
Technical Report No. 608

A Proof-Theoretic Foundation of
Abortive Continuations

(Extended version)

by

Zena M. Ariola

Hugo Herbelin

Amr Sabry

February 2005

Computer Science Department

Indiana University

Bloomington, Indiana 47405-7104

1

A Proof-Theoretic Foundation of
Abortive Continuations

(Extended version)∗

Zena M. Ariola† Hugo Herbelin Amr Sabry‡

University of Oregon INRIA-Futurs Indiana University

February 25, 2005

Abstract

We give an analysis of various classical axioms and characterize a notion
of minimal classical logic that enforces Peirce’s law without enforcing Ex Falso
Quodlibet. We show that a “natural” implementation of this logic is Parigot’s
classical natural deduction. We then move on to the computational side and
emphasize that Parigot’s λµ corresponds to minimal classical logic. A continu-
ation constant must be added to λµ to get full classical logic. We then map the
extended λµ to a new theory of control, λC-tp, which extends Felleisen’s reduc-
tion theory. The new theory λC-tp distinguishes between aborting and throwing
to a continuation and is in correspondence with a refined version of Prawitz’s
natural deduction system.

1 Introduction

Traditionally, classical logic is defined by extending intuitionistic logic with either
Peirce’s law, the excluded middle law, or the double negation law. We show that these
laws are not equivalent and define minimal classical logic, which validates Peirce’s law
but not Ex Falso Quodlibet (EFQ), i.e. the law ⊥ → A. This logic is interesting
from a computational point of view since it corresponds to a calculus with a notion of
control (such as callcc or µ) which however does not permit aborting of computations.

∗Extended version of the conference article “Minimal Classical Logic and Control Operators” [1]
†Supported by National Science Foundation grant number CCR-0204389
‡Supported by National Science Foundation grant number CCR-0204389, by a Visiting Researcher

position at Microsoft Research, Cambridge, U.K., and by a Visiting Professor position at the Uni-
versity of Genova, Italy.

2

Indeed our analysis reveals that closed typed terms of Parigot’s λµ [19, 20] correspond
to tautologies of minimal classical logic and not of (full) classical logic. To prove
tautologies of classical natural deduction, the λµ calculus must be extended with a
continuation tp which denotes the top-level.

On the programming calculi side, the presence of the continuation tp makes it
possible to distinguish between aborting a computation and throwing to a contin-
uation (as aborting corresponds to throwing to the special top-level continuation).
This distinction can be used to develop more refined programming calculi for lan-
guages with control operators. In particular, in the seminal theory of control λC [10],
there is a mismatch between the operational and proof-theoretical interpretation of
the reduction theory. This mismatch is resolved by moving to a richer theory with a
continuation constant λC-tp.

We start in Section 2 with reviewing the definitions of minimal, intuitionistic and
classical logic. We present both the axiomatic and structural rendering of these logics.
We introduce an equivalent formulation of Prawitz’s natural deduction which better
corresponds to the axiomatic presentation. We conclude the section with the more
recent formulation of Parigot’s classical natural deduction which employs sequents
with multiple conclusions. In Section 3, we introduce the new notion of minimal
classical logic. We first analyze which axioms lead to this new logic. Next, we
present the restrictions on Prawitz’s and Parigot’s logics. Section 4 reviews the basic
control operators and calculi and their (Curry-Howard) isomorphism to classical logic
discovered by Griffin. Sections 5 and 6 introduce our new calculus of control λC-tp,
establish its main properties, and use it to explain the computational counterparts of
Prawitz’s and Parigot’s logics. Proposition 5.8 in Section 5 replaces Proposition 11
from the conference version [1] which claimed a stronger (but incorrect) result. We
discuss related work in Section 7 and conclude in Section 8. Throughout the paper
we restrict our attention to propositional logic.

2 Minimal, Intuitionistic and Classical Logic

We successively recall the definitions of minimal, intuitionistic and classical logic,
and state simple facts about them. We use natural deduction to formalize the various
logics.

2.1 Preliminaries

We assume a set of formulas, denoted by Roman uppercase letters A, B, etc., which
are built from an infinite set of propositional atoms (ranged over by X, Y , etc.), a
distinguished formula ⊥ denoting false, and implication written →. A named formula
is a pair of a formula and a name taken from an infinite set of names. We write Ax,
Bα, etc. for named formulas. A context is a set of named formulas. We use Greek
uppercase letters Γ, ∆, etc. for contexts.

3

A,B ::= X | A → B
Γ ::= · | Γ, A

Γ, A �M A

Ax
Γ, A �M B

Γ �M A → B

→i

Γ �M A → B Γ �M A

Γ �M B

→e

Figure 1: Minimal logic

If we are only interested in provability, contexts could have been defined just as
sets of formulas (not as sets of named formulas). But in order to be able to assign
λ-terms to proofs, we need to distinguish between different occurrences of the same
formula. This is the role of names. Otherwise, the two distinct normal proofs of
A,A � A (representable by the λ-terms λx.λy.x and λx.λy.y) are identified.

We first consider sequents of the form Γ � A, where the formulas in Γ are the
hypotheses and the formula on the right-hand side of the symbol � is the conclusion.
If S is a schematic axiom or rule, we denote by S,Γ � A the fact that Γ � A is
derivable using an arbitrary number of instances of S. In the following we sometimes
omit irrelevant hypothesis to make proofs more readable.

2.2 Minimal Logic

Minimal natural deduction is an implementation of minimal logic [15]. It is defined
by the set of (schematic) inference rules given in Figure 1 (the names of formulas are
left implicit and omitted). It contains a distinguished atomic formula ⊥ to which no
particular rule applies. This is the main difference with intuitionistic logic for which
proving ⊥ entails the inconsistency of the logic.

Minimal logic originally included negation but no formula ⊥. Negation in minimal
logic is quite formal in the sense that A → ¬A → B does not hold in general. It can
actually be shown that ¬A in the original minimal logic behaves exactly the same
as A → A0 where A0 is some globally distinguished formula. We here transfer to
minimal logic the standard decomposition of ¬A as A → ⊥ from intuitionistic or
classical logic, hence taking A0

∆
=⊥, but throwing away any specific rules about ⊥.

Thus, the formula ⊥, despite having a name which suggests it denotes the absurd
formula, could essentially be interpreted by any formula, even a true one.

This is in turn shows that minimal logic can alternatively be seen as the positive
fragment (i.e. the fragment without negation) of intuitionistic logic. Since negation
¬A is definable as A → ⊥, removing negation from intuitionistic logic can only be
understood as removing the inference rules dealing with ⊥. This is what minimal

4

logic does.
Valuations and normal proofs are important tools for reasoning about provability

in propositional logic. Reasoning with valuations first requires proving completeness
results for classical and intuitionistic logic, while reasoning with normal proofs first
requires proving normalization results. We adopt the second solution.

We say that an occurrence of →e (also called Modus Ponens) is normal if its left
premise is an axiom or another normal instance of Modus Ponens. We say that a
proof in minimal logic is normal if any occurrence of Modus Ponens in the proof is
normal. It is known that a provable statement can be proved with a normal proof.

Lemma 2.1 From a normal proof of Γ �M A and a normal proof π of Γ, A �M B we
can build a normal proof π′ of Γ �M B which satisfies the following property: if the
last rule of π′ is →i and the last rule of π is not, then B is structurally smaller than
or equal to A.

