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Quantum mechanics

Real Black Magic Calculus — Albert Einstein

If quantum mechanics hasn’t profoundly shocked you, you

haven’t understood it yet — Niels Bohr

I think I can safely say that nobody today understands

quantum mechanics — Richard Feynman

I can’t possibly know what I am talking about — Amr Sabry
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Models of (quantum) computation

Abstract (Compositional) — Values and functions

Circuits — Vectors and matrices

Physics — Particle spins and electromagnetic fields
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Abstract models of (quantum) computation

Semantic foundation for functional quantum programming language:

• Category theory — categorical models of quantum computation

[Abramsky, Selinger, van Tonder]

• λ-calculus — quantum λ-calculus [Van Tonder]

• Domain theory, logic, etc — [Birkhoff, von Neumann]

• Haskell (not perfect but rich executable language)
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Plan

• Quantum computation (I): unitary operations on state vectors
• Embedding in Haskell using monads
• What to do with measurement?

• Quantum computation (II): superoperators on density matrices
• Arrows
• Embedding in Haskell using arrows

• QML [Altenkirch and Grattage]
• Open problems; related work; conclusions
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Quantum Computing (I)
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Example: Toffoli circuit
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• In this example, input is |TTF 〉
• After first step, state vector is a superposition |TTF 〉 + |TTT 〉
• Result: Negate the last bit
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Entanglement

• The state vector of multiple qubits can sometimes be teased into

the product of simpler state vectors:

|FF 〉 + |FT 〉 = |F 〉 ∗ (|F 〉 + |T 〉)

• If the qubits are entangled, this is impossible:

|FF 〉 + |TT 〉 6= (|F 〉 + |T 〉) ∗ (|F 〉 + |T 〉)
(or any other product we might try)

•Must basically manipulate the global state at all times

even if we want to apply an operation to only one qubit
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QCL [Knill]

• A global state with n qubits

• Registers are realized using pointers to the global state

• Apply operation U to register r using Π†.(U × I(n−m)).Π

where Π† is the inverse of Π and I is the identity

0 1 2 3 4

0 1

Global
state

Reg r

Π
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Flowchart notation [Selinger]

• A global state with n variables

that can be assigned once

• To apply operation U to part

of the state, use the same idea

that is used in QCL:

– re-order the variables to

bring relevant variables to

the front

– compose U with the iden-

tity and apply it to the entire

state

input q1,q2,q3 : qubit

qubit

permute φ 1

q1, q2, q3 :

q3, q2, q1: qubit

q3, q2, q1 *= 

q3, q2, q1: qubit

q2, q3, q1 : qubit

H x Id

cV x Idq2, q3, q1 *= 

permute φ 2

.

..
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Lambda-calculus extension [Valiron and Selinger]

Idea: the lambda term gives classical control over the quantum data

which is accessed via pointers to a global data structure.

• The state is a triple [Q,Qf , M ]

• Q is the state vector

•M is a lambda term with free variables

• Qf is a linking function which maps every free variable of M to

a qubit in Q
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Virtual values and adaptors [Sabry]

• Also uses a global state and pointers mediated using adaptors

• Hides the management of pointers using virtual values

• Adaptors can almost be derived from the types but their actual
generation is tedious and ugly

toffoli state =
let b = virt state adaptor0

mb = virt state adaptor1

tm = virt state adaptor2

tb = virt state adaptor3
in do app hadamard b

app cv mb
app cnot tm
app cvt mb
app cnot tm
app cv tb
app hadamard b
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Can we do better than pointers to a global state?

Common theme so far:

• A global state vector accessed via pointers

• Each operation transforms the global state to a new state

•Monads are often used to structure and reason about computa-

tional effects.

class Monad m where
return : : ∀ a. a → m a
(�=) : : ∀ a b. m a → (a → m b) → m b

• Is there a nice monad here?
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Embedding in Haskell using monads
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Finite sets

•We only consider computations over finite bases. For a type a to

be a type of observables, it needs to represent a finite set:

class Eq a ⇒ Basis a where basis : : [a ]
instance Basis Bool where basis = [False,True ]

• Can automatically construct more complicated sets (on demand):

instance (Basis a, Basis b) ⇒ Basis(a, b) where
basis = [(a, b) | a ← basis , b ← basis ]

• Programs at the end produce classical observable values:

False , (True,False), etc
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State vectors

