
Information Effects

Roshan P. James
Indiana University

rpjames@indiana.edu

Amr Sabry
Indiana University
sabry@indiana.edu

Abstract
Computation is a physical process which, like all other physical
processes, is fundamentally reversible. From the notion of type iso-
morphisms, we derive a typed, universal, and reversible computa-
tional model in which information is treated as a linear resource
that can neither be duplicated nor erased. We use this model as
a semantic foundation for computation and show that the “gap”
between conventional irreversible computation and logically re-
versible computation can be captured by a type-and-effect system.
Our type-and-effect system is structured as an arrow metalanguage
that exposes creation and erasure of information as explicit effect
operations. Irreversible computations arise from interactions with
an implicit information environment, thus making them a derived
notion, much like open systems in Physics. We sketch several appli-
cations which can benefit from an explicit treatment of information
effects, such as quantitative information-flow security and differen-
tial privacy.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]; F.3.2 [Semantics of Programming Languages];
F.3.3 [Studies of Program Constructs]: Type structure

General Terms Languages, Theory

Keywords Arrows, Linear logic, Quantum computing, Reversible
logic.

1. Introduction
“Turing hoped that his abstracted-paper-tape model was
so simple, so transparent and well defined, that it would
not depend on any assumptions about physics that could
conceivably be falsified, and therefore that it could become
the basis of an abstract theory of computation that was
independent of the underlying physics. ‘He thought,’ as
Feynman once put it, ‘that he understood paper.’ But he
was mistaken. Real, quantum-mechanical paper is wildly
different from the abstract stuff that the Turing machine
uses. The Turing machine is entirely classical, and does
not allow for the possibility the paper might have different
symbols written on it in different universes, and that those
might interfere with one another.” [11, p.252]

The above quote by David Deutsch, originally stated in the con-
text of quantum computing, stems from the observation that even

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’12, January 25–27, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1083-3/12/01. . . $10.00

the most abstract models of computation embody some laws of
Physics. Indeed, conventional classical models of computation, in-
cluding boolean logic, the Turing machine, and the λ-calculus, are
founded on primitives which correspond to irreversible physical
processes. For example, a nand gate is an irreversible logical op-
eration in the sense that its inputs cannot generally be recovered
from observing its output, and so is the operation of overriding a
cell on a Turing machine tape with a new symbol, and so is a β-
reduction which typically erases or duplicates values in a way that
is destructive and irreversible.

Our main thesis is that by embodying irreversible physical prim-
itives, conventional abstract models of computation have also inad-
vertently included some implicit computational effects, which we
call information effects. As a consequence of this approach, many
applications in which information manipulation is computationally
significant are put beyond the reach of our conceptual model of
computation. Such applications include quantitative information-
flow security [42], differential privacy [14], energy-aware comput-
ing [29, 48], VLSI design [30], and biochemical models of compu-
tation [9].

In more detail, in Physics, the fundamental laws describe pro-
cesses in closed systems where every action is reversible. Open
systems, which allow irreversible processes, are a derived notion
— they can be considered as a subsystem of a closed system which
treats the rest of the system as a global environment. Pushing the
analogy to computation, and as the remainder of the paper formal-
izes, an irreversible computation can therefore be considered as
one that interacts with some global environment via implicit com-
putational effects. Put differently, irreversible computational mod-
els like the λ-calculus embody some implicit computational effects
which, following the tradition of programming language research,
we find useful to expose and study as first-class entities.

Structure and Main Results.
• We develop a pure reversible model of computation that, un-

like many other models, does not pre-suppose an existing irre-
versible model. Our model is obtained from the type isomor-
phisms and categorical structures that underlie models of linear
logic and quantum computing. Technically, the model treats in-
formation as a linear resource that can neither be erased nor
duplicated in a way that is reminiscent of forbidding contrac-
tion and weakening in linear logic and the no-cloning and no-
deleting theorems of quantum mechanics.1

• We develop an arrow metalanguage that layers effects on top
of the pure reversible model above using an arrow abstract
type [24]. These arrow effects consist of an explicit erase
operation that can be used to discard values and an explicit
create operation which can be used to introduce and duplicate

1 An embedding of our reversible programming model in Haskell along with
several examples can be downloaded from http://www.cs.indiana.
edu/~sabry/papers/Pi.hs.

73

values. This construction has the immediate benefit that the
information effects are exposed and tracked by the type system.

• We show how to translate a Turing-complete first-order func-
tional language with loops to our reversible model. The transla-
tion exposes the implicit erasure and duplication of information
in the source language as explicit computational effects. The
translation and its associated correctness proof constitute the
main technical contribution of the paper.

• We establish connections to, and explore how, the explicit treat-
ment of information effects can benefit applications such as
quantitative information-flow security and differential privacy.

2. Logical Reversibility and Information
We review the notion of logical reversibility and its connection to
information.

2.1 Reversible Logic
Toffoli’s pioneering work on reversible models of computation [44]
established the following fundamental theorem.

THEOREM 2.1 (Toffoli). For every finite function φ : boolm →
booln there exists an invertible finite function φR : boolr+m →
boolr+m, with r ≤ n, such that φ(x1, . . . , xm) = (y1, . . . , yn) iff

φR(x1, . . . , xm,

r︷ ︸︸ ︷
false, . . . , false) = (

m+r−n︷︸︸︷. . . , y1, . . . , yn)

The proof of the theorem is constructive. Intuitively, the function φ
is “compiled” to a reversible function φR which takes extra argu-
ments and produces extra results. When the extra arguments are
each fixed to the constant value false and the extra results are
ignored, the reversible function behaves exactly like the original
function. For example, the function and : bool2 → bool can be
compiled to the function toffoli : bool3 → bool3 which behaves
as follows:

toffoli(v1, v2, v3) =
if (v1 and v2) then (v1, v2,not(v3)) else (v1, v2, v3)

A quick examination of the truth table of the toffoli function shows
that it is reversible. Moreover, we can check that:

toffoli(v1, v2, false) =
if (v1 and v2) then (v1, v2, true) else (v1, v2, false)

which confirms that we can recover and if we ignore the first two
outputs.

Toffoli’s fundamental theorem already includes some of the
basic ingredients of our results. Specifically, it establishes that:

• it is possible to base the computation of finite functions on
reversible functions;

• irreversible functions are special cases of reversible functions
which interact with a global heap (which supplies the fixed
constant values) and a global garbage dump (which absorbs the
undesired results); and

• it is possible to translate irreversible functions to reversible
functions to expose the heap and garbage.

In this context, our results can be seen as extending Toffoli’s in the
following ways:

• Instead of working with truth tables, we work with a rich type
structure and use (partial) bijections between the types;

• We introduce term languages for irreversible and reversible
computations and develop a type-directed compositional trans-
lation;

• We extend the entire framework to deal with infinite functions,
e.g., on the natural numbers.

• We establish that the manipulations of the heap and the garbage
constitute computational effects that can be tracked by the type
system.

2.2 Thermodynamics of Computation and Information
Toffoli’s work was performed in the context of the work of Lan-
dauer [28] and Bennett [7] that established the remarkable result,
known as the Landauer principle, relating irreversible computa-
tions to increase in information uncertainty (entropy).

DEFINITION 2.2 (Entropy of a variable). Let ‘b’ be a (not neces-
sarily finite) type whose values are labeled b1, b2, Let ξ be a
random variable of type b that is equal to bi with probability pi.
The entropy of ξ is defined as −

∑
pi log pi.

DEFINITION 2.3 (Output entropy of a function). Consider a func-
tion f : b1 → b2 where b2 is a (not necessarily finite) type whose
values are labeled b12, b

2
2, The output entropy of the function is

given by −
∑
qj log qj where qj indicates the probability of the

output of the function to have value b2j .

DEFINITION 2.4. We say a function is information-preserving if its
output entropy is equal to the entropy of its input.

For example, consider a variable ξ of type bool × bool . The
information content of this variable depends on the probability
distribution of the four possible bool × bool values. If we have a
computational situation in which the pair (false, false) could occur
with probability 1/2, the pairs (false, true) and (true, false) can
each occur with probability 1/4, and the pair (true, true) cannot
occur, the information content of ξ would be:

1/2 log 2 + 1/4 log 4 + 1/4 log 4 + 0 log 0

which equals 1.5 bits of information. If, however, the four possible
pairs had an equal probability, the same formula would calculate
the information content to be 2 bits, which is the maximal amount
for a variable of type bool × bool . The minimum entropy 0 corre-
sponds to a variable that happens to be constant with no uncertainty.