Proof. By induction on the structure of A, then on the structure of proofs. If π is
an axiom, take for π′ the proof of Γ �M A: the property is satisfied. If π starts with
a →i rule, then reason by induction on the proof of the premise of the →i rule: the
side property is trivially satisfied since its condition is false. Finally, if π starts with
the rule →e with premises Γ, A �M C → B and Γ, A �M C, then we get proofs of
Γ �M C → B and Γ �M C by the induction hypothesis. Since π is normal, the proof of
Γ, A �M C → B does not start with rule →i. If the proof of Γ �M C → B starts with
rule →i and premise Γ, C �M B, then the side property tells that C is structurally
smaller than A. Hence we get a normal proof of Γ �M B by the induction hypothesis
on A.

Theorem 2.2 (Prawitz) If Γ �M A is provable then there is a normal proof of
Γ �M A.

Proof. We reason by induction on the structure of the proof. Assume that the proof
starts with a non normal occurrence of Modus Ponens:

Γ, A �M B

Γ �M A → B

→i

Γ �M A

Γ �M B

→e

By induction hypothesis, there are normal proofs of Γ, A �M B and Γ �M A, hence,
by the previous lemma, there is normal proof of Γ �M B.

For all the systems we present the following weakening lemma will hold.

Lemma 2.3 Let Γ � A a derivable sequent. Then for every Γ′ such that Γ ⊆ Γ′,
Γ′ � A is derivable.

Proof. By structural induction on the proof of Γ � A.

5

A,B ::= X | ⊥ | A → B
Γ ::= · | Γ, A

Γ, A �I A

Ax
Γ, A �I B

Γ �I A → B

→i

Γ �I A → B Γ �I A

Γ �I B

→e
Γ �I ⊥
Γ �I A

⊥e

Figure 2: Intuitionistic Logic

2.3 Intuitionistic Logic

Any formula is implied by ⊥ in intuitionistic logic. A way to express this in natural
deduction is to consider ⊥ as a connective with no introduction rule and a single
elimination rule as shown in Figure 2. Obviously, this presentation of intuitionistic
logic is equivalent to minimal logic extended with the following schematic axiom:

⊥ → A Ex Falso Quodlibet sequitur (EFQ)

Proposition 2.4 Γ �I A iff EFQ,Γ �M A.

In propositional or first-order predicate logic, there is no formula ⊥ with the de-
sired property, as stated by the following lemma which expresses that (propositional)
intuitionistic logic is strictly stronger than minimal logic.

Proposition 2.5 ��M EFQ.

Proof. By analysis of the possible forms of a normal proof of the judgment �M ⊥ → A.
Since the context is empty, it can only starts with→i. Now, take for A a propositional
variable, then a normal proof of ⊥ � A starts with a (possibly empty) sequence of →e

then an axiom rule ⊥ �M ⊥, which implies that ⊥ has the form A1 → . . . → An → A
which is not independent of A.

In contrast, in minimal second-order logic, a formula having the property of ⊥ is
∀X.X.

Remark 2.6 Negation can be defined as follows:

¬A ∆
= A → ⊥ (Abbrev. 1)

or directly with the following inference rules with no reference to ⊥:
Γ, A � B Γ, A � ¬B

Γ � ¬A ¬i
Γ � A Γ � ¬A

Γ � B
¬e

6

The rule ¬i is derivable in minimal logic whereas ¬e uses ⊥e. In the following we
also use the abbreviation:

¬BA ∆
= A → B (Abbrev. 2)

Interesting tautologies containing negation can be derived in minimal logic. An ex-
ample is the contrapositive axiom (A → B) → (¬B → ¬A):

A → B,A,¬B � A → B
Ax

A → B,A,¬B � A
Ax

A → B,A,¬B � B
→e

A → B,A,¬B � ¬B
Ax

A → B,¬B � ¬A
¬i

A → B � ¬B → ¬A
→i

� (A → B) → (¬B → ¬A)
→i

Assuming the set of formulas is enriched with disjunction and the following inference
rules:

Γ � A1

Γ � A1 ∨ A2

∨1
i

Γ � A2

Γ � A1 ∨A2

∨2
i

Γ � A1 ∨ A2 Γ, A1 � C Γ, A2 � C

Γ � C

∨e

the formula (¬A∨B) → (A → B) is provable in intuitionistic logic but not in minimal
logic. The converse is only provable in weak classical logic. Normalization still holds
with the addition of disjunction.

2.4 Axiomatic Presentation of Classical Logic

Traditionally classical logic is obtained by adding any of the schematic axioms given in
Figure 3 to intuitionistic logic [17]. To acquire a better understanding of the strength
of these classical axioms we analyze them in minimal logic, and further classify them
in three categories: we call PL⊥ and EM weak classical axioms, PL and GEM minimal
classical axioms, and DN a (full) classical axiom. We remark that none of the classical
axioms are derivable in minimal logic and that the weak classical axioms are weaker
than the minimal classical axioms which themselves are weaker than DN. Together
with EFQ, weak and minimal classical axioms are however equivalent to DN.

Proposition 2.7 In minimal logic, we have:

1. None of PL⊥, PL, EM, GEM, nor DN is derivable.

2. PL⊥ and EM are equivalent (as schemes).

3. GEM and PL are equivalent (as schemes).

7

Weak classical:
(¬A → A) → A Weak Peirce’s law (PL⊥)
¬A ∨ A Excluded middle (EM)

Minimal Classical :
((A → B) → A) → A Peirce’s law (PL)
(A → B) ∨A Generalized excluded-middle (GEM)

Classical :
¬¬A → A Double negation law (DN)

Figure 3: Classical Schematic Axioms

4. GEM and PL imply EM and PL⊥ but not conversely.

5. DN implies GEM and PL but not conversely.

6. DN, EM+EFQ, GEM+EFQ, PL⊥+EFQ, and PL+EFQ are all equivalent.

Proof. In the following proofs we will sometimes omit the irrelevant assumptions.

1. By analysis of the possible forms of a normal proof of the axioms.

2. From EM to PL⊥:

EM ¬A → A,A � A
Ax

¬A,¬A � ¬A
Ax ¬A,¬A → A � ¬A → A

Ax

¬A → A,¬A � A
→e

¬A → A � A
∨e

� (¬A → A) → A
→ i

From PL⊥ to EM:

PL⊥

¬(A ∨ ¬A) � ¬(A ∨ ¬A) Ax
A � A

Ax

A � A ∨ ¬A
∨i

¬(A ∨ ¬A), A � ⊥ →e

¬(A ∨ ¬A) � ¬A
→i

¬(A ∨ ¬A) � A ∨ ¬A
∨i

� ¬(A ∨ ¬A) → (A ∨ ¬A)
→i

� A ∨ ¬A
→e

The instance of PL⊥ used in the above proof is:

(¬(A ∨ ¬A) → (A ∨ ¬A)) → A ∨ ¬A

8

3. The proofs are similar to the given before.
From GEM to PL:

GEM A � A
Ax

¬BA � ¬BA
Ax ¬BA → A � ¬BA → A

Ax

¬BA → A,¬BA � A
→e

¬BA → A � A
∨e

� (¬BA → A) → A
→i

From PL to GEM:

PL

¬B(A ∨ ¬BA) � ¬B(A ∨ ¬BA) Ax
A � A

Ax

A � A ∨ ¬BA
∨i

¬B(A ∨ ¬BA), A � B
→e

¬B(A ∨ ¬BA) � ¬BA
→i

¬B(A ∨ ¬BA) � A ∨ ¬BA
∨i

� ¬B(A ∨ ¬BA) → (A ∨ ¬BA)
→i

� A ∨ ¬BA
→e

The instance of PL used above is:

(¬B(A ∨ ¬BA) → (A ∨ ¬BA)) → A ∨ ¬BA

4. By analysis of possible forms of normal proofs of GEM and PL.

5. DN implies PL:

DN

¬A � ¬A
Ax

¬A � ¬A
Ax ¬A → A � ¬A → A

Ax

¬A,¬A → A � A
→e

¬A,¬A → A � ⊥ →e

¬A → A � ¬¬A
→i

¬A → A � A
→e

� (¬A → A) → A
→i

PL does not imply DN by analysis of possible forms of normal proofs of PL.

