects.

class Monad m where
return : : ∀ a. a → m a
(�=) : : ∀ a b. m a → (a → m b) → m b

• Is there a nice monad here?

Yale CS Colloquium Page 13

Embedding in Haskell using monads

Yale CS Colloquium Page 14

Finite sets

•We only consider computations over finite bases. For a type a to

be a type of observables, it needs to represent a finite set:

class Eq a ⇒ Basis a where basis : : [a]
instance Basis Bool where basis = [False,True]

• Can automatically construct more complicated sets (on demand):

instance (Basis a, Basis b) ⇒ Basis(a, b) where
basis = [(a, b) | a ← basis , b ← basis]

• Programs at the end produce classical observable values:

False , (True,False), etc

Yale CS Colloquium Page 15

State vectors

• A state vector associates a complex probability amplitude with
each basis element:

type PA = Complex Double
type Vec a = a → PA

• Can add, substract, and multiply vectors: (definitions omitted)

vzero : : Vec a
(〈+〉) : : Vec a → Vec a → Vec a
(〈−〉) : : Vec a → Vec a → Vec a
($∗) : : PA → Vec a → Vec a
(〈∗〉) : : Vec a → Vec b → Vec (a, b)
(〈·〉) : : Basis a ⇒ Vec a → Vec a → PA

Yale CS Colloquium Page 16

Examples of vectors over Bool

• The simplest vector is a unit representing a basis element:

unit : : Basis a ⇒ a → Vec a
unit a = (\ b → if a == b then 1 else 0)

• The two basic unit vectors:

qFalse = unit False — in Dirac notation |0〉
qTrue = unit True — in Dirac notation |1〉

• Vector representing superpositions:

qFT = (1 / sqrt 2) $∗ (qFalse 〈+〉 qTrue) — 1√
2
(|0〉 + |1〉)

qFmT = (1 / sqrt 2) $∗ (qFalse 〈−〉 qTrue) — 1√
2
(|0〉 − |1〉)

Yale CS Colloquium Page 17

Examples of vectors over (Bool ,Bool)

• Using the tensor product:

p1 = qFalse 〈∗〉 qFT — in Dirac notation |0〉 ∗ (1√
2
(|0〉 + |1〉))

• Using the classical product over the basis:

qFF = unit (False,False) — in Dirac notation |00〉
qTT = unit (True,True) — in Dirac notation |11〉

• A vector representing the EPR pair 1√
2
(|00〉 + |11〉):

epr = (1 / sqrt 2) $∗ (qFF 〈+〉 qTT)

Yale CS Colloquium Page 18

Linear operators

• Given a function f : : a → Vec b, we can produce the

linear operator of type Vec a → Vec b

• Apply f to each basis element and accumulate the results:

linop : : Basis a ⇒ (a → Vec b) → (Vec a → Vec b)
linop f va = (\ b → sum [(va a) ∗ (f a b) | a ← basis])

• So we can define:

type Lin a b = a → Vec b

Yale CS Colloquium Page 19

Examples of linear operators

• Construct a linear operator from any pure function:

fun2lin : : (Basis a, Basis b) ⇒ (a → b) → Lin a b
fun2lin f a = unit (f a)

• Common linear operators on booleans:

qnot = fun2lin not

hadamard False = qFT
hadamard True = qFmT

Yale CS Colloquium Page 20

More linear operations

• Outer product:

(〉∗〈) : : Basis a ⇒ Vec a → Vec a → Lin a a
(v1 〉∗〈 v2) a1 a2 = v1 a1 ∗ conjugate (v2 a2)

• Composition:

o : : (Basis a, Basis b, Basis c) ⇒
Lin a b → Lin b c → Lin a c

o f g a = linop g (f a)

• Controlled-operations:

controlled : : Basis a ⇒
Lin a a → Lin (Bool , a) (Bool , a)

controlled f (b1, b2) = (unit b1) 〈∗〉 (if b1 then f b2 else unit b2)

Yale CS Colloquium Page 21

Almost a monad!