Now consider the bool → bool function not . Let pF and pT
be the probabilities that the input is false or true respectively.
The outputs occur with the reverse probabilities, i.e., pT is the
probability that the output is false and pF is the probability that
the output is true . Hence the output entropy of the function is
−pF log pF − pT log pT which is the same as the input entropy
and the function is information-preserving. As another example,
consider the bool → bool function constT (x) = true which dis-
cards its input. The output of the function is always true with no
uncertainty, which means that the output entropy is 0, and that the
function is not information-preserving. As a third example, con-
sider the function and and let the inputs occur with equal probabil-
ities, i.e., let the entropy of the input be 2. The output is false with
probability 3/4 and true with probability 1/4, which means that
the output entropy is about 0.8 and the function is not information-
preserving. As a final example, consider the bool → bool × bool
function fanout (x) = (x, x) which duplicates its input. Let the
input be false with probability pF and true be probability pT . The
output is (false, false) with probability pF and (true, true) with
probability pT which means that the output entropy is the same as
the input entropy and the function is information-preserving.

2.3 Logical Reversibility
We are now ready to formalize the connection between reversibility
and entropy, once we define logical reversibility of computations.

DEFINITION 2.5 (Logical reversibility [49]). A function f : b1 →
b2 is logically reversible if there exists an inverse function g :

74

b2 → b1 such that for all values v1 ∈ b1 and v2 ∈ b2, we have:
f(v1) = v2 iff g(v2) = v1.

The main proposition that motivates and justifies our approach is
that logically reversible functions are information-preserving.

PROPOSITION 2.6. A function is logically reversible iff it is infor-
mation-preserving.

Looking at the examples above, we argued that constT , and are
not information-preserving and that not , fanout are information-
preserving. As expected, neither constT nor and are logically re-
versible and not is logically reversible. The situation with fanout
is however subtle and deserves some explanation. First, note that
the definition of logical reversibility does not require the functions
to be total, and hence it is possible to define a partial function fanin
that is the logical inverse of fanout . The function fanin maps
(false, false) to false , (true, true) to true and is undefined oth-
erwise. Arguing that partial functions like fanin are information-
preserving requires some care. Let the inputs to fanin occur with
equal probabilities, i.e., let the entropy of the input be 2. Disre-
garding the partiality of fanin , one might reason that the output is
false with probability 1/4 and true with probability 1/4 and hence
that the output entropy is 1 which contradicts the fact that fanin is
logically reversible. The subtlety is that entropy is defined with re-
spect to observing some probabilistic event: an infinite loop is not
an event that can be observed and hence the entropy analysis, just
like the definition of logical reversibility, only applies to the pairs
of inputs and outputs on which the function is defined. In the case
of fanin this means that the only inputs that can be considered are
(false, false) and (true, true) and in this case it is clear that the
function is information-preserving as expected.

Intermezzo. Linear logic [18] is often used as a framework for
controlling resource use. Linearity however must not be confused
with the criterion of information preservation presented here. Con-
sider constT ′(x) = if x then true else true which is exten-
sionally equivalent to the constant function constT (x) = true
above. In a linear type system that tracks the syntactic occurrences
of variables, constT ′ would be deemed acceptable because x is
linearly used. However as shown above the function constT is not
information-preserving. Despite this difference, there does however
appear to be some deep connections between linear logic and the
physical notions of reversible and quantum computing. Indeed as
Girard explains [18, pp. 6,17], linear logic embodies a simple and
radical change of viewpoint from other logics and this change has
a physical flavor.

3. Bijections: Π
Building on the insights of Toffoli, we now turn our attention
to defining a logically reversible language with a type structure
and a term language. A natural starting point for such a language
is the notion of type isomorphisms. In this section, we restrict
ourselves to isomorphisms between finite types and show that they
naturally lead to a simple programming language which we call Π.
In addition to presenting the syntax, type system, and semantics
of Π, we establish that Π is universal for reversible combinational
circuits.

3.1 Types
The set of finite types b is constructed using sums and products of
the primitive type 1. We have the following syntax for types and
values:

value types, b ::= 1 | b+ b | b× b
values, v ::= () | left v | right v | (v, v)

The type 1 has exactly one inhabitant called (). Sums allow
us to create values that we can distinguish using left and right
constructors and pairs allow the encoding of tuples. Thus we have
the type judgements:

` () : 1

` v1 : b1 ` v2 : b2
` (v1, v2) : b1 × b2

` v : b1
` left v : b1 + b2

` v : b2
` right v : b1 + b2

Two types b1 and b2 are isomorphic if we can construct a
bijective map between their values. The set of sound and complete
isomorphisms for finite types is the congruence closure of the
following primitive isomorphisms [15]:

b1 + b2 ↔ b2 + b1
b1 + (b2 + b3) ↔ (b1 + b2) + b3

1× b ↔ b
b1 × b2 ↔ b2 × b1

b1 × (b2 × b3) ↔ (b1 × b2)× b3

(b1 + b2)× b3 ↔ (b1 × b3) + (b2 × b3)

These isomorphisms are already familiar to us from arithmetic
or logic (reading 1 as true ,× as conjunction, and + as disjunction).
Note however that the isomorphisms do not include some familiar
logical tautologies, in particular:

b× b 6↔ b
b1 + (b2 × b3) 6↔ (b1 + b2)× (b1 + b3)

Even though these identities are expected in propositional logic,
they are not satisfied in standard arithmetic nor in any logic that
accounts for resources like linear logic.

3.2 Syntax and Semantics
We turn the above isomorphisms into a programming language by
associating primitive operators corresponding to the left-to-right
and right-to-left reading of each isomorphism. We gather these
operators into the table below:

swap+ : b1 + b2 ↔ b2 + b1 : swap+

assocl+ : b1 + (b2 + b3)↔ (b1 + b2) + b3 : assocr+

unite : 1× b↔ b : uniti
swap× : b1 × b2 ↔ b2 × b1 : swap×

assocl× : b1 × (b2 × b3)↔ (b1 × b2)× b3 : assocr×

distrib :(b1 + b2)× b3 ↔ (b1 × b3) + (b2 × b3): factor

Each line of this table is to be read as the definition of one or two
operators. For example, the third line declares the two operators
unite : 1× b↔ b and uniti : b↔ 1× b. Each of the two cases of
commutativity defines one operator that is its own inverse.

Now that we have primitive operators we need some means
of composing them. We construct the composition combinators
out of the closure conditions for isomorphisms. Thus we have
program constructs that witness reflexivity id , symmetry sym , and
transitivity #, and two parallel composition combinators, one for
sums and one for pairs.

id : b↔ b

c : b1 ↔ b2
sym c : b2 ↔ b1

c1 : b1 ↔ b2 c2 : b2 ↔ b3
c1 # c2 : b1 ↔ b3

c1 : b1 ↔ b3 c2 : b2 ↔ b4
c1 + c2 : b1 + b2 ↔ b3 + b4

c1 : b1 ↔ b3 c2 : b2 ↔ b4
c1 × c2 : b1 × b2 ↔ b3 × b4

75

DEFINITION 3.1. (Syntax of Π) We collect our types, values, and
combinators, to get the full language definition.

value types, b ::= 1 | b+ b | b× b
values, v ::= () | left v | right v | (v, v)

comb. types, t ::= b↔ b
iso ::= swap+ | assocl+ | assocr+

| unite | uniti
| swap× | assocl× | assocr×

| distrib | factor
comb., c ::= iso | id | sym c | c # c | c+ c | c× c

By design, every program construct c : b1 ↔ b2 has an adjoint
c† : b2 ↔ b1 that works in the other direction. Given a program
c : b1 ↔ b2 in Π, we can run it by supplying it with a value v1 : b1.
The evaluation rules c v1 7→ v2 for the primitive isomorphisms are
given below:

swap+ (left v) 7→ right v

swap+ (right v) 7→ left v

assocl+ (left v1) 7→ left (left v1)

assocl+ (right (left v2)) 7→ left (right v2)

assocl+ (right (right v3)) 7→ right v3
assocr+ (left (left v1)) 7→ left v1
assocr+ (left (right v2)) 7→ right (left v2)
assocr+ (right v3) 7→ right (right v3)

unite ((), v) 7→ v
uniti v 7→ ((), v)

swap× (v1, v2) 7→ (v2, v1)
assocl× (v1, (v2, v3)) 7→ ((v1, v2), v3)

assocr× ((v1, v2), v3) 7→ (v1, (v2, v3))
distrib (left v1, v3) 7→ left (v1, v3)
distrib (right v2, v3) 7→ right (v2, v3)
factor (left (v1, v3)) 7→ (left v1, v3)
factor (right (v2, v3)) 7→ (right v2, v3)

The semantics of composition combinators is:

id v 7→ v

c†v1 7→ v2

(sym c) v1 7→ v2

c1 v1 7→ v c2 v 7→ v2

(c1 # c2) v1 7→ v2

c1 v1 7→ v2

(c1 + c2) (left v1) 7→ left v2

c2 v1 7→ v2

(c1 + c2) (right v1) 7→ right v2

c1 v1 7→ v3 c2 v2 7→ v4

(c1 × c2) (v1, v2) 7→ (v3, v4)

The use of the sym constructor uses the adjoint to reverse the
program. We can now verify that the adjoint of each construct c
is its inverse in the sense that the evaluation of the adjoint maps the
output of c to its input. This property is a strong version of logical
reversibility in which the inverse of a program is simply obtained
by the adjoint operation.