6. PL⊥ and EFQ imply DN:

PL⊥

EFQ
¬¬A � ¬¬A

Ax ¬A � ¬A
Ax

¬¬A,¬A � ⊥ →e

¬¬A,¬A � A
→e

¬¬A � ¬A → A
→i

¬¬A � A
→e

� ¬¬A → A
→i

9

A,B ::= X | ⊥ | A → B
Γ ::= · | Γ, A | Γ, A →⊥⊥

Γ, A �RAA A

Ax

Γ, A �RAA B

Γ �RAA A → B

→i
Γ �RAA A → B Γ �RAA A

Γ �RAA B

→e

Γ, A →⊥⊥�RAA A

Γ, A →⊥⊥�RAA⊥⊥
⊥⊥i

Γ, A →⊥⊥�RAA⊥⊥
Γ �RAA A

RAA⊥⊥

Γ �RAA ⊥
Γ �RAA⊥⊥

⊥e

Figure 4: Prawitz’s Classical Logic

DN implies EFQ:

DN

¬A,⊥ � ⊥ Ax

⊥ � ¬¬A →i

⊥ � A
→e

� ⊥ → A
→i

2.5 Structural Presentation of Classical Logic

We present two implementations of classical logic: we start with an alternative of
Prawitz’s classical logic [23] and then present Parigot’s Classical Natural Deduc-
tion [19].

2.5.1 Prawitz’s Classical Logic

Prawitz [23] defines classical logic as minimal logic plus the Reductio Ad Absurdum
rule (RAA):

Γ,¬A � ⊥
Γ � A

This rule implies EFQ as DN implies EFQ. The PL⊥ axiom is not equivalent to the
RAA rule. However, PL⊥ plus EFQ are equivalent to RAA. In here we develop a
revision of Prawitz’s classical logic which comes from analyzing the following proof
of PL, where Γ, Γ1 and Γ2 stand for {A,¬A,¬BA → A}, {¬A,¬BA → A}, and
{¬BA → A} respectively:

10

PL⊥

Γ1 � ¬BA → A
Ax

EFQ
Γ � A

Ax Γ � ¬A
Ax

Γ � ⊥ →e

Γ � B
→e

Γ1 � A → B
→i

Γ1 � A
→e

Γ2 � ¬A → A
→i

Γ2 � A
→e

� (¬BA → A) → A
→i

The proof uses EFQ. However, this seems counter-intuitive since PL is weaker
than DN, and therefore the proof should not need the full power of EFQ. We address
this discrepancy by providing a restricted version of EFQ that can be used to prove
PL from PL⊥ but not DN. This is done by defining a new ⊥e rule as follows:

Γ � ⊥
Γ �⊥⊥ ⊥e

and by introducing the Weakening rule defined as follows:

Γ �⊥⊥
Γ � A

Weakening

The new symbol ⊥⊥ stands for a sequent with no conclusions, that is, instead of writing
Γ � we write Γ �⊥⊥. As we explain in Section 5, the symbol ⊥⊥ has an interesting
computational justification. In Figure 4 we present Prawitz’s revision. Formulae do
not contain ⊥⊥, thus for example the sequent:

Γ � A →⊥⊥

is not a syntactically correct judgment. However, ⊥⊥ can occur in the context Γ in
the form of A →⊥⊥. Other than the ⊥e rule, ⊥⊥ is introduced by the ⊥⊥i rule. This
rule is not subsumed by the implication elimination:

Γ, A →⊥⊥� A →⊥⊥ Γ, A →⊥⊥� A

Γ, A →⊥⊥�⊥⊥ →e

since A →⊥⊥ is not a formula and hence the left-hand side sequent in the premise is
not a correct instance of the axiom.

The addition of ⊥e and Weakening to minimal logic gives intuitionistic logic. To
obtain classical logic, a variant of RAA, called RAA⊥⊥, must be added. The addition
eliminates the need for Weakening which becomes an admissible rule as stated in the
next remark. We may later on use the admissible Weakening rule to simplify the
presentation.

11

Remark 2.8 The following rule is admissible in Prawitz’s Classical Logic

Γ �⊥⊥
Γ � A

Weakening
.

Indeed, Γ, A →⊥⊥�⊥⊥ is derivable by Lemma 2.3 and by RAA⊥⊥ one obtains Γ � A.

Example 2.9 We formulate the proofs of PL and DN in the logic of Figure 4. Only
the proof of DN uses the ⊥e rule. The use of EFQ in the proof of PL is replaced by
an application of the Weakening rule.

1.

¬BA → A � ¬BA → A
Ax

¬⊥⊥A,A � A
Ax

¬⊥⊥A,A �⊥⊥ ⊥⊥i

¬⊥⊥A,A � B
Weakening

¬⊥⊥A � ¬BA
→i

¬⊥⊥A,¬BA → A � A
→e

¬BA → A,¬⊥⊥A �⊥⊥ ⊥⊥i

¬BA → A � A
RAA⊥⊥

� (¬BA → A) → A
→i

2.

¬¬A � ¬¬A
Ax

A →⊥⊥, A � A
Ax

A →⊥⊥, A �⊥⊥ ⊥⊥i

A →⊥⊥, A � ⊥ Weakening

A →⊥⊥� ¬A
→i

A →⊥⊥,¬¬A � ⊥ →e

A →⊥⊥,¬¬A �⊥⊥ ⊥e

¬¬A � A
RAA⊥⊥

� ¬¬A → A
→i

Proposition 2.10 Γ �RAA A iff Γ′,PL �I A, where Γ
′ is obtained from Γ by replacing

each B →⊥⊥ by a subcontext ∆ of the form

B → C1, · · ·B → Cn .

Proof.

⇐ follows from the fact that PL is provable in Prawitz’s logic and from the fact
that each axiom of the form

Γ′, A → B1, · · ·A → Bn, PL � A → Bi

can be replaced by

Γ, A →⊥⊥, A � A
Ax

Γ, A →⊥⊥, A �⊥⊥ ⊥⊥i

Γ, A →⊥⊥, A � Bi
Weakening

Γ, A →⊥⊥� A → Bi

→i

12

⇒ by rule induction. The only interesting case is rule RAA. We distinguish two
cases depending on which rule introduced ⊥⊥.

⊥e) We have:
ΓA →⊥⊥� ⊥
ΓA →⊥⊥�⊥⊥ ⊥e

Γ � A
RAA⊥⊥

By the induction hypothesis:

Γ′, A → B1, · · · , A → Bn, PL � ⊥ .

The result then follows from ⊥e and n applications of PLr:

Γ′, A → B1, · · · , A → Bn, PL � ⊥
Γ′, A → B1, · · ·A → Bn, PL � A

⊥e

Γ′, PL � A
PLn

where PLr stands for the derived inference rule

Γ, PL � ((A → B) → A) → A

Γ, PL,A → B � A

Γ, PL � (A → B) → A

Γ, PL � A

⊥⊥i) We further distinguish two cases. Suppose:

Γ, A →⊥⊥� A

Γ, A →⊥⊥�⊥⊥ ⊥⊥i

Γ � A
RAA⊥⊥

By the induction hypothesis:

Γ′, A → B1, · · · , A → Bn, PL � A

The result then follows by n applications of PLr.