• A state vector associates a complex probability amplitude with
each basis element:

type PA = Complex Double
type Vec a = a → PA

• Can add, substract, and multiply vectors: (definitions omitted)

vzero : : Vec a
(〈+〉) : : Vec a → Vec a → Vec a
(〈−〉) : : Vec a → Vec a → Vec a
($∗) : : PA → Vec a → Vec a
(〈∗〉) : : Vec a → Vec b → Vec (a, b)
(〈·〉) : : Basis a ⇒ Vec a → Vec a → PA
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Examples of vectors over Bool

• The simplest vector is a unit representing a basis element:

unit : : Basis a ⇒ a → Vec a
unit a = (\ b → if a == b then 1 else 0)

• The two basic unit vectors:

qFalse = unit False — in Dirac notation |0〉
qTrue = unit True — in Dirac notation |1〉

• Vector representing superpositions:

qFT = (1 / sqrt 2) $∗ (qFalse 〈+〉 qTrue) — 1√
2
(|0〉 + |1〉)

qFmT = (1 / sqrt 2) $∗ (qFalse 〈−〉 qTrue) — 1√
2
(|0〉 − |1〉)

Yale CS Colloquium Page 17



Examples of vectors over (Bool ,Bool)

• Using the tensor product:

p1 = qFalse 〈∗〉 qFT — in Dirac notation |0〉 ∗ ( 1√
2
(|0〉 + |1〉))

• Using the classical product over the basis:

qFF = unit (False,False) — in Dirac notation |00〉
qTT = unit (True,True) — in Dirac notation |11〉

• A vector representing the EPR pair 1√
2
(|00〉 + |11〉):

epr = (1 / sqrt 2) $∗ (qFF 〈+〉 qTT )
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Linear operators

• Given a function f : : a → Vec b, we can produce the

linear operator of type Vec a → Vec b

• Apply f to each basis element and accumulate the results:

linop : : Basis a ⇒ (a → Vec b) → (Vec a → Vec b)
linop f va = (\ b → sum [ (va a) ∗ (f a b) | a ← basis ])

• So we can define:

type Lin a b = a → Vec b
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Examples of linear operators

• Construct a linear operator from any pure function:

fun2lin : : (Basis a, Basis b) ⇒ (a → b) → Lin a b
fun2lin f a = unit (f a)

• Common linear operators on booleans:

qnot = fun2lin not

hadamard False = qFT
hadamard True = qFmT
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More linear operations

• Outer product:

(〉∗〈) : : Basis a ⇒ Vec a → Vec a → Lin a a
(v1 〉∗〈 v2) a1 a2 = v1 a1 ∗ conjugate (v2 a2)

• Composition:

o : : (Basis a, Basis b, Basis c) ⇒
Lin a b → Lin b c → Lin a c

o f g a = linop g (f a)

• Controlled-operations:

controlled : : Basis a ⇒
Lin a a → Lin (Bool , a) (Bool , a)

controlled f (b1, b2) = (unit b1) 〈∗〉 (if b1 then f b2 else unit b2)
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Almost a monad!

•We can define:

return : : Basis a ⇒ a → Vec a
return = unit

(�=) : : Basis a ⇒ Vec a → (a → Vec b) → Vec b
(va �= f ) = linop f va

• The right equations are satisfied

• The types are wrong: the extra constraints mean that the con-

struction is not universal. In Haskell terms, we cannot use the

do-notation

• Already observed [Mu and Bird, 2001] but in a system restricted

to manipulating lists of qubits
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Toffoli circuit

toffoli : : Lin (Bool ,Bool ,Bool) (Bool ,Bool ,Bool)
toffoli (top,middle, bottom) =
let cnot = controlled qnot

cphase = controlled phase

in hadamard bottom �= \ b1 →
cphase (middle, b1) �= \ (m1, b2) →
cnot (top,m1) �= \ (t1,m2) →
controlled (adjoint phase) (m2, b2) �= \ (m3, b3) →
cnot (t1,m3) �= \ (t2,m4) →
cphase (t2, b3) �= \ (t3, b4) →
hadamard b4 �= \ b5 →
return (t3,m4, b5)
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So far

• (Almost) monads can be used to structure quantum parallelism:

no explicit global state and pointers

• Connections to category theory, etc

• That’s the easy part . . . How do we deal with measurement?
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Measurement
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Measurement & collapse

Measuring qFT (= 1√
2
(|0〉 + |1〉)):

• returns 0 with probability 1/2

and as a side-effect collapses qFT to |0〉, or

• returns 1 with probability 1/2

and as a side-effect collapses qFT to |1〉
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Measurement & spooky action at a distance

Measuring the left qubit of epr : (= 1√
2
(|00〉 + |11〉)):

• returns 0 with probability 1/2

and as a side-effect collapses epr to |00〉, or

• returns 1 with probability 1/2

and as a side-effect collapses epr to |11〉

• The right qubit is affected even if physically distant!
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Ignore measurement?