PROPOSITION 3.2 (Logical Reversibility). c v 7→ v′ iff c†v′ 7→ v.

3.3 Expressiveness
There are several universal primitives for conventional (irreversible)
hardware circuits (for example, nand and fanout). In the case of
reversible hardware circuits, the canonical universal primitive is the
toffoli gate (mentioned in Sec. 2.1) which we can express in Π as
shown below. Let us start with encoding booleans. The type 1 + 1
is the type of booleans with left () representing true and right ()
representing false . Boolean negation not is simply swap+. The
Toffoli gate takes three boolean inputs: if the first two inputs are
true then the third bit is negated. Even though Π lacks conditional
expressions, they are expressible using the distributivity laws as we
demonstrate. Given any combinator c : b ↔ b we can construct
a combinator called if c : bool × b ↔ bool × b in terms of c,
where if c behaves like a one-armed if -expression. If the supplied
boolean is true then the combinator c is used to transform the value

of type b. If the boolean is false , then the value of type b remains
unchanged. We can write down the combinator for if c in terms of c
as distrib # ((id × c) + id) # factor .

Let us look at the combinator pictorially as if it were a circuit
and values are like particles that flow through this circuit. The
diagram below shows the input value of type (1 + 1)× b processed
by the distribute operator distrib, which converts it into a value of
type (1 × b) + (1 × b). In the left branch, which corresponds to
the case when the boolean is true (i.e. the value was left ()), the
combinator c is applied to the value of type b. The right branch
which corresponds to the boolean being false passes along the
value of type b unchanged.

1

b

(1+1)xb(1+1)xb Y Y

1

c
b b

+

le
ft

ri
g
h
t

We will be seeing many more such wiring diagrams in this paper
and it is useful to note some conventions about them. Wires indicate
a value that can exist in the program. Each wire, whenever possible,
is annotated with its type and sometimes additional information to
help clarify its role. When multiple wires run in parallel, it means
that those values exist in the system at the same time, indicating
pair types. When there is a disjunction, we put a + between the
wires. Combinators for distribution distrib and factoring factor
are represented as triangles. Other triangles may be used and, in
each case, types or labels will be used to clarify their roles. Finally,
we don’t draw boxes for combinators such as id , commutativity,
and associativity, but instead just shuffle the wires as appropriate.

The combinator ifnot has type bool × bool ↔ bool × bool
and negates its second argument if the first argument is true . This
gate ifnot is often referred to as the cnot gate. If we iterate this
construction once more, the resulting combinator if cnot has type
bool × (bool × bool)↔ bool × (bool × bool). The resulting gate
checks the first argument and if it is true , proceeds to check the
second argument. If that is also true then it will negate the third
argument. Thus if cnot is the required Toffoli gate.

4. Partial Bijections: Πo

We extend Π with recursive types and a family of looping opera-
tors. The resulting language, Πo, is still a language of bijections
but, because it can express infinite loops, the bijections may be par-
tial. Despite this extension, the strong version of logical reversibil-
ity (Prop. 3.2) still holds for Πo.

4.1 Isorecursive Types and Trace Operators
We extend Π in two dimensions: (i) by adding recursive types
and (ii) by adding looping constructs. The combination of the two
extensions makes the extended language, Πo, expressive enough to
write arbitrary looping programs, including non-terminating ones.

DEFINITION 4.1. (Syntax of Πo) We extend Def. 3.1 as follows:

value types, b ::= ... | µx.b | x
values, v ::= ... | 〈v〉

combinator types, t ::= b
 b
isomorphisms, iso ::= ... | fold | unfold

combinators, c ::= ... | trace c

The remainder of this section explains the new additions in detail.
First, as we illustrate below, it is possible to write infinite loops

76

in Πo and hence the combinators may correspond to partial bijec-
tions. We distinguish the type of partial bijections from the previous
type of total bijections by using the symbol
 instead of↔.

Isorecursive Types. The finite types are extended with isorecur-
sive types µx.b. These types fit naturally within the framework of a
reversible language as they come equipped with two isomorphisms
fold and unfold that witness the equivalence of a value of a recur-
sive type with all its “unrollings:”

fold : b[µx.b/x]
 µx.b : unfold

To create recursive values, we introduce the notation 〈v〉 with
the following type rule:

` v : b[µx.b/x]

` 〈v〉 : µx.b

In other words, to construct a value of type µx.b, we must first
have a value of type b[µx.b/x]. Depending on the structure of b,
this may or not be possible. For example, if the recursive type is
µx.x then to construct a value of that type, we need to have a value
of the same type, ad infinitum. In contrast, if the recursive type
is µx.1 + x, then we can create the initial value left () of type
1 + (µx.1 + x) which leads to the value 〈left ()〉 of type µx.1 + x
and then 〈right 〈left ()〉〉, 〈right 〈right 〈left ()〉〉〉 and so on. In
fact, the type µx.1 + x represents the natural numbers in unary
format. The semantics of fold and unfold is simply fold v 7→ 〈v〉
and unfold 〈v〉 7→ v.

Trace Operators. Traced categories [25] have proved useful for
modeling recursion [21]. In the context of Π, the fundamental idea
is to add a trace operator with this typing rule:

c : b1 + b2
 b1 + b3
trace c : b2
 b3

 c

3b2b

1b

Intuitively, we are given a computation c that accepts a value of
type b1 + b2 and we build a looping version trace c that only takes
a value of type b2. As the diagram illustrates, the value of type b2
is injected into the sum type b1 + b2 by tagging it with the right
constructor. The tagged value is passed to c. As long as c returns a
value that is tagged with left , that tagged value is fed back to c. As
soon as a value tagged with right is returned, that value is returned
as the final answer of the trace c computation. Formally, we can
express this semantics as follows:

(c # loopc) (right v1) 7→ v2

(trace c) v1 7→ v2

(c # loopc) (left v1) 7→ v2

loopc (left v1) 7→ v2

loopc (right v) 7→ v

where for each c, loopc is an internal cyclic version of c.
As before, each combinator has an adjoint and the language is

reversible.

PROPOSITION 4.2 (Logical Reversibility). c v 7→ v′ iff c†v′ 7→ v.

Proof. The operators fold and and unfold are adjoint to each other.
The adjoint of trace c is trace c†.

4.2 Expressiveness
We now present several programming examples that illustrate the
expressiveness of Πo. These examples are interesting in their own
right and are further developed in the accompanying Haskell code
which includes implementations of various recursive functions on
numbers and lists. Of more immediate relevance however is that

these examples establish idiomatic constructions used to compile
conventional source language constructs to Πo as explained in the
next sections.

In the code below we use bool as abbreviation for 1 + 1 and
nat as abbreviation for µx.1 + x. In most cases, we present the
examples using diagrams — the full details are included in the
accompanying Haskell code.

Bounded Iteration. The simplest class of examples takes a num-
ber n and iterates a particular combinator n times. For example, it
is possible to write a function even? : nat × bool
 nat × bool
which, given inputs (n, b), reveals whether n is even or odd by it-
erating not n-times starting with b. The iteration is realized using
trace as shown in the diagram below (where we have omitted the
boxes for fold and unfold):

Y

Y

not

naty :
natx :

bool

1 1

bool

naty :

naty :

boolbool

natx :
bool

natx :

Partiality. The combinator just : b
 1+b below injects a value
into a larger type. This combinator is significant because it shows
that Πo admits non-terminating computations as the adjoint of just
diverges on left ():

unfold

bb

nat

nat

nat

1

+

+ +

Using just , we can conveniently write add1 and sub1 as
add1 = just # fold and sub1 = sym add1. (The definition implies
that sub1 0 diverges.) We can also create, for any particular value v,
a constant function returning v. For example, we can trivially write
functions that introduce the values false and true as:

introF , introT : 1
 bool
introF = just
introT = just # not

Given these functions, we can inject a value into a left or right
summand. For example,

injectR : a
 a+ a
injectR = uniti # (introF × id) # distrib # (unite + unite)

We can introduce 0 as follows:
introZ : 1
 nat
introZ = trace (swap+ # fold # injectR)

Similarly, we can also introduce an empty list of any type. More
precisely, let the encoding of lists be [b] ≡ µx.1 + b × x. Given
a type b and a combinator introConstb to introduce a constant of
type b, we can write introNil : 1
 [b] which introduces an empty
list of type [b]. Adding an element to a list can be achieved using a
construction that is similar to add1; accessing the head and tail of
a list can be realized using constructions that are similar to sub1.