For the other case, we have:

Γ, A →⊥⊥, B →⊥⊥� B

Γ, A →⊥⊥, B →⊥⊥�⊥⊥ ⊥⊥i

Γ, B →⊥⊥� A
RAA⊥⊥

By the induction hypothesis:

Γ′,∆1,∆2, PL � B

where ∆1 and ∆2 are as follows:

∆1 = {A → C1, · · · , A → Cn}
∆2 = {B → D1, · · · , B → Dm}

13

A,B ::= X | A → B | ¬A
Γ,∆ ::= · | Γ, A

Γ, A �C A; ∆

Ax

Γ, A �C B; ∆

Γ �C A → B; ∆

→i
Γ �C A → B; ∆ Γ �C A; ∆

Γ �C B; ∆

→e

Γ, A �C; ∆

Γ �C ¬A; ∆

¬i
Γ �C ¬A; ∆ Γ′ �C A; ∆′

Γ,Γ′ �C; ∆,∆′
¬e

Γ �C A;A,∆

Γ �C;A,∆

Passivate
Γ �C;A,∆

Γ �C A; ∆

Activate

Figure 5: Parigot’s Classical Natural Deduction for the {¬,→}-fragment

We proceed as follows:

B → A � B → A
Ax

Γ′,∆1,∆2, PL � B

Γ′,∆1,∆2, B → A,PL � A
→e

Γ′,∆2, B → A,PL � A
PLn

r

2.5.2 Parigot’s Natural Deduction with Multiple Conclusions

As initially shown by Gentzen [11] in his sequent calculus LK, classical logic can
be obtained by considering sequents with several conclusions instead of adding new
inference rules. Parigot [19] extended this approach to natural deduction. We show
that using sequents with several conclusions allows for a uniform presentation of
different logics.

Parigot’s convention is to have two kinds of sequents, one with only named for-
mulas on the right:

Γ � ∆ ,

and one with exactly one unnamed formula on the right:

Γ � A,∆ .

To clearly mark the distinction between an unnamed formula and the set ∆ of named
formulas, we write the above sequents as:

Γ �; ∆ and Γ � A; ∆ .

14

A,B ::= X | ⊥ | A → B
Γ,∆ ::= · | Γ, A

Γ, A �C A; ∆

Ax

Γ, A �C B; ∆

Γ �C A → B; ∆

→i
Γ �C A → B; ∆ Γ �C A; ∆

Γ �C B; ∆

→e

Γ �C A;A,∆

Γ �C;A,∆

Passivate
Γ �C;A,∆

Γ �C A; ∆

Activate

Γ �C ⊥; ∆

Γ �C; ∆

⊥e

Figure 6: Classical Natural Deduction for the {⊥,→}-fragment

Girard [12] calls the optional formula a stoup. The formulas in Γ are the hypotheses
and the formulas on the right-hand side of the symbol � are the conclusions. In
each case, the intuitive meaning is that the conjunction of the hypotheses implies the
disjunction of the conclusions. A sequent with no conclusion means the negation of
the conjunction of the hypotheses.

The inference rules are shown in Figure 5. The formulas explicitly mentioned in
the inference rules are called active. The one bearing the connective (introduced or
eliminated) is called the main formula. The notation A,∆ stands for the union of the
singleton context A and ∆ and assumes that both components are disjoint. All rules,
except the Passivate rule and the ¬e rule, have an active formula in the conclusion.
The axiom and implication rules are as in minimal logic. The goal of the Activate and
Passivate rules is to allow changing focus from the main formula to any other formula
in the context. For example, the sequent:

A � A;B,A
Ax

indicates that our focus is on formula A. To focus on formula B, appearing in the
right-hand side context, we first need to unfocus A (using the Passivate rule):

A � A;B,A

A �;B,A
Passivate

thus obtaining a sequent with no active formula. To focus on B we use the Activate
rule:

A �;B,A

A � B;A,
Activate

15

These steps are necessary to show � A → B;A, since in order to apply the implication
introduction rule the formula B has to be active:

A � A;B,A
Ax

A �;B,A
Passivate

A � B;A
Activate

� A → B;A
→i

Example 2.11 Proving PL and DN in Parigot’s logic.

1.

(A → B) → A � (A → B) → A; Ax

A � A;A,B
Ax

A �;A,B
Passivate

A � B;A Activate

� A → B;A
→i

(A → B) → A � A;A
→e

(A → B) → A �;A Passivate

(A → B) → A � A; Activate

� ((A → B) → A) → A;
→i

2.

¬¬A � ¬¬A
Ax

¬¬A,A � A;A Ax

¬¬A,A �;A Passivate

¬¬A � ¬A;A
¬i

¬¬A �;A ¬e

¬¬A � A; Activate

� ¬¬A → A;
→i

Since we are only focusing on implication, it is desirable to give an equivalent
formulation of classical natural deduction using ⊥ and →. The ¬i corresponds to
implication introduction:

Γ, A �;⊥,∆

Γ, A � ⊥; ∆
Activate

Γ � ¬A; ∆ →i

The above contains a silent weakening of the right-hand side context. With respect
to ¬e, we have:

Γ � ¬A; ∆ Γ � A; ∆

Γ � ⊥; ∆
→e

We still have a focused formula instead of just having named formulas on the right-
hand side of the sequent. Applying the Passivate rule gives:

Γ �; ∆,⊥

16

instead of:
Γ �; ∆

We conclude that the simulation of ¬e requires a special passivate rule:

Γ � ⊥; ∆

Γ �; ∆
The new system is given in Figure 6. DN is now provable as follows:

¬¬A � ¬¬A
Ax

¬¬A,A � A;⊥ Ax

¬¬A,A � ⊥;A Pass/Act

¬¬A � ¬A;A
→i

¬¬A � ⊥;A →e

¬¬A � A;
⊥e/Act

� ¬¬A → A;
→i

The above proof uses the rule ⊥e whereas the proof of PL does not.
Parigot’s classical logic is a correct characterization of classical logic, as expressed

in the following proposition. If the context ∆ is the set of formulas A1, · · · , An, then
we write ¬⊥⊥∆ for the set ¬⊥⊥A1, · · · ,¬⊥⊥An, where ¬⊥⊥A stands for A →⊥⊥.

Proposition 2.12 • Γ �C A; ∆ iff Γ,¬⊥⊥∆ �RAA A.

• Γ �C A iff PL,Γ �I A

3 Minimal Classical Logic

The previous section suggests that there is space for a classical logic which does val-
idate Peirce’s law (or GEM) but not EFQ. By analogy with minimal intuitionistic
logic, we call this logic minimal classical logic. As discussed in the case of mini-
mal intuitionistic logic, minimal classical logic can be seen as the positive fragment
of classical logic where the absurdity formula and negation are still there but in a
degenerated form that does not allow to prove any formula from an absurdity.

Since ⊥, in minimal classical logic, is a distinguished formula without any special
properties, EM and PL⊥, without EFQ, are weaker than PL and their addition to
minimal logic seems uninteresting.

3.1 Prawitz’s Minimal Classical Logic

The minimal subset of Prawitz’s classical logic is obtained by disallowing the ⊥e rule
and is denoted by �MRAA. See Figure 7.

Proposition 3.1 Γ �MRAA A iff Γ,PL �M A.