•Measurements can always be delayed to the end;

many formalisms ignore them

•Mu and Bird use the IO monad to explain measurement;

cannot mix measurement with linear operations

• Can we deal with measurements in the formalism?
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Teleportation

Not

H

{EPR

Not Z

q

q

Alice Bob

m2

m1

Communication uses a classical channel, sending classical bits.
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Quantum Computing (II)
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State vectors have too much information

• Perhaps vectors are not expressive enough ?

• Vector is exact state of the system but much of the information

in the state is not observable

• Take qFT and measure it. The result is either:

1√
2
|0〉 or

1√
2
|1〉

• Apply Hadamard to the result:

1√
2
(|0〉 + |1〉) or

1√
2
(|0〉 − |1〉)

• The two configurations are indistinguishable

(observationally equivalent)
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Density matrices

• Statistical perspective of the state vector

• Technically, we use the outer product:

type Dens a = Vec (a, a)

pureD : : Basis a ⇒ Vec a → Dens a
pureD v = lin2vec (v 〉∗〈 v)

• Examples:

qFalse qTrue qFT

|0〉 |1〉 1√
2
(|0〉 + |1〉)

(

1 0
0 0

) (

0 0
0 1

) (

1/2 1/2

1/2 1/2

)
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Density matrices and measurement

•When we measure qFT ( 1√
2
(|0〉 + |1〉)) we get:

False with probability 1/2, or True with probability 1/2:
(

1/2 0
0 0

)

+

(

0 0
0 1/2

)

=

(

1/2 0
0 1/2

)

• The density matrix can represent a mixed state

• Operations are linear:

H

(

1/2 0
0 1/2

)

= H

(

1/2 0
0 0

)

+ H

(

0 0
0 1/2

)

=

(

1/2 0
0 1/2

)

• The two states are indeed observationally equivalent.

Yale CS Colloquium Page 33



Superoperators

• Every linear operator can be lifted to an operator on density

matrices

• Such operators are called superoperators:

type Super a b = (a, a) → Dens b

lin2super : : (Basis a, Basis b) ⇒ Lin a b → Super a b
lin2super f (a1, a2) = (f a1) 〈∗〉 (dual (adjoint f ) a2)

where dual f a b = f b a
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Tracing and measurement

• trL measures and “forgets” the result of measurement
meas measures and returns the result of measurement

trL : : (Basis a, Basis b) ⇒ Super (a, b) b
trL ((a1, b1), (a2, b2)) = if a1 == a2 then return (b1, b2) else vzero

meas : : Basis a ⇒ Super a (a, a)
meas (a1, a2) = if a1 == a2 then return ((a1, a1), (a1, a1)) else vzero

•Measuring qFT and forgetting the collapsed quantum state:

pureD qFT �= meas �= trL

evaluates to:
(

1/2 0
0 1/2

)

Yale CS Colloquium Page 35



No longer a monad

• At least we can’t prove it is a monad

• Superoperators do not form a basis

•We seem to have lost all our structure
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Arrows
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A generalization of monads

class Arrow a where
arr : : (b → c) → a b c
(≫) : : a b c → a c d → a b d
first : : a b c → a (b, d) (c, d)

f
b c b c d

f g fb

d d

c

>>> firstarr

(b)(a) (c)
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More about arrows

Look up excellent work at Yale
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Embedding in Haskell using arrows
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Superoperators are arrows

Well . . . almost: the types have additional constraints

arr : : (Basis b, Basis c) ⇒ (b → c) → Super b c
arr f = fun2lin (\ (b1, b2) → (f b1, f b2))

(≫) : : (Basis b, Basis c, Basis d) ⇒
Super b c → Super c d → Super b d

(≫) = o

first : : (Basis b, Basis c, Basis d) ⇒ Super b c → Super (b, d) (c, d)
first f ((b1, d1), (b2, d2)) = permute ((f (b1, b2)) 〈∗〉 (return (d1, d2)))
where permute v ((b1, b2), (d2, d2)) = v ((b1, d1), (b2, d2))
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Superoperators as a model of quantum computing

• The category of superoperators is known to be an adequate model

of quantum computation [Selinger]