5. Source Language
Having designed Πo as a language that embodies the physical idea
of reversibility, we now wish to demonstrate how irreversible pro-
gramming language constructs correspond to open systems which
implicitly communicate with a global heap and garbage dump. To
make this idea concrete, we need a canonical irreversible language.

77

We use for that purpose a simply-typed, first-order functional lan-
guage with sums and pairs and for loops. The language is fairly
conventional and is presented without much discussion.

We present this language as two fragments: the first of these,
LET, is strongly normalizing, and the second, LETo, includes
natural numbers and for loops for iteration.

The syntax of LET is given below:

Base types, b = 1 | b+ b | b× b
Values, v = () | left v | right v | (v, v)

Expressions, e = () | x | let x = e1 in e2

| left e | right e
| case e x.e1 x.e2

| fst e | snd e | (e, e)
Type environments,Γ = ε | Γ, x : b

Environments, ρ = ε | ρ;x = v

The most interesting aspect of LET is that expressions may freely
erase and duplicate data in irreversible ways.

The extended language, LETo, includes additionally nats, op-
erations on nats and a for loop:

Base types, b = ... | nat
Values, v = ... | n

Expressions, e = ... | n | add1 e | sub1 e | iszero? e
| for x = e1 if e2 do e3

The most interesting aspect of the extended language LETo is that
it admits partial functions. Its type system is entirely conventional
except for the rule below:

Γ ` e1 : b Γ, x : b ` e2 : bool Γ, x : b ` e3 : b

Γ ` for x = e1 if e2 do e3 : b

Here is an example of iterative addition of two numbers n and m
in this syntax:

snd (for x = (n,m) if not (iszero? (fst x))
do (sub1 (fst x), add1 (snd x)))

The not operator over the type bool = 1+1 can be macro encoded
as not x = case x [y.right ()] [y.left ()].

For the semantics, we say eval let(e) = v if 〈e, ε〉 7→∗let v ac-
cording to a conventional big-step relation mapping closed expres-
sions and environments to values, of which we show a few repre-
sentative cases below:

ρ(x) = v

〈x, ρ〉 7→let v

〈e1, ρ〉 7→let v1 〈e2, ρ; x = v1〉 7→let v2

〈let x = e1 in e2, ρ〉 7→let v2

〈e, ρ〉 7→let left v1 〈e1, ρ; x = v1〉 7→let v

〈case e x.e1 x.e2, ρ〉 7→let v

〈e1, ρ〉 7→let v1
〈e2, ρ〉 7→let v2

〈(e1, e2), ρ〉 7→let (v1, v2)

〈e1, ρ〉 7→let v

〈e2, ρ; x = v〉 7→let false

〈for x = e1 if e2 do e3, ρ〉 7→let v

〈e1, ρ〉 7→let v 〈e2, ρ; x = v〉 7→let true

〈for x = e3 if e2 do e3, ρ; x = v〉 7→let v
′

〈for x = e1 if e2 do e3, ρ〉 7→let v
′

6. Metalanguages and Translations: An Overview
The technical goal of the next four sections (Secs. 7 to 10) is to
translate the source language LETo with irreversible primitives to
the target information-preserving language Πo.

Arrow Metalanguage. The first important point is that the trans-
lation is defined via a metalanguage for information effects. This
metalanguage isolates the typing and semantics of the effects
from the remainder of the language, thus playing a role similar to
Moggi’s monadic metalanguage [36] in the translation of conven-
tional computational effects (e.g., control operators [22]). Our met-
alanguage is defined, not by extending the λ-calculus with monadic

combinators, but by extending Πo with arrow combinators. Start-
ing with Πo instead of the λ-calculus is expected since Πo plays
the role of the pure effect-free language in our setting, just like the
λ-calculus plays the role of the pure effect-free language in the con-
ventional setting. The choice of using the arrow combinators rather
than the monadic combinators is because the notion of information
effects does not appear to be expressible as a monad. For the pur-
poses of presentation, the metalanguage is defined in two stages:
MLΠ in Sec. 7 which is used to compile the strongly-normalizing
subset of the source language using two effect combinators create
and erase, and MLΠo in Sec. 10.1 which is used to compile the
full source language using an additional effect combinator traceA.
Thus, Secs. 7, 8 and 9 focus on the translation from LET to Π and
Sec. 10 handles the translation from LETo to Πo.

Translation from Source to Metalanguage. The translation from
the source language to the metalanguage essentially exposes the
implicit erasure and duplication of environment bindings. For ex-
ample, the evaluation rule of a pair (see Sec. 5) duplicates the en-
vironment which can only be done in the metalanguage using ex-
plicit occurrences of the create effect combinator. Similarly, the
evaluation of a variable projects one value out of the environment,
implicitly erasing the rest of the environment, which again can only
be done using explicit occurrences of the erase effect combinator.
Technically, we define two translations T1 : LET =⇒ MLΠ and
T o1 : LETo =⇒ MLΠo . The first maps the strongly-normalizing
subset of the source to MLΠ (Sec. 8) and the second is an extension
that handles the full source and targets MLΠo (Sec. 10.2).

Translation from Metalanguage to Target. This translation es-
sentially needs to compile the effect combinators to the target lan-
guage. The basic scheme is based on Toffoli’s idea described in
Sec. 2.1: an irreversible function of type a → b is translated to a
bijection (h, a) ↔ (g, b) where h is the type of the heap that sup-
plies the constant values and g is the type of the garbage that ab-
sorbs the un-interesting and un-observable outputs. Once the primi-
tive effect combinators have been translated, the arrow combinators
then thread the heap and garbage through more complex compu-
tations. Technically, we again have two translations: one for the
strongly-normalizing subset of the source language and one for
the full source language. The first translation T2 :: MLΠ =⇒ Π
(Sec. 9) selects particular values for the heap and garbage to em-
bed the irreversible effects into bijections.2 The second translation
T o2 :: MLΠo =⇒ Πo (Sec. 10.3) works for the full language. It
has an important difference which arises from the fact that there is
an inherent asymmetry between create and erase: the operator
create is always used to create a known constant while erase is
used to erase information that is only known at run time. This inher-
ent asymmetry of the operators is a consequence of the fact that the
source language is (forward) deterministic, but lacks backward de-
terminism. As we saw in Sec. 4.2, Πo can express the creation and
erasure of constants and we leverage this to completely eliminate
the heap in favor of using traceA.3

7. Arrow Metalanguage MLΠ
To construct our arrow metalanguage MLΠ, we simply add the
generic arrow combinators to Π and add the particular operators
that model the information effects we wish to model. In particular,

2 This idea has been the basis of translations similar to ours [5]. The
literature also includes translations for other languages [2, 12, 19, 23, 26,
41, 49] that share some of the intuition of the translation we present but
differ significantly in the technical details.
3 If LETo had an operation that introduced values unknown at compile time,
such as an input operation or a random number generator, we would have
to re-introduce the heap.

78

we add two operators create and erase which correspond to the
creation and erasure of information that is implicit in the semantics
of LET. These operators are not isomorphisms and hence cannot
have↔ types. They can only have arrow types.

DEFINITION 7.1. (Syntax of MLΠ) The sets of value types, values,
and isomorphisms are identical to the corresponding sets in Π (see
Def. 3.1). The extended combinator types and arrow computations
are defined as follows:

types, t ::= b↔ b | b b
arrow comp., a ::= iso | a+ a | a× a | a # a

| arr a | a≫ a | first a | left a
| createb | erase

The type b1 b2 is our notion of arrows. The three operations
arr, ≫ , and first are essential for any notion of arrows. The
operation left is needed for arrows that also implement some
form of choice. The two operators createb and erase model the
particular effects in the information metalanguage.