17

A,B ::= X | ⊥ | A → B
Γ ::= · | Γ, A | Γ, A →⊥⊥

Γ, A �MRAA A

Ax

Γ, A �MRAA B

Γ �MRAA A → B

→i
Γ �MRAA A → B Γ �MRAA A

Γ �MRAA B

→e

Γ, A →⊥⊥�MRAA A

Γ, A →⊥⊥�MRAA⊥⊥
⊥⊥i

Γ, A →⊥⊥�MRAA⊥⊥
Γ �MRAA A

RAA⊥⊥

Figure 7: Prawitz’s Minimal Natural Deduction

A,B ::= X | ⊥ | A → B
Γ,∆ ::= · | Γ, A |

Γ, A �MC A; ∆

Ax

Γ, A �MC B; ∆

Γ �MC A → B; ∆

→i
Γ �MC A → B; ∆ Γ �MC A; ∆

Γ �MC B; ∆

→e

Γ �MC A;A,∆

Γ �MC;A,∆

Passivate
Γ �MC;A,∆

Γ �MC A; ∆

Activate

Figure 8: Minimal Classical Natural Deduction for the {⊥,→}-fragment

3.2 Parigot’s Minimal Classical Logic

An axiom-free implementation of minimal classical logic is actually Parigot’s classical
natural deduction with no special rule for ⊥. That is, without hiding the occurrences
of the ⊥ formula on the right-hand-side of the sequents [19, p. 198]. We give Parigot’s
minimal classical natural deduction in Figure 8.

Proposition 3.2 • Γ �MC A; ∆ iff Γ,¬⊥⊥∆ �MRAA A.

• Γ �MC A iff PL,Γ �M A

Using Proposition 2.7(5), we have the following corollary.

Corollary 3.3 Minimal Parigot’s classical natural deduction does not prove DN.

18

However the sequent �MC ¬¬A → A;⊥ is provable as follows:

¬¬A � ¬¬A
Ax

¬¬A,A � A;⊥ Ax

¬¬A,A � ⊥;A Pass/Act

¬¬A � ¬A;A
→i

¬¬A � ⊥;A Pass/Act

¬¬A � A;⊥ →e

� ¬¬A → A;⊥ →i

We now define the notion of normal proof for a minimal variant of Parigot’s
classical natural deduction. We say that an occurrence of the rule Passivate is normal
if its premise is not an Activate rule. We say that a proof in minimal classical natural
deduction is normal if any occurrence of Modus Ponens in the proof is normal (this
is the same definition as for minimal non-classical natural deduction) and if any
occurrence of Passivate is also normal.

Theorem 3.4 (Parigot [20]) If Γ �MC A; ∆ is provable then there is a normal proof
of Γ �MC A; ∆

We define normal proofs for classical natural deduction as for minimal classical
natural deduction where the rule ⊥e is normal if its premise is not an Activate rule
(i.e. ⊥e is considered at the same level as Passivate). Parigot’s normalization proof
for minimal classical natural deduction [21, 22] applies also for full classical natural
deduction.

Theorem 3.5 (Parigot) If Γ �C A; ∆ is provable then there is a normal proof of
Γ �C A; ∆.

As expected, full classical logic is conservative over minimal classical logic for
formulas not mentioning the ⊥ formula, as stated by the following consequence of
Theorem 3.5.

Proposition 3.6 If ⊥ does not occur in A then �C A iff �MC A.

Proof. The “if” part is trivial. For the “only if” part, let’s apply Theorem 3.5 to get
a normal form of �C A and consider the more general case of a proof of Γ �MC Ξ;∆,
where Ξ stands for an optional formula and ⊥ does not occur in Γ.

We show by induction that the rule ⊥e cannot occur in the proof. First, we have
to observe that the only rule introducing a new hypothesis in Γ namely →i, preserves
the property that ⊥ does not occur in Γ. Next, we show that it is impossible that
the rule ⊥e occurs in the derivation. Assume that it were so, deriving Γ �C; ∆ from
a proof π of Γ �C ⊥; ∆. Since π is normal, it does not start with an Activate rule so
that it starts either by an axiom rule or by a sequence of →e whose leftmost premise

19

M ::= x | λx.M | MM
Γ ::= · | Γ, x : A

Γ, x : A � x : A
Ax

Γ, x : A � M : B

Γ � λx.M : A → B
→i

Γ � M : A → B Γ � M ′ : A
Γ � MM ′ : B

→e

Figure 9: The λ-calculus and minimal logic

(by normality of π) is an axiom rule. This means that there should be an hypothesis
of the form A1 → ... → An → ⊥ in Γ which contradicts the fact that ⊥ does not
occur in the formulas of Γ.

Remark 3.7 Without the rule Passivate minimal classical natural deduction yields
minimal logic, since the context ∆ is inert and can only remain empty in a deriva-
tion for which the end sequent has the form Γ � A; (even the Activate rule cannot
be applied). Similarly, classical natural deduction without the Passivate rule yields
intuitionistic logic. As a consequence, minimal and intuitionistic natural deduction
can both be seen as subsystems of classical natural deduction.

4 Control Operators and Calculi

The logical systems introduced so far can be related to programming under the so
called Curry-Howard isomorphism. The isomorphism establishes a correspondence
between a proof of a formula A and a program of type A. Executing a program
corresponds to normalizing a proof.

Minimal logic corresponds to the simply-typed λ-calculus [4]. As shown in Fig-
ure 9, the axiom of minimal logic corresponds to looking up an environment for a
variable’s typing, lambda abstraction corresponds to implication introduction, and
function application corresponds to implication elimination. Execution is carried out
by the β-rule:

(λx.N1)N2 → N1[N2/x]

where N1[N2/x] stands for the capture-free substitution ofN2 for each free occurrences
of x in N1. A β-redex corresponds to a non normal occurrence of Modus Ponens and
β-reduction eliminates these detours:

Γ, x : A � N1 : B

Γ � λx.N1 : A → B

→i

Γ � N2 : A

Γ � (λx.N1)N2 : B
→e

20

M ::= x | λx.M | MN | A M | K M | C M
V ::= x | λx.M
E ::= � | E M | V E

Figure 10: Syntax of λC

Griffin [13] was the first to extend the Curry-Howard isomorphism to classical
logic. This entails extending the λ-calculus with control operators, which are reviewed
next.

4.1 Control operators and their semantics

To reason about Scheme programs, Felleisen and Hieb [10] introduced the λC-calculus
whose syntax is in Figure 10. The calculus extends the call-by-value λ-calculus with
the operators abort (A), callcc (K), and C. The operators K and C provide abortive
continuations : the invocation of a continuation reinstates the captured context in
place of the current one. Their semantics can be described most concisely using the
following three operational rules, which rewrite complete programs:

E[A M] �→ M
E[K M] �→ E[M (λx. A E[x])]
E[C M] �→ M (λx. A E[x])

In each of the rules, the entire program is split into an evaluation context E rep-
resenting the continuation, and a current redex to rewrite. The operator A aborts
the continuation returning its subexpression to the top-level; the other two opera-
tors capture the evaluation context E and reify it as a function (λx.A E[x]). When
invoked, this function aborts the evaluation context at the point of invocation, and
installs the captured context instead.