•We can define:

return : : Basis a ⇒ a → Vec a
return = unit

(�=) : : Basis a ⇒ Vec a → (a → Vec b) → Vec b
(va �= f) = linop f va

• The right equations are satisfied

• The types are wrong: the extra constraints mean that the con-

struction is not universal. In Haskell terms, we cannot use the

do-notation

• Already observed [Mu and Bird, 2001] but in a system restricted

to manipulating lists of qubits

Yale CS Colloquium Page 22

Toffoli circuit

toffoli : : Lin (Bool ,Bool ,Bool) (Bool ,Bool ,Bool)
toffoli (top,middle, bottom) =
let cnot = controlled qnot

cphase = controlled phase

in hadamard bottom �= \ b1 →
cphase (middle, b1) �= \ (m1, b2) →
cnot (top,m1) �= \ (t1,m2) →
controlled (adjoint phase) (m2, b2) �= \ (m3, b3) →
cnot (t1,m3) �= \ (t2,m4) →
cphase (t2, b3) �= \ (t3, b4) →
hadamard b4 �= \ b5 →
return (t3,m4, b5)

Yale CS Colloquium Page 23

So far

• (Almost) monads can be used to structure quantum parallelism:

no explicit global state and pointers

• Connections to category theory, etc

• That’s the easy part . . . How do we deal with measurement?

Yale CS Colloquium Page 24

Measurement

Yale CS Colloquium Page 25

Measurement & collapse

Measuring qFT (= 1√
2
(|0〉 + |1〉)):

• returns 0 with probability 1/2

and as a side-effect collapses qFT to |0〉, or

• returns 1 with probability 1/2

and as a side-effect collapses qFT to |1〉

Yale CS Colloquium Page 26

Measurement & spooky action at a distance

Measuring the left qubit of epr : (= 1√
2
(|00〉 + |11〉)):

• returns 0 with probability 1/2

and as a side-effect collapses epr to |00〉, or

• returns 1 with probability 1/2

and as a side-effect collapses epr to |11〉

• The right qubit is affected even if physically distant!

Yale CS Colloquium Page 27

Ignore measurement?

•Measurements can always be delayed to the end;

many formalisms ignore them

•Mu and Bird use the IO monad to explain measurement;

cannot mix measurement with linear operations

• Can we deal with measurements in the formalism?

Yale CS Colloquium Page 28

Teleportation

Not

H

{EPR

Not Z

q

q

Alice Bob

m2

m1

Communication uses a classical channel, sending classical bits.

Yale CS Colloquium Page 29

Quantum Computing (II)

Yale CS Colloquium Page 30

State vectors have too much information

• Perhaps vectors are not expressive enough ?

• Vector is exact state of the system but much of the information

in the state is not observable

• Take qFT and measure it. The result is either:

1√
2
|0〉 or

1√
2
|1〉

• Apply Hadamard to the result:

1√
2
(|0〉 + |1〉) or

1√
2
(|0〉 − |1〉)

• The two configurations are indistinguishable

(observationally equivalent)

Yale CS Colloquium Page 31

Density matrices

• Statistical perspective of the state vector

• Technically, we use the outer product:

type Dens a = Vec (a, a)

pureD : : Basis a ⇒ Vec a → Dens a
pureD v = lin2vec (v 〉∗〈 v)

• Examples:

qFalse qTrue qFT

|0〉 |1〉 1√
2
(|0〉 + |1〉)

(

1 0
0 0

) (

0 0
0 1

) (

1/2 1/2

1/2 1/2

)

Yale CS Colloquium Page 32

Density matrices and measurement

•When we measure qFT (1√
2
(|0〉 + |1〉)) we get:

False with probability 1/2, or True with probability 1/2:
(

1/2 0
0 0

)

+

(

0 0
0 1/2

)

=

(

1/2 0
0 1/2

)

• The density matrix can represent a mixed state

• Operations are linear:

H

(

1/2 0
0 1/2

)

= H

(

1/2 0
0 0

)

+ H

(

0 0
0 1/2

)

=

(

1/2 0
0 1/2

)

• The two states are indeed observationally equivalent.