The types of the arrow combinators in MLΠ are similar to their
original types in the traditional arrow calculus except that arr
lifts↔ types to the abstract arrow type instead of lifting regular
function types to the abstract arrow type:

a : b1 ↔ b2

arr a : b1 b2

a1 : b1 b2 a2 : b2 b3

a1≫ a2 : b1 b3
a : b1 b2

first a : b1 × b3 b2 × b3
a : b1 b2

left a : b1 + b3 b2 + b3

createb : 1 b erase : b 1

The semantics is specified using the relation 7→ML which refers
to the reduction relation 7→ for Π. We only present the reductions
for the arrow constructs:

a v1 7→ v2

(arr a) v1 7→ML v2

a1 v1 7→ML v2 a2 v2 7→ML v3

(a1≫ a2) v1 7→ML v3
a v1 7→ML v2

(left a) (left v1) 7→ML left v2 (left a) (right v) 7→ML right v
a v1 7→ML v2

(first a) (v1, v3) 7→ML (v2, v3) erase v 7→ML () createb() 7→ML φ(b)

The operator erase at type b takes any value of type b and
returns () which contains no information. For any type b, createb
returns a fixed (but arbitrary) value of type b which we call φ(b)
and which is defined as:
φ(1) = () φ(b1 × b2) = (φ(b1), φ(b2)) φ(b1 + b2) = left (φ(b1))

The two operators createb and erase, along with the structure
provided by the arrow metalanguage, are expressive enough to im-
plement a number of interesting idioms. In particular, it is possible
to erase a part of a data structure (as shown using fstA below); it
is possible to inject a value in a sum type (as shown using leftA
below); it is possible to forget about choices (as shown using join
below); and it is possible to make a copy of any value (as shown
using clone below).

Erasing part of a data structure (fstA). The combinator fstA of
type b1×b2 b1 takes a pair and erases the second component. We
apply erase to the second component of the pair and then appeal
to (arr unite) : 1× b b to absorb the (). Thus we have:

erase
1

11b

2b

1b

1b

fstA : b1 × b2 b2
fstA = second erase≫ arr (swap× # unite)

where second a = (arr swap×)≫ first a≫ (arr swap×).
The combinator sndA that deletes the first component of a pair is
defined symmetrically.

Injecting a value in a larger type (leftA). The combinator
leftA : b1 b1 + b2 takes a value and injects it in a larger
sum type. Its definition is involved so we begin by defining the
following combinator in Π:

leftSwap : (b1 + b2)× b1 ↔ (b1 + b2)× b1
leftSwap = (distrib # (swap× + id) # factor)

Given values v1 and v′1 both of type b1, the application of leftSwap
to (left v1, v

′
1) produces (left v′1, v1), which moves the left con-

structor from v1 to v′1. We use this combinator to implement leftA
as follows. Let us give the input to leftA the name v′1. We first cre-
ate a default value left v1 of type b1 + b2, use leftSwap to produce
(left v′1, v1), and complete the definition by using fstA to erase
the default value v1. Thus leftA is:

(arr uniti)≫ (first createb1+b2)
≫ (arr leftSwap)≫ fstA

or pictorially:

b1 Y Y

+

le
ft

ri
g
h
t

create

b1

b1+b2
1

b1

b1

b1
b2

b1+b2

fstA

b1+b2

b1

The symmetric combinator rightA can be defined similarly.

Forgetting about choices (join). We define an operator join :
b + b b that takes a value of type b tagged by either left and
right and removes the tag. The definition converts the input b + b
to (1 + 1)× b and then erases the first component:

((arr uniti) ⊕ (arr uniti))≫ (arr factor)≫ sndA

Copying values (cloneb). As the following lemma shows, it is
possible, for any type b, to define an operator cloneb that can be
used to copy values of that type.

LEMMA 7.2 (Cloning). For any type b, we can construct an oper-
ator clone of type b b× b such that: clone v 7→ML (v, v)

Proof. We proceed by induction on the type b:

• Case 1: We need to exhibit a combinator a : 1 1×1 and this
is given by a = arr uniti

• Case b1 × b2: By induction we have combinators a1 : b1
b1 × b1 and a2 : b2 b2 × b2 and we have to construct
a : (b1×b2) (b1×b2)×(b1×b2). The required combinator a
uses a1 and a2 to clone the components and then shuffles the
pairs into place:

1a

2a

1b 11 bb

22 bb

2b

21 bb

21 bb

21 bb

Thus we can write a = (a1 ⊗ a2)≫ shuffle where shuffle is
the operator which rearranges the pairs as pictured.

• Case b1 + b2: By induction we have combinators a1 : b1
b1 × b1 and a2 : b2 b2 × b2 we have to construct a :
(b1 + b2) (b1 + b2) × (b1 + b2). Consider the diagram
below which has the type b1 b1 × (b1 + b2):

1a

leftA
)(211 bbb

21 bb 1b

1b1b

This combinator clones b1 and then applies leftA to one of the
copies. Let us call this combinator a′1 : b1 b1×(b1+b2). We

79

can do the same with b2, except that we apply rightA, resulting
in combinator a′2 : b2 b2 × (b1 + b2). The required com-
binator a can be constructed by applying these in parallel and
factoring out the results, i.e., a = (a′1 ⊕ a′2)≫ (arr factor)

8. Translation from LET to MLΠ
The translation T1 maps a closed term of type b in LET to an
MLΠ combinator c : 1 b. As the translation is type-directed,
it must also handle terms with free variables that are supplied by an
environment.

8.1 Environments
A LET type environment Γ is translated to an MLΠ type as follows:

[ε]× = 1
[Γ, x : b]× = [Γ]× × b

A value environment ρ : Γ is translated to a value vρ : Γ×:
[ε]× = ()
[ρ, x = v]× = ([ρ]×, v)

LEMMA 8.1 (Lookup). If Γ ` x : b and Γ× is the encoding of Γ,
then there exists a combinator alookup(x) : Γ× b that looks up x
in Γ×.

Proof. The required combinator a depends on the structure of Γ:

• Case ε: This cannot arise because Γ must contain x.
• Case Γ′, x′ : b′ and x′ = x: Then a = sndA
• Case Γ′, x′ : b′ and x′ 6= x: Then we know that the required x

must be bound in Γ′, i.e. Γ′ ` x : b. Thus by induction
there exists a′ : [Γ′]× b. So the required combinator is
a = (a′ ⊗ id)≫ fstA.

8.2 The Translation T1

We translate a LET judgment of the form Γ ` e : b to an MLΠ

combinator a : Γ× b in such a way that the execution of the
resulting MLΠ term simulates the execution of the original term.
Because the evaluation of LET expressions requires an environ-
ment ρ, the evaluation of the translated combinator must be given a
value vρ of type Γ× denoting the value of the environment.

LEMMA 8.2 (T1 and its correctness). For any well typed LET ex-
pression Γ ` e : b, T1[Γ ` e : b] gives us a combinator ’a’ and a
type Γ× in MLΠ such that:

1. a : Γ× b
2. ∀ (ρ : Γ), ∃ (v : b). if 〈e, ρ〉 7→∗let v then a [ρ]× 7→∗ML v.

We simultaneously present the translation and prove its correctness:

• Case ():

Γ ` () : 1 99K erase : Γ× 1

We have that erase vρ 7→ML ().
• Case x:

Γ(x) = b

Γ ` x : b 99K alookup(x) : Γ× b

• Case let x = e1 in e2:

Γ ` e1 : b1 99K a1 : Γ× b1
Γ, x : b1 ` e2 : b2 99K a2 : Γ× × b1 b2

Γ ` let x = e1 in e2 : b2 99K a : Γ× b2

To construct the required a we first clone Γ×. We can apply a1

to one of the copies to get b1. The resulting value of type
Γ× × b1 is the input required by a2 which returns the result
of type b2:

1b

1b

2b

1a
2a

clone

Thus the required combinator is:
a = cloneΓ×≫ (second a1)≫ a2

• Case (e1, e2):

Γ ` e1 : b1 99K a1 : Γ× b1
Γ ` e2 : b2 99K a2 : Γ× b2

Γ ` (e1, e2) : b1 × b2 99K a : Γ× b1 × b2

As with let , we clone Γ× and use each copy to create one
component of the pair. Thus we have:
a = cloneΓ×≫ (a1 ⊗ a2)

• Cases fst e, snd e:

Γ ` e : b1 × b2 99K a1 : Γ× b1 × b2
Γ ` fst e : b1 99K a : Γ× b1

We have a = a1 ≫ fstA. And similarly for snd e we have
a = a1≫ sndA.