The rules show that C differs from K in that C does not duplicate the evaluation
context:

C (λk.4) + 1 �→ (λk.4)(λz.z + 1) �→ 4
K (λk.4) + 1 �→ ((λk.4)(λz.z + 1)) + 1 �→ 5

This difference makes C at least as expressive as both A and K; it can be used to
define them as follows:

A M ∆
= C (λ . M) (Abbrev. 3)

K M ∆
= C (λc. c (M c)) (Abbrev. 4)

where refers to an anonymous variable. The operator K is not as powerful as C [9];
expressing C using K is only possible if we also have the abort primitive A:

C (M) ∆
= K (λk. A (M k))

21

M ::= x | λx.M | MM | C M
V ::= x | λx.M

λnC




β : (λx.M) N → M [N/x]
CL : (C M) N → C (λk.M (λf.A (k (fN))))
Ctp : C M → C (λk.M (λf.A (k f)))
Cidem : C (λk.C M) → C (λk.M (λx.A (x)))
Celim : C (λk.k M) → M k �∈ FV (M)

λvC




β : (λx.M) V → M [V/x]
CL : (C M) N → C (λk.M (λf.A (k (fN))))
CR : V (C M) → C (λk.M (λx.A (k (V x))))
Ctp : C M → C (λk.M (λf.A (k f)))
Cidem : C (λk.C M) → C (λk.M (λx.A (x)))

Figure 11: Call-by-name and call-by-value λC reduction rules

In the sequel we focus on C, but still occasionally treat A as a primitive control
operator to provide more intuition.

4.2 Reduction Rules

Instead of presenting the semantics of control operators as a relation on complete
programs, it is possible to give local reduction rules that are applicable anywhere in a
term and in arbitrary order. The call-by-value and call-by-name reduction semantics
of λC are presented in Figure 11.

It is possible to consider more rules, e.g. , η, but they are not needed for expressing
evaluation. The rules simulate the capture of the evaluation context using several
small steps: first the control operation is lifted across one context at a time until
it reaches another control operator. At any point, it is possible to use Ctp to start
applying M to part of the captured context and then continue lifting the outer C
to accumulate more of the context. The reduction rules are however not expressive
enough to compute a value, which is obtainable by applying the computation rule
(i.e. only applicable at the top-level):

C M �→ M (λx.A (x)).

However, the reduction rules are powerful enough to delay the application of this rule
until the end.

22

Example 4.1 We illustrate call-by-value reduction:

3 + C (λk.2 + k1) →CR
C (λq. (λk.2 + k1)(λx.A (q (3 + x))))

→→ C (λq. 2 +A (q 4))
→CR

C (λq. C (λk.(λδ.q 4)(λx.A (k (2 + x)))))
→β C (λq. C (λk.q 4))
→Cidem

C (λq. (λk.q 4)(λx.A x))
→β C (λq. q 4)

Remark 4.2 An important point to clarify is the presence of the abort operations in
the right-hand sides of the reduction rules. As far as evaluation is concerned, they
are not necessary. They are important in order to obtain a satisfying correspondence
between the operational and reduction semantics. For example, by reducing the term
in Example 4.1 with the reduction rules without the abort operations we have:

3 + C (λk. 2 + k 1) →CR
C (λq. (λk. 2 + k 1)(λx. q (3 + x)))

→→ C (λq. 2 + q 4)

The absence of the abort makes it impossible to eliminate the control context 2+�, at
least without using some context-sensitive information about the binding of q. With
the presence of the abort, the term includes specific information that q is not a normal
function but is an abortive continuation which never returns to its caller. As we
explain in Section 5, these abort steps are different from the abort used in defining C
in terms of K. The aborts in the reduction rules correspond to throwing to a user
defined continuation (i.e. a Passivate step), whereas the abort in the definition of C
corresponds to throwing to the predefined top-level continuation (i.e. a ⊥e step).

4.3 Griffin’s Type System

Griffin noticed that the evaluation rule of C suggests the following type:

Γ � M : (A → B) → B

Γ � C (M) : A

which would lead to the following typing of A:

Γ � M : B

Γ � A (M) : A

By reading types as propositions, the above rule would lead to an inconsistent system,
since every formula would be provable. To solve the problem Griffin introduced a new
type ⊥ representing the proposition false, and set B to ⊥:

Γ � M : ⊥
Γ � A (M) : A

which corresponds to the ⊥-elimination rule.
In conclusion, with the addition of control operators we have a term assignment

for intuitionistic and classical logic, as shown in Figures 12 and 13.

23

M ::= x | λx.M | MM | A M
Γ ::= · | Γ, x : A

Γ, x : A � x : A
Ax

Γ � A : ⊥ → A
EFQ

Γ, x : A � M : B

Γ � λx.M : A → B
→i

Γ � M : A → B Γ � M ′ : A
Γ � MM ′ : B

→e

Figure 12: The λA calculus and minimal logic + EFQ

M ::= x | λx.M | MM | C M
Γ ::= · | Γ, x : A

Γ, x : A � x : A
Ax

Γ � C : ¬¬A → A
DN

Γ, x : A � M : B

Γ � λx.M : A → B
→i

Γ � M : A → B Γ � M ′ : A
Γ � MM ′ : B

→e

Figure 13: The λC calculus and minimal logic + DN

Proposition 4.3 A formula A is provable in classical logic iff there exists a closed
λC term M such that � M : A is provable.

Defining K in terms of C (as in Abbrev. 4) produces the following typing for K:

K : (¬A → A) → A

This type does not correspond to Peirce’s law. We need an alternative operator which
we call KB defined as follows:

KB M ∆
= C (λc. c (M (λx. A (c x)))) (Abbrev. 5)

For example, instead of K (λc. 1 +A (c 1)), we write KB(λc. 1 + c 1).
We arrive at the term assignment for minimal classical logic given in Figure 15,

where ¬BA stands for A → B. The reduction rules for KB are given in Figure 14. It
would seem natural to also include a rule similar to Cidem such as:

KB(λk. KBM) → KB(λk. M k)

However, the above breaks subject reduction as the following example illustrates:

KB (λk. KB(λq. if q 1 then 7 else k 99)) →
KB (λk. if k 1 then 7 else k 99))

From Proposition 3.2, we have the following result.

24

M ::= x | λx.M | MM | KB M
V ::= x | λx.M
E ::= � | E M | V E
P ::= � | PM | MP | λx.P | KB P

λnKB
:

β : (λx.M) N → M [N/x]
KBL

: (KB M) N → KB (λk.M (λf.k (fN)) N)
KBtp : KB (λk.P [E[k M]]) → KB (λk.P [k M])
KBelim

: KB (λk.k M) → M k �∈ FV (M)

λvKB
:

β : (λx.M) V → M [V/x]
KBL

: (KB M) N → KB (λk.M (λf.k (fN)) N)
KBR

: V (KB M) → KB (λk.V (M (λx.k (V x))))
KBtp : KB (λk.P [E[k M]]) → KB (λk.P [k M])

Figure 14: Call-by-name and call-by-value λnKB
reduction rules

M ::= x | λx.M | MM | KB M
Γ ::= · | Γ, x : A

Γ, x : A � x : A
Ax

Γ � KB : (¬BA → A) → A
PL

Γ, x : A � M : B

Γ � λx.M : A → B
→i

Γ � M : A → B Γ � M ′ : A
Γ � MM ′ : B

→e

Figure 15: The λKB
calculus and minimal logic + PL

Proposition 4.4 A formula A is provable in minimal classical logic iff there exists
a closed λKB

term M such that � M : A is provable.