Yale CS Colloquium Page 33

Superoperators

• Every linear operator can be lifted to an operator on density

matrices

• Such operators are called superoperators:

type Super a b = (a, a) → Dens b

lin2super : : (Basis a, Basis b) ⇒ Lin a b → Super a b
lin2super f (a1, a2) = (f a1) 〈∗〉 (dual (adjoint f) a2)

where dual f a b = f b a

Yale CS Colloquium Page 34

Tracing and measurement

• trL measures and “forgets” the result of measurement
meas measures and returns the result of measurement

trL : : (Basis a, Basis b) ⇒ Super (a, b) b
trL ((a1, b1), (a2, b2)) = if a1 == a2 then return (b1, b2) else vzero

meas : : Basis a ⇒ Super a (a, a)
meas (a1, a2) = if a1 == a2 then return ((a1, a1), (a1, a1)) else vzero

•Measuring qFT and forgetting the collapsed quantum state:

pureD qFT �= meas �= trL

evaluates to:
(

1/2 0
0 1/2

)

Yale CS Colloquium Page 35

No longer a monad

• At least we can’t prove it is a monad

• Superoperators do not form a basis

•We seem to have lost all our structure

Yale CS Colloquium Page 36

Arrows

Yale CS Colloquium Page 37

A generalization of monads

class Arrow a where
arr : : (b → c) → a b c
(≫) : : a b c → a c d → a b d
first : : a b c → a (b, d) (c, d)

f
b c b c d

f g fb

d d

c

>>> firstarr

(b)(a) (c)

Yale CS Colloquium Page 38

More about arrows

Look up excellent work at Yale

Yale CS Colloquium Page 39

Embedding in Haskell using arrows

Yale CS Colloquium Page 40

Superoperators are arrows

Well . . . almost: the types have additional constraints

arr : : (Basis b, Basis c) ⇒ (b → c) → Super b c
arr f = fun2lin (\ (b1, b2) → (f b1, f b2))

(≫) : : (Basis b, Basis c, Basis d) ⇒
Super b c → Super c d → Super b d

(≫) = o

first : : (Basis b, Basis c, Basis d) ⇒ Super b c → Super (b, d) (c, d)
first f ((b1, d1), (b2, d2)) = permute ((f (b1, b2)) 〈∗〉 (return (d1, d2)))
where permute v ((b1, b2), (d2, d2)) = v ((b1, d1), (b2, d2))

Yale CS Colloquium Page 41

Superoperators as a model of quantum computing

• The category of superoperators is known to be an adequate model

of quantum computation [Selinger]

• This work suggests that this category corresponds to a functional

language with arrows

• Can we accurately express quantum computation in a functional

language with arrows?

Yale CS Colloquium Page 42

Toffoli

toffoli : : Super (Bool ,Bool ,Bool) (Bool ,Bool ,Bool)
toffoli = let hadS = lin2super hadamard

cnotS = lin2super (controlled qnot)
cphaseS = lin2super (controlled phase)
caphaseS = lin2super (controlled (adjoint phase))

in proc (a0, b0, c0) → do
c1 ← hadS ≺ c0

(b1, c2) ← cphaseS ≺ (b0, c1)
(a1, b2) ← cnotS ≺ (a0, b1)
(b3, c3) ← caphaseS ≺ (b2, c2)
(a2, b4) ← cnotS ≺ (a1, b3)
(a3, c4) ← cphaseS ≺ (a2, c3)
c5 ← hadS ≺ c4

returnA ≺ (a3, b4, c5)

Yale CS Colloquium Page 43

Teleportation (I)

• Can write, type, reason about each component separately.