• Cases left e, right e:

Γ ` e : b1 99K a1 : Γ× b1

Γ ` left e : b1 + b2 99K a : Γ× b1 + b2

We have a = a1 ≫ leftA and similarly for right e we have
a = a1≫ rightA.

• Case case e x.e1 x.e2:

Γ ` e1 : b1 + b2 99K a1 : Γ× b1 + b2
Γ, x : b1 ` e2 : b3 99K a2 : Γ× × b1 b3
Γ, x : b2 ` e3 : b3 99K a3 : Γ× × b2 b3

Γ ` case e1 x.e2 x.e3 : b3 99K a : Γ× b3

21 bb

1a

Y

1b

1b

2b

2b

+

clone

Here we have cloned Γ× and constructed b1+b2 using one copy
of Γ× and a1. We then distributed Γ× over b1+b2 and resulting
in two possible environments Γ× × b1 or Γ× × b2. At this
point, we can apply a2 and a3 to these environments resulting
in b3 + b3 which we can join to get the desired result b3. Thus
we have:
a = cloneΓ×≫ (left c1)≫ (arr distrib)≫

((arr swap×) ⊕ (arr swap×))≫ (a2 ⊕ a3)≫ join

9. Translation from MLΠ to Π

The translation T2 maps an MLΠ combinator a : b1 b2 to an
isomorphism h× b1 ↔ g × b2. The types h and g are determined
based on the structure of the combinator a and are fixed by the
translation T2. The translation is set up such that when we supply
φ(h) for the heap along with the given input value of type b1, the
compiled combinator produces some unspecified value for g and

80

the value for b2 that the original arrow combinator would have
produced.

LEMMA 9.1 (T2 and its correctness). For any MLΠ combinator
a : b1 b2, T2[a : b1 b2] gives us c, h and g in Π such that:

• c : h× b1 ↔ g × b2
• ∀ (v1 : b1), ∃ (vg : g), (v2 : b2) if a v1 7→∗ML v2 then
c (φ(h), v1) 7→∗ (vg, v2).

As before, we present the translation along with the proof of cor-
rectness.

• arr a:
a : b1 ↔ b2

arr a : b1 b2 99K c : h× b1 ↔ g × b2

To construct the required c we choose h = g = 1 and thus we
have c = id × a. It is easy to verify that c ((), v1) 7→ ((), v2)
assuming a v1 7→ v2.

• a1≫ a2:

a1 : b1 b2 99K c1 : h1 × b1 ↔ g1 × b2
a2 : b2 b3 99K c2 : h2 × b2 ↔ g2 × b3

a1≫ a2 : b1 b3 99K c : h× b1 ↔ g × b3

We choose h = h1 × h2 and g = g1 × g2 and we have
c = assocr× # (id × c1) # shuffle # (id × c2) # assocl×

where shuffle = (assocl× # (swap× × id) # assocr×).
• first a: Given that a : b1 b2 translates to c1 : h1 × b1 ↔
g1 × b2, we translate first a : b1 × b3 b2 × b3 to
c : h× (b1 × b3)↔ g× (b2 × b3) where h = h1, g = g1, and
c = assocl× # (c1 × id) # assocr×

• left a: Given that a : b1 b2 translates to c1 : h1 × b1 ↔
g1 × b2, we translate left a : b1 + b3 b2 + b3 to
c : h× (b1 + b3)↔ g × (b2 + b3) as explained next. Assume
c1 (φ(h1), v1) 7→ (vg1 , v2), we need to prove:
c (φ(h), left v1) 7→ (vg′ , left v2)

c (φ(h), right v3) 7→ (vg′′ , right v3)

Here vg′ and vg′′ have the type g and v1 : b1, v2 : b2 and
v3 : b3. We define the required types h and g as shown below.
h = (h1 × ((b2 + b3)× (b3 + b2)))

g = g′ + g′′

where:
g′ = (g1 × (b2 × (b3 + b2)))

g′′ = (h1 × ((b2 + b3)× b3))

We construct the required c in terms of two combinators c′

and c′′ that handle the left and right cases of the input b1 + b2.
We first construct the combinator c′ that has the following type
and semantics:
c′ : b1 × h↔ g′ × (b2 + b3)

c′(v1, φ(h)) 7→ (vg1 , left v2)

To construct c′, we need the leftSwap combinator that was
defined in Sec. 7. We can draw a wiring diagram for c′ as
follows:

1c 2b1b

1h 1g

32 bb leftSwap
2b

32 bb 1b

))((2321 bbbg))()((23321 bbbbh

The combinator c′ uses c1 to obtain a value of type b2 and then
uses leftSwap to construct a value of type b2 + b3. We can now
define c′′ that works on the right branch to be:
c′′ : b3 × h↔ g′′ × (b2 + b3)

c′′(v3, φ(h)) 7→ (vg2 , right v3)

As before we need the leftSwap combinator, but this time at the
type b3 × (b3 + b2). The wiring diagram for c′′ is shown:

leftSwap

32 bb

23 bb

23 bb

3b3b

3b

))((3321 bbbh
))()((23321 bbbbh

The definition of c′′ takes the value of type b3 and constructs
a value of type b2 + b3 using leftSwap and swap+. Given the
construction of c′ and c′′ we can construct the required c as:
c : h× (b1 + b3)↔ g × (b2 + b3)

c = swap× # distrib # (c′ × c′′) # factor

• create:

create : 1 b 99K c : h× 1↔ g × b

We choose h = b and g = 1 and we have c = swap×. The
definition of create is simple because we have taken care to
correctly thread a value of type h and create simply reifies
this value.

• erase:

erase : b 1 99K e : h× b↔ g × 1

We choose h = 1 and g = b and we have c = swap×. Note
that this is operationally the same as create. The difference is
in the types. Since we have set up the rest of the computation to
thread the value of type g through and never expose it, to erase
a value we simply have to move it to the garbage.

10. Translation from LETo to Πo

The required translation T o is factored into T o1 : LETo =⇒ MLΠo

and T o2 : MLΠo =⇒ Πo where the intermediate language MLΠo

extends MLΠ.

10.1 Arrow Metalanguage : MLΠo

The arrow metalanguage, MLΠo , extends MLΠ with natural num-
bers and loops.

DEFINITION 10.1 (Syntax of MLΠo).

base types, b = 1 | b× b | b+ b | nat
values, v = () | (v, v) | left v | right v | n

types, t ::= b
 b | b ⇀ b
arrow comp., a ::= iso | a+ a | a× a | a # a | trace a

| arr a | a≫ a | first a | left a
| traceA a | createb | erase

The types extend the finite types with nat which is an abbreviation
for µx.1 + x. In addition to the usual finite values, we also include
natural numbers n which are abbreviations for sequences of right-
applications that end with left (). The arrow type ⇀ is analogous
to of MLΠ: we use a different symbol to emphasize that the un-
derlying bijections are partial. The set of underlying isomorphisms
extends the ones for finite types with unfold : nat
 1 + nat :
fold . We define φ(nat) = 0 and hence createnat = 0. Finally, the
language includes one additional arrow combinator traceA with
the typing rule:

81

a : b1 + b2 ⇀ b1 + b3
traceA a : b2 ⇀ b3

In contrast to trace which defines looping computations whose
bodies are (partial) bijections, traceA can be used to define loop-
ing computations whose bodies may create and erase information.
The semantics of traceA is similar to that of trace but with an
important technical difference. The body of the traceA-loop may
produce garbage values which traceA collects in a list as the iter-
ation progresses. (See the last case of the translation T o2 below.)
As before we can clone any particular value.

LEMMA 10.2 (Cloning). For any type b, we can construct an op-
erator clone of type b ⇀ b× b such that: clone v 7→ML (v, v)

Proof. This is an extension of Lemma 7.2. The only new datatype
is nat . We create a 0 and use the loop of Sec. 4.2 to iteratively
add1.

10.2 Translation T o1 from LETo to MLΠo

The translation T o1 extends the translation T1 from LET to MLΠ.

LEMMA 10.3 (T o1 and its correctness). For any well typed LETo

expression Γ ` e : b, T o1 [Γ ` e : b] gives us a combinator ’a’ and
a type Γ× in MLΠo such that:

1. a : Γ× ⇀ b
2. ∀ (ρ : Γ), ∃ (v : b). if 〈e, ρ〉 7→∗let v then a [ρ]× 7→∗ML v.

• Cases add1 e, sub1 e: These follow from simply lifting the
add1 construction and its adjoint from Sec. 4.2.