Remark 4.5 Parigot [19] criticized Griffin’s work because the proposed C-typing did
not fit the operational semantics. Setting the type of a continuation to be ¬A implies
that the top-level has type ⊥, but there is no closed term of type ⊥, since ⊥ corresponds
to the empty type. Therefore, the typing is useless. Said otherwise, with the current
typing for C we lose subject reduction. For example, in the following reduction:

C (λq. q 5) + 2 �→ (λq. q 5)(λx. A (x+ 2)) .

the left-hand side has type int, whereas the right-hand side does not type check: the
abort is invoked with an int type instead of a ⊥ type. To solve this conflict between ⊥

25

E ::= x | λx.M | MM | C M
V ::= x | λx.M

C (λk. E[(λx.M) V]) �→ C (λk. E[M [V/x])
C (λk. E[C M]) �→ C (λk. M (λx.A (E[x])))
C (λk. k V) �→ V k �∈ FV (V)

Figure 16: Griffin’s operational rules

and the top-level type, Griffin proposed to consider programs of the shape C(λk.k M).
The top-level context C(λk.�) contains a term of type ⊥ which can be reduced using
the reduction rules as shown in Figure 16.

Example 4.6
C (λk. k (C (λq. q 5) + 2)) �→
C (λk. (λq. q 5)(λz. A (k (z + 2)))) �→
C (λk. (λz. A (k (z + 2)))5) �→
C (λk. A (k (5 + 2))) ∆

=

C (λk. C (λd. (k (5 + 2)))) �→
C (λk. k (5 + 2)) �→
C (λk. k 7) �→
7

The conversion between ⊥ and int is done in the last reduction step, which corre-
sponds to binding k to the continuation λz.z instead of λz.A (z), which would lead to
a type conflict:

C (λk. k 7) �→ (λk. k 7)(λz. A (z))

As detailed in the next section, the classical version of Parigot’s λµ requires a
similar intervention; a free continuation constant is needed. It is also important to
underline that Griffin’s typing is preserved by the reduction semantics of Figure 11, as
was also emphasized by de Groote [7]. The only rule that breaks subject reduction is
the top-level computation rule (i.e. C M �→ M (λx.A (x))), which forces a conversion
from ⊥ to the top-level type.

4.4 Curry-Howard Isomorphism

Summarizing the previous results we have:

λ-calculus +A corresponds to minimal logic + EFQ
λ-calculus + C corresponds to minimal logic + DN
λ-calculus +K corresponds to minimal logic + PL⊥
λ-calculus +KB corresponds to minimal logic + PL

26

INTERMEZZO 4.7 The encodings presented above can be derived by assigning
terms to proofs.

1. For example, the encoding of A in terms of C (see Abbrev. 3) is derived by
assigning a term to the proof of ⊥ → A in terms of elimination of double
negation:

� C : DN
Ax

k : ¬A, y : ⊥ � y : ⊥ Ax

y : ⊥ � λk.y : ¬¬A
→i

y : ⊥ � C(λk.y) : A
→e

� λy.C(λk.y) : ⊥ → A
→i

2. We derive the encoding of K in terms of C by assigning a term to the proof of
PL⊥ in terms of DN:

� C : DN
Ax

y : ¬A → A � y : ¬A → A
Ax

k : ¬A � k : ¬A
Ax

y : ¬A → A, k : ¬A � yk : A
→e

y : ¬A → A, k : ¬A � k(yk) : ⊥ →e

y : ¬A → A � λk.k(yk) : ¬¬A
→i

y : ¬A → A � C(λk.k(yk) : A
→e

� λy.C(λk.k(yk)) : ¬A → A → A
→i

3. We derive the encoding of C in terms of K by assigning a term to the proof of
DN in terms of PL⊥ and EFQ:

� K : PL⊥
Ax

� A : EFQ Ax
z : ¬¬A � z : ¬¬A

Ax
x : ¬A � x : ¬A

Ax

z : ¬¬A,x : ¬A � z x : ⊥ →e

z : ¬¬A,x : ¬A � A (z x) : A
→e

z : ¬¬A � λx.A (z x) : ¬A → A
→i

z : ¬¬A � K(λx.A (z x)) : A
→e

� λz.K(λx.A (z x)) : ¬¬A → A
→i

4. We derive the definition of KB in terms of K⊥ by assigning a term to the proof of
PL in terms of PL⊥, where we let Γ = {y : ¬BA → A} and Γ1 = {x : A, z : ¬A}.
To avoid clutter in the proof, instead of the axioms � A : EFQ and � K : PL⊥,
we simply write A and K.

27

K

Γ � y : ¬BA → A
Ax

A
z : ¬A � z : ¬A

Ax
x : A � x : A

Ax

Γ1 � z x : ⊥ →e

Γ1 � A (z x) : B
→e

z : ¬A � λx.A (z x) : A → B
→i

Γ, z : ¬A � y λx.A (z x) : A
→e

Γ � λz.(y λx.A (z x)) : ¬A → A
→i

Γ � K(λz.(y λx.A (z x))) : A
→e

� λy.K(λz.(y λx.A (z x))) : (¬BA → A) → A
→i

We can write the above term in ML as follows:

- fun PL y = callcc (fn z => (y (fn x => throw z x)))

val PL = fn : ((’a -> ’b) -> ’a) -> ’a

If we compare the ML term and the PL proof assignment, we notice that one
term contains an abort invocation whereas the other one contains a throw con-
struct. This disparity was already pointed out before when we stressed that the
proof of Peirce’s law should not invoke EFQ or equivalently an abort state-
ment. That disparity leads to the introduction of an alternative of Prawitz’s
logic which still needs a term assignment. We turn to its definition in the next
section, which justifies the distinction between ⊥ and ⊥⊥.

5 Computational Content of Prawitz’s Classical

Deduction

We introduce a refinement of λC called the λC-tp-calculus which is better-behaved as
a reduction system than λC. The set of λC terms extends the λ-calculus terms with
terms of the form C-(λk. J) where J , which stands for a jump, is defined as follows:

J ::= k M | tp M

The meta-variable k ranges over continuation variables, which are distinct from reg-
ular variables. The continuation tp is a special constant which denotes the top-level.
We call the control operator C- instead of C since we are adopting some syntactic
restrictions. The operator C- is always applied to a lambda-abstraction whose body
is a jump. Moreover, the operator C- does not appear as constant but as a construct.

The translation from λC to λC-tp is given in Figure 19. In the new calculus, it is
possible to distinguish between capturing a continuation and expressing where to go
next. The embedding of C explicitly expresses the jump to the top-level, and the

28

M ::= x | MM | λx.M | C-(λk. J)
J ::= k′M | tp M
Γ ::= · | Γ, x : A | Γ, k : ¬⊥⊥A

Γ, x : A � x : A
Ax

Γ � M :A → B Γ � M ′ :A
Γ � MM ′ : B

→e
Γ, x : A � M : B

Γ � λx.M :A → B
→i

Γ, k : ¬⊥⊥A � M : A

Γ, k : ¬⊥⊥A � k M :⊥⊥ ⊥⊥i

Γ, k : ¬⊥⊥A � J :⊥⊥
Γ � C-(λk. J) : A RAA⊥⊥

Γ � M : ⊥
Γ � tp M :⊥⊥ ⊥e

Figure 17: λC-tp and Prawitz’s Classical Logic

M ::= x | MM | λx.M | C-(λk. J)
J ::= k′M
Γ ::= · | Γ, x : A | Γ, k : ¬⊥⊥A

Γ, x : A � x : A
Ax

Γ � M :A → B Γ � M ′ :A
Γ � MM ′ : B

→e
Γ, x : A � M : B

Γ � λx.M :A → B
→i

Γ, k : ¬⊥⊥A � M : A

Γ, k : ¬⊥⊥A � k M :⊥⊥ ⊥⊥i

Γ, k : ¬⊥⊥A � J :⊥⊥
Γ � C-(λk. J) : A RAA⊥⊥

Figure 18: λC- and Prawitz’s Minimal Classical Logic

x◦ = x
(λx.M)◦ = λx.M◦

(MN)◦ = M◦ N◦

(C M)◦ = C-(λk.tp (M◦(λx.throw k x)))
(K M)◦ = C-(λk.k (M◦(λx.throw k x)))

Figure 19: Embedding of λC into λC-tp

29

embedding of K explicitly expresses that control goes back to the current context.
These things are left implicit in λC.