• Can incorporate measurement in the computation

•Main:

teleport : : Super (Bool ,Bool ,Bool) Bool
teleport = proc (eprL, eprR, q) → do

(m1,m2) ← alice ≺ (eprL, q)
q ′ ← bob ≺ (eprR,m1,m2)
returnA ≺ q ′

Yale CS Colloquium Page 44

Teleportation (II)

alice : : Super (Bool ,Bool) (Bool ,Bool)
alice = proc (eprL, q) → do

(q1, e1) ← lin2super (controlled qnot) ≺ (q , eprL)
q2 ← lin2super hadamard ≺ q1

((q3, e2), (m1,m2)) ← meas ≺ (q2, e1)
(m ′1,m

′
2) ← trL ((q3, e2), (m1,m2))

returnA ≺ (m ′1,m
′
2)

bob : : Super (Bool ,Bool ,Bool) Bool
bob = proc (eprR,m1,m2) → do

(m ′2, e1) ← lin2super (controlled qnot) ≺ (m2, eprR)
(m ′1, e2) ← lin2super (controlled z) ≺ (m1, e1)
q ′ ← trL ≺ ((m ′1,m

′
2), e2)

returnA ≺ q ′

Yale CS Colloquium Page 45

QML

Yale CS Colloquium Page 46

Why Haskell is not adequate

• There is more to quantum computation than a functional lan-

guage with arrows

• Cloning?

δ : : Super Bool (Bool , Bool)
δ = arr (\ x → (x , x))

•Weakening

weaken : : Super (Bool ,Bool) Bool
weaken = arr (\ (x , y) → y)

Yale CS Colloquium Page 47

Cloning

•Well-known “non-cloning” property of quantum states!

δ : : Super Bool (Bool , Bool)
δ = arr (\ x → (x , x))

• δ only clones classical information encoded in quantum data

• Applying δ to qFalse will give qFalse 〈∗〉 qFalse

• But applying δ to qFT does not produce qFT 〈∗〉 qFT ;

rather it produces epr

• One can think of it as cloning a pointer;

and sharing the quantum data.

Yale CS Colloquium Page 48

Weakening

• The definition weaken allows us to drop some values

weaken : : Super (Bool ,Bool) Bool
weaken = arr (\ (x , y) → y)

• Applying weaken to epr gives qFT

• But dropping a value amounts to measuring it, and if we measure

the left qubit of epr , we should be getting either qFalse or qTrue

or the mixed state of both measurements, but never qFT .

•Must prevent weakening

Yale CS Colloquium Page 49

QML [Altenkirch and Grattage]

• A functional language to model quantum computation

• Prevent weakening using strict linear logic

• Two semantics: translation to quantum circuits and translation

to superoperators

• Source language models irreversible computations; semantics (com-

piler) takes care of making everything reversible (by adding a

heap input and a garbage output)

Yale CS Colloquium Page 50

QML type system

•Must keep track of uses of variables

• Variables in the context that are not used must be measured:

x: σ, y: τ ` x{y}: σ

• Variables in the context can be used more than once

(by essentially applying δ)

Yale CS Colloquium Page 51

Using variables

• Does f use x?

f x = if x then qTrue else qTrue

• Depends on the semantics of if

• Classical control: measure the qubit x to get a classical boolean

value and then select appropriate branch

• Quantum control (if ◦): return the superposition of the branches

• Quantum control returns qTrue without using x

• The version with if ◦ must not be allowed to typecheck

Yale CS Colloquium Page 52

Quantum control & orthogonality

• In an if◦ expression, the superposition of e1 and e2 is calculated
using the probability amplitudes of the superposition of x :

if ◦ x then e1 else e2

• Basically if e1 and e2 are orthogonal then it is safe to replace the

superposition in x with the superposition of e1 and e2.

• This is ok:

f ′◦ x = if ◦ x then qTrue else qFalse

Yale CS Colloquium Page 53

Conclusions

• Fairly elegant semantic analysis

• Quantum computing =

functional language +

arrows (for parallelism and measurement) +

some kind of linear type system (to control weakening)

• Formalize the connections between QML and a functional lan-

guages with superoperators as arrows

• Still need to explain a few open issues

• Higher-order programs, infinite datatypes, etc

Yale CS Colloquium Page 54