Γ ` e : nat 99K a : Γ× ⇀ nat

Γ ` add1 e : nat 99K a # (arr add1) : Γ× ⇀ nat

• Case iszero? e:

Γ ` e : nat 99K a1 : Γ× ⇀ nat

Γ ` iszero? e : nat 99K a : Γ× ⇀ bool

where a = a1 # arr unfold # first erase # arrunite

• Case n: The required combinator of type Γ ⇀ nat is given by
erase#createnat #addn1 (where addn1 is n iterations of add1).

• Case for x = e1 if e2 do e3:

Γ ` e1 : b 99K a1 : Γ× ⇀ b
Γ, x : b ` e2 : bool 99K a2 : Γ× × b ⇀ bool

Γ, x : b ` e3 : b 99K a3 : Γ× × b ⇀ b

Γ ` for x = e1 if e2 do e3 : b 99K a : Γ× ⇀ b

The construction is illustrated in the diagram below, in which
wires of type 1 used for erase, distrib etc. have been dropped
for the sake of clarity.

b

Y

Y

erase 2a

1a erase

clone

clone

clone

b

b

b

b

3a

bool bool

b

b

b
b

b

+ +

Conceptually, each iteration of the traceA is determined by the
result of a2. If the conditional is true then the iteration causes a3

to be executed.

10.3 Translation T o2 from MLΠo to Πo

Translation T o2 is similar to T2. As discussed in the overview
(Sec. 6) the significant difference comes from the fact that Πo

can create constants hence eliminating the need for an input heap
type. The translation only needs to track the garbage produced by
combinators.

PROPOSITION 10.4. For any type b of MLΠo we can construct
createConstb : 1
 b such that createConstb () 7→ML φb.

LEMMA 10.5 (T o2 and its correctness)). For any MLΠo combina-
tor a : b1 ⇀ b2, T o2 [a : b1 ⇀ b2] gives us c and g in Πo such
that:

• c : b1
 g × b2
• ∀ (v1 : b1), ∃ (vg : g), (v2 : b2). if a v 7→∗ML v2 then
c v1 7→∗ (vg, v2).

The interesting cases to consider are:

• Case arr c: The required combinator is c #uniti : b1
 1× b2
where the garbage is 1.

• Case createb: The required combinator is createConstb #
uniti : 1
 1× b with g = 1.

• Case erase: The required combinator is uniti # swap× : 1

b× 1 with g = b.

• Case traceA a:

a : b1 + b2 ⇀ b1 + b3 99K c : b1 + b2
 g × (b1 + b3)

traceA a : b2 ⇀ b3 99K c1 : b2
 g′ × b3

As shown in Sec. 4.2, we can create and manipulate empty lists
of any given type in Πo. The diagram below is the required
combinator c1 with g′ = [g], i.e., the resulting garbage is the
list of garbage values produced at each step in the iteration, of
type g.

1][bg

][g
][gg

][g

][gg g

][g

][g

Y

Y

createNull

just fold

c

2b
3b

2b

21 bb
31 bb 31 bb

1

1

+ +

11. Applications
The technical contribution of the paper was devoted to designing a
semantic foundation of computation which treats information as a
computational resource. We now briefly explore the application of
such a framework to security and privacy.

11.1 Quantitative Information Flow
Research in the domain of quantitative information-flow security
is aimed at tracking the amount of information leakage through a
computation [10, 32, 33]. Instead of devising ad hoc analyses, one
can in our framework simply observe the program’s types and see
how much information has been erased.

82

As an example, consider a password checker, check : bool ×
bool → bool , which takes a 2-bit user input and has access to a
2-bit secret password. The type bool × bool has 4 inhabitants. With
probability 1/4 an attacker guesses the real password (log 4 bits
learned) and with probability 3/4 guesses wrong thus eliminating
one candidate password (log 4 − log 3 bits learned), making the
average information gained 1/4 log 4 + 3/4(log 4 − log 3) =
0.8. One call to the password checker has thus hidden 1.2 bits of
information from the attacker.

The Landauer principle implies that the 1.2 bits dissipated by
check must be accounted for by some logically irreversible erasure
of 1.2 bits. And indeed, the minimum any Πo implementation of
check must erase is 2 bits which would manifest itself by a use
of erase at type bool × bool . The fact that MLΠo types indicate
a lower bound on a program’s intrinsic secrecy deserves further
investigation. Further, a finer analysis allowing us to capture the
exact erasure of fractional bits, may be achieved by enriching
the type system of MLΠo to track the probability of disjunctive
branches, such as in the probabilistic λ-calculus [39].

11.2 Orthogonality and Differential Privacy
Physical processes operate on physical representations of values
which exist in space and have associated costs (e.g. amount of
energy). Physical processes must not only be reversible but they
must do so in a way that respects this additional structure. Toffoli
and Fredkin [16] captured this additional restriction on physical
processes using what they called “Conservative Logic” in which
values can only be shuffled around by computation. This guarantees
that processes maintain whatever cost is associated with the values
they operate on. In quantum mechanics, this additional restriction
is modeled in a different way using the mathematical structure
of Hilbert spaces. Specifically, the fundamental building blocks
of quantum computation are that (i) quantum states are equipped
with an inner product that induces a norm (i.e., a metric), and
that (ii) quantum transformations must be unitary, i.e., must be
reversible transformations that preserve the norm induced by the
inner product. They key definition is the following.

DEFINITION 11.1 (Isometry). Given a metric dτ on values of
type τ , a function f : τ1 → τ2 is said to be an isometry iff
dτ2(f(x), f(y)) = dτ1(x, y) for all x, y ∈ τ1.

In an apparently unrelated development, Reed and Pierce [40]
introduce a calculus for differential privacy. The fundamental build-
ing blocks of their calculus are (i) that types are equipped with a
metric that defines what it means for values to be “close,” and that
(ii) functions must preserve distances between the values. They key
definition is the following.

DEFINITION 11.2 (c-sensitive function). Given a metric dτ on
values of type τ , a function f : τ1 → τ2 is said to be c-sensitive iff
dτ2(f(x), f(y)) ≤ c · dτ1(x, y) for all x, y ∈ τ1.

In other words, the distance between the values x and y in the
domain of the function cannot be magnified by more than a factor c.
Clearly quantum evolution is restricted to the special case of 1-
sensitive functions.

To further investigate this connection would require us to extend
our model by associating a metric with each type. However, unlike
previous work, the introduction of the metric in our case would be
justified by additional physical considerations.

12. Conclusions and Future Work
Starting with the notion that closed physical systems are the
“purest,” we have developed a pure language in which computa-
tions preserve information. We show that even what are often called

“pure functional languages” exhibit computational effects related
to the creation and deletion of information. This development re-
asserts the fact that information is a significant computational re-
source that should, in many situations, be exposed to programmers
and static analysis tools. One of our main contributions therefore is
in bridging the information theoretic analysis of computations (for
example in the domain of quantitative information flow security)
and the traditional world of type and effect systems.

The main thesis of the paper is that the study of programming
languages, their typing, their semantics, their computational ef-
fects, and even their security properties can tremendously benefit
from taking the physical aspect of computation seriously. Our pa-
per provides the conceptual foundation for such investigations.

Reversible Computing. Our pure language is logically reversible
and hence shares some common features with previously devel-
oped reversible languages [6, 34, 37, 47] although none are based
on the simple notion of isomorphisms between types [8]. The prac-
tice of programming languages is replete with ad hoc instances
of reversible computations such as database transactions, mecha-
nisms for data provenance, checkpoints, stack and exception traces,
logs, backups, rollback recoveries, version control systems, reverse
engineering, software transactional memories, continuations, back-
tracking search, and multiple-level “undo” features in commercial
applications. A possible application of our work is that, in principle,
such reversible programs could be automatically derived from com-
mon irreversible programs (which are typically easier to write) by
translations similar to the one we presented. Similarly, our wiring
diagrams could be directly realized as hardware circuits and pave
the way for speculative execution and backtracking infrastructure
in CPUs that are inherently reversible and use minimal bookkeep-
ing resources [20].

Quantum Computing. Many programming models of quantum
computing start with the λ-calculus as the underlying classical
language and add quantum features on top of it [5, 13, 43, 45].
This strategy is natural given that the λ-calculus is the canonical
classical computational model. However, since quantum evolution
is reversible, this strategy complicates the development of quantum
languages as it forces the languages to devise complicated ways to
restrict their implicit information effects. A simpler strategy that
loses no generality is to build the quantum features on top of a
reversible classical language.