• This work suggests that this category corresponds to a functional

language with arrows

• Can we accurately express quantum computation in a functional

language with arrows?
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Toffoli

toffoli : : Super (Bool ,Bool ,Bool) (Bool ,Bool ,Bool)
toffoli = let hadS = lin2super hadamard

cnotS = lin2super (controlled qnot)
cphaseS = lin2super (controlled phase)
caphaseS = lin2super (controlled (adjoint phase))

in proc (a0, b0, c0) → do
c1 ← hadS ≺ c0

(b1, c2) ← cphaseS ≺ (b0, c1)
(a1, b2) ← cnotS ≺ (a0, b1)
(b3, c3) ← caphaseS ≺ (b2, c2)
(a2, b4) ← cnotS ≺ (a1, b3)
(a3, c4) ← cphaseS ≺ (a2, c3)
c5 ← hadS ≺ c4

returnA ≺ (a3, b4, c5)
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Teleportation (I)

• Can write, type, reason about each component separately.

• Can incorporate measurement in the computation

•Main:

teleport : : Super (Bool ,Bool ,Bool) Bool
teleport = proc (eprL, eprR, q) → do

(m1,m2) ← alice ≺ (eprL, q)
q ′ ← bob ≺ (eprR,m1,m2)
returnA ≺ q ′
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Teleportation (II)

alice : : Super (Bool ,Bool) (Bool ,Bool)
alice = proc (eprL, q) → do

(q1, e1) ← lin2super (controlled qnot) ≺ (q , eprL)
q2 ← lin2super hadamard ≺ q1

((q3, e2), (m1,m2)) ← meas ≺ (q2, e1)
(m ′1,m

′
2) ← trL ((q3, e2), (m1,m2))

returnA ≺ (m ′1,m
′
2)

bob : : Super (Bool ,Bool ,Bool) Bool
bob = proc (eprR,m1,m2) → do

(m ′2, e1) ← lin2super (controlled qnot) ≺ (m2, eprR)
(m ′1, e2) ← lin2super (controlled z ) ≺ (m1, e1)
q ′ ← trL ≺ ((m ′1,m

′
2), e2)

returnA ≺ q ′
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QML
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Why Haskell is not adequate

• There is more to quantum computation than a functional lan-

guage with arrows

• Cloning?

δ : : Super Bool (Bool , Bool)
δ = arr (\ x → (x , x ))

•Weakening

weaken : : Super (Bool ,Bool) Bool
weaken = arr (\ (x , y) → y)
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Cloning

•Well-known “non-cloning” property of quantum states!

δ : : Super Bool (Bool , Bool)
δ = arr (\ x → (x , x ))

• δ only clones classical information encoded in quantum data

• Applying δ to qFalse will give qFalse 〈∗〉 qFalse

• But applying δ to qFT does not produce qFT 〈∗〉 qFT ;

rather it produces epr

• One can think of it as cloning a pointer;

and sharing the quantum data.
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Weakening

• The definition weaken allows us to drop some values

weaken : : Super (Bool ,Bool) Bool
weaken = arr (\ (x , y) → y)

• Applying weaken to epr gives qFT

• But dropping a value amounts to measuring it, and if we measure

the left qubit of epr , we should be getting either qFalse or qTrue

or the mixed state of both measurements, but never qFT .

•Must prevent weakening
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QML [Altenkirch and Grattage]

• A functional language to model quantum computation

• Prevent weakening using strict linear logic

• Two semantics: translation to quantum circuits and translation

to superoperators

• Source language models irreversible computations; semantics (com-

piler) takes care of making everything reversible (by adding a

heap input and a garbage output)
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QML type system

•Must keep track of uses of variables

• Variables in the context that are not used must be measured:

x: σ, y: τ ` x{y}: σ

• Variables in the context can be used more than once

(by essentially applying δ)
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Using variables

• Does f use x?

f x = if x then qTrue else qTrue

• Depends on the semantics of if

• Classical control: measure the qubit x to get a classical boolean

value and then select appropriate branch

• Quantum control (if ◦): return the superposition of the branches

• Quantum control returns qTrue without using x

• The version with if ◦ must not be allowed to typecheck
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Quantum control & orthogonality

• In an if◦ expression, the superposition of e1 and e2 is calculated
using the probability amplitudes of the superposition of x :

if ◦ x then e1 else e2

• Basically if e1 and e2 are orthogonal then it is safe to replace the

superposition in x with the superposition of e1 and e2.

• This is ok:

f ′◦ x = if ◦ x then qTrue else qFalse
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Conclusions

• Fairly elegant semantic analysis

• Quantum computing =

functional language +

arrows (for parallelism and measurement) +

some kind of linear type system (to control weakening)

• Formalize the connections between QML and a functional lan-

guages with superoperators as arrows

• Still need to explain a few open issues

• Higher-order programs, infinite datatypes, etc
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