Optimality and Equivalence Preservation. For our purpose of
establishing a semantic connection, we have made no attempt to
optimize the types h and g generated by the translation to the re-
versible target language. For applications concerned with the im-
plementation of Πo circuits, optimizations like in Toffoli’s original
paper will need to be developed.

Also, equivalent source terms may be translated to terms of
different types, as the types h and g are chosen by the translation
based on the syntax of the input terms. The situation is similar to
the closure conversion translation of a compiler which exposes the
type of the environment and the fix should follow the same general
strategy [4, 35].

Higher-Order Functions. As the development of lambda calculi
with linear [27, 46] and bunched types [38] shows, controlling the
creation, duplication, and sharing of resources is largely orthogonal
to higher-order functions. Furthermore, existing work suggests that
adding higher-order functions to a language like Πo can be done
in a systematic way as shown for example by the ‘Int construction’
of Joyal, Street and Verity in the context of traced monoidal cate-
gories [25], or by Abramsky [1, 3] and Mackie [31] in the context
of the geometry of interaction and Ghica [17] in the context of the
geometry of synthesis. These constructions need to explored in the
context of Πo.

83

Acknowledgments
We thank Amal Ahmed, Esfandiar Haghverdi, and Erik Wennstrom
for helpful discussions. We also thank the anonymous reviewers for
their helpful comments and suggestions. This project was partially
funded by Indiana University’s Office of the Vice President for Re-
search and the Office of the Vice Provost for Research through its
Faculty Research Support Program. We also acknowledge support
from Indiana University’s Institute for Advanced Study.

References
[1] S. Abramsky. Retracing some paths in process algebra. In U. Monta-

nari and V. Sassone, editors, CONCUR, volume 1119 of Lecture Notes
in Computer Science, pages 1–17. Springer, 1996.

[2] S. Abramsky. A structural approach to reversible computation. Theor.
Comput. Sci., 347:441–464, December 2005.

[3] S. Abramsky and R. Jagadeesan. New foundations for the geometry
of interaction. Inf. Comput., 111:53–119, May 1994.

[4] A. Ahmed and M. Blume. Typed closure conversion preserves obser-
vational equivalence. In ICFP, pages 157–168. ACM, 2008.

[5] T. Altenkirch and J. Grattage. A functional quantum programming
language. In P. Panangaden, editor, LICS, pages 249–258. IEEE
Computer Society Press, June 2005.

[6] H. G. Baker. NREVERSAL of fortune - the thermodynamics of
garbage collection. In Proceedings of the International Workshop on
Memory Management, pages 507–524. Springer-Verlag, 1992.

[7] C. H. Bennett. Logical reversibility of computation. IBM J. Res. Dev.,
17:525–532, November 1973.

[8] W. J. Bowman, R. P. James, and A. Sabry. Dagger Traced Symmetric
Monoidal Categories and Reversible Programming. In Workshop on
Reversible Computation, 2011.

[9] L. Cardelli and G. Zavattaro. On the computational power of biochem-
istry. In Third International Conference on Algebraic Biology, 2008.

[10] D. Clark, S. Hunt, and P. Malacaria. A static analysis for quantifying
information flow in a simple imperative language. J. Comput. Secur.,
15:321–371, August 2007.

[11] D. Deutsch. The Fabric of Reality. Penguin, 1997.

[12] A. Di Pierro, C. Hankin, and H. Wiklicky. Reversible combinatory
logic. MSCS, 16:621–637, August 2006.

[13] R. Duncan. Types for quantum computation. PhD thesis, Oxford
University, 2006.

[14] C. Dwork. Differential privacy. In ICALP (2)’06, pages 1–12, 2006.

[15] M. Fiore. Isomorphisms of generic recursive polynomial types. In
POPL, pages 77–88. ACM, 2004.

[16] E. Fredkin and T. Toffoli. Conservative logic. International Journal
of Theoretical Physics, 21(3):219–253, 1982.

[17] D. R. Ghica. Geometry of synthesis: a structured approach to VLSI
design. In POPL, pages 363–375. ACM, 2007.

[18] J.-Y. Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.

[19] R. Glück and M. Kawabe. Revisiting an automatic program inverter
for Lisp. SIGPLAN Not., 40:8–17, May 2005.

[20] L. Hammond, M. Willey, and K. Olukotun. Data speculation support
for a chip multiprocessor. In ASPLOS, pages 58–69, New York, NY,
USA, 1998. ACM.

[21] M. Hasegawa. Recursion from cyclic sharing: Traced monoidal cate-
gories and models of cyclic lambda calculi. In TLCA, pages 196–213.
Springer-Verlag, 1997.

[22] J. Hatcliff and O. Danvy. A generic account of continuation-passing
styles. In POPL, pages 458–471. ACM, 1994.

[23] L. Huelsbergen. A logically reversible evaluator for the call-by-name
lambda calculus. InterJournal Complex Systems, 46, 1996.

[24] J. Hughes. Generalising monads to arrows. Sci. Comput. Program.,
37(1-3):67–111, 2000.

[25] A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Math.
Proc. Camb. Philos. Soc., 119(3):447–468, 1996.

[26] W. E. Kluge. A reversible SE(M)CD machine. In International
Workshop on Implementation of Functional Languages, pages 95–113.
Springer-Verlag, 2000.

[27] Y. Lafont. The linear abstract machine. Theor. Comput. Sci., 59:157–
180, July 1988. ISSN 0304-3975.

[28] R. Landauer. Irreversibility and heat generation in the computing
process. IBM J. Res. Dev., 5:183–191, July 1961.

[29] X. Ma, J. Huang, and F. Lombardi. A model for computing and energy
dissipation of molecular QCA devices and circuits. J. Emerg. Technol.
Comput. Syst., 3(4):1–30, 2008.

[30] E. Macii and M. Poncino. Exact computation of the entropy of a logic
circuit. In Proceedings of the 6th Great Lakes Symposium on VLSI,
Washington, DC, USA, 1996. IEEE Computer Society.

[31] I. Mackie. Reversible higher-order computations. In Workshop on
Reversible Computation, 2011.

[32] P. Malacaria. Assessing security threats of looping constructs. In
POPL, pages 225–235. ACM, 2007.

[33] J. L. Massey. Guessing and entropy. In Proceedings of the IEEE
International Symposium on Information Theory, page 204, 1994.

[34] A. B. Matos. Linear programs in a simple reversible language. Theor.
Comput. Sci., 290:2063–2074, January 2003.

[35] Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion.
In POPL, pages 271–283, New York, NY, USA, 1996. ACM.

[36] E. Moggi. Notions of computation and monads. Inf. Comput., 93:
55–92, July 1991.

[37] S.-C. Mu, Z. Hu, and M. Takeichi. An injective language for reversible
computation. In International Conference on Mathematics of Program
Construction, pages 289–313, 2004.

[38] P. O’hearn. On bunched typing. J. Funct. Program., 13:747–796, July
2003.

[39] A. D. Pierro, C. Hankin, and H. Wiklicky. Probabilistic lambda-
calculus and quantitative program analysis. J. Log. Comput., 15(2),
2005.

[40] J. Reed and B. C. Pierce. Distance makes the types grow stronger:
a calculus for differential privacy. In ICFP, pages 157–168. ACM,
2010.

[41] B. J. Ross. Running programs backwards: The logical inversion of
imperative computation. Formal Aspects of Computing, 9:331–348,
1997.

[42] A. Sabelfeld and A. Myers. Language-based information-flow secu-
rity. IEEE Journal on Selected Areas in Communications, 21(1):5–19,
2003.

[43] P. Selinger and B. Valiron. A lambda calculus for quantum computa-
tion with classical control. MSCS, 16(3):527–552, 2006.

[44] T. Toffoli. Reversible computing. In Proceedings of the Colloquium
on Automata, Languages and Programming, pages 632–644. Springer-
Verlag, 1980.

[45] A. van Tonder. A lambda calculus for quantum computation. SIAM
Journal on Computing, 33(5):1109–1135, 2004.

[46] P. Wadler. Linear types can change the world! In M. Broy and
C. Jones, editors, IFIP TC 2 Working Conference on Programming
Concepts and Methods, pages 347–359. North Holland, 1990.

[47] T. Yokoyama, H. B. Axelsen, and R. Glück. Principles of a reversible
programming language. In Conference on Computing Frontiers, pages
43–54. ACM, 2008.

[48] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. Ecosystem:
managing energy as a first class operating system resource. SIGPLAN
Not., 37(10):123–132, 2002.

[49] P. Zuliani. Logical reversibility. IBM J. Res. Dev., 45:807–818,
November 2001.

84