To summarize, aborting a computation (i.e. , throwing to the top-level continua-
tion) is written as:

A- M ∆
= C-(λ . tp M) (Abbrev. 6)

and throwing to a user-defined continuation is written as:

throw k M ∆
= C-(λ . k M) (Abbrev. 7)

5.1 Type System

We adopt two types of judgments:

Γ � M : A and Γ � J :⊥⊥
Since the invocation of a continuation leaves the current context, it intuitively corre-
sponds to a sequent with no conclusion. Instead of typing a continuation as A → ⊥
we use the type A →⊥⊥, thus distinguishing the top-level type from the result type
of a continuation. However, we still need a conversion from ⊥⊥ to any other type in
order to write terms such as 1+k 1 where k is a continuation. This conversion is done
by the Weakening rule. The invocation of a continuation simply corresponds to an
implication elimination. However, if the argument has type ⊥, which is the top-level
type, the special continuation denoting the top-level is called.

Example 5.1 We can now provide a term assignment for the proof of DN given in
Example 2.9.

y : ¬¬A � y : ¬¬A
Ax

k : a →⊥⊥, x : A � x : A
Ax

k : A →⊥⊥, x : A � k x :⊥⊥ ⊥⊥i

k : A →⊥⊥, x : A � throw k x : ⊥ Weak.

k : A →⊥⊥� λx.throw k x : ¬A
→i

k : A →⊥⊥, y : ¬¬A � y (λx.throw k x) : ⊥ →e

k : A →⊥⊥, y : ¬¬A � tp (y (λx.throw k x)) :⊥⊥ ⊥e

y : ¬¬A � C-(λk. tp (y (λx.throw k x))) : A
RAA⊥⊥

� λy.C-(λk. tp (y (λx.throw k x))) : ¬¬A → A
→i

The term refers to the top-level continuation as expected.

Proposition 5.2 A formula A is provable in Prawitz’s classical logic iff there exists
a closed λC-tp term M such that � M : A is provable.

We define a subset of λC-tp, which does not allow terms of the form C-(λk.tp M).
This subset called λC- is defined in Figure 18.

30

Example 5.3 The term corresponding to PL is given below, where we let Γ = {k :
¬⊥⊥A, y : (¬BA) → A, x : A}, Γ1 = {k : ¬⊥⊥A, y : (¬BA) → A}, and Γ2 = {y :
(¬BA) → A}:

Γ1 � y : ¬BA → A
Ax

Γ � x : A
Ax

Γ � k x :⊥⊥ ⊥⊥i

Γ � throw k x : B Weak.

Γ1 � λx.throw k x : ¬BA
→i

Γ1 � (y (λx.throw k x)) : A
→e

Γ1 � k (y (λx.throw k x)) :⊥⊥ ⊥⊥i

Γ2 � C-(λk.k (y (λx.throw k x))) : A
RAA⊥⊥

� λy. C-(λk.k (y (λx.throw k x))) : (¬BA → A) → A
→i

which in ML’s syntax is:

- fun PL y = callcc (fn k => (y (fn x => throw k x)))

Proposition 5.4 A formula A is provable in minimal Prawitz’s classical logic iff
there exists a closed λC- term M such that � M : A is provable.

By Propositions 3.1, 4.4 and 5.4, λC- is equivalent to λKB
. However, it might not

be at all obvious how in λKB
to use a continuation in different contexts, since we do

not have weakening available. Consider for example the following λC- term:

C-(λk. k (if throw k 1 then 7 else throw k 99))

We use the continuation in both boolean and integer contexts. How can we write the
above expression without making use of weakening or throw? The proof of Proposi-
tion 3.2 gives the answer:

KB (λk. KB (λq. if q 1 then 7 else k 99))

We define a further subset of λC- which allows only jumps to the top-level, see
Figure 20.

Proposition 5.5 A formula A is provable in intuitionistic logic iff there exists a
closed λA- term M such that � M : A is provable.

5.2 Reduction Semantics

The call-by-name and call-by-value λC-tp reduction rules are given in Figure 21. The
rule Ctop, whose action is to wrap an application of a continuation with a throw oper-
ation, is not needed. The rule C-idem’ is a special case of Cidem where the continuation k′

is tp. The rule C-
idem

is similar to the rule proposed by Barbanera and Berardi [3]:

M (C N) → N (λa. (M a)) ,

31

M ::= x | MM | λx.M | C-(λ . J)
J ::= tp M
Γ ::= · | Γ, x : A

Γ, x : A � x : A
Ax

Γ � M :A → B Γ � M ′ :A
Γ � MM ′ : B

→e
Γ, x : A � M : B

Γ � λx.M :A → B
→i

Γ � J :⊥⊥
Γ � C-(λ . J) : A

Weakening Γ � M : ⊥
Γ � tp M :⊥⊥ ⊥e

Figure 20: λA- and Intuitionistic Logic

V ::= x | λx.M

λnC- and λnC-tp

β : (λx. M) N → M [N/x]
C-L : (C- λk. J) N → C-(λk. J [k (PN)/k P])
C-

idem
: C-(λk. k′ (C- (λq.J)) → C-(λk. J [k′/q])

C-
idem’

: C-(λk. tp (C- (λq.J)) → C-(λk. J [tp/q])
C-elim : C-(λk. k M) → M k �∈ FV (M)

λvC- and λvC-tp

β : (λx.M)V → M [V/x]
C-

elim
: C-(λk. k M) → M k �∈ FV (M)

C-L : (C-(λk. J)) N → C-(λk. J [k (PN)/k P])
C-R : V (C-(λk. J)) → C-(λk. J [k (V P)/k P])
C-idem : C-(λk. k′ (C- (λq. J))) → C-(λk. J [k′/q])
C-

idem’
: C-(λk. tp (C- (λq. J))) → C-(λk. J [tp/q])

Figure 21: Call-by-name and call-by-value λC- and λC-tp reduction rules

32

where M has type ¬A. Felleisen and Hieb [10] proposed the following additional rules
for λvC:

CE : E[C M] → C (λk. M (λx. A (k E[x])))

(where E stands for a call-by-value evaluation context) and

Celim : C (λk. k M) → M ,

where k is not free inM . The first rule is a generalization of CL, CR, and Ctp which adds
expressive power to the calculus. The second rule, which is also used by Hofmann [14],
leads to better simulation of evaluation. However, both rules destroy confluence of
λvC as the following example illustrates.

Example 5.6 In the following diagram if M does not reduce to a value then the two
reduction sequences in the extended λvC cannot be brought together.

C(λk. k M) → M
↓
C(λq. (λk. k M)(λx. A (q x)))
↓
C(λq. (λx. A (q x)) M)

Felleisen et al. left unresolved the problem of finding an extended theory that would
include CE or Celim and still satisfy the classical properties of reduction theories.
Since Celim is already present in our calculi and CE is derivable, one may consider
our calculi as a solution.

Proposition 5.7 1. λvC-tp and λnC-tp are confluent and strongly normalizing.

2. Subject reduction: Given λvC-tp (λnC-tp) terms M,N , if Γ � M : A and M→→N
then Γ � N : A.

Proof. As shown in the next section, the λnC-tp calculus corresponds to Parigot’s
call-by-name λµ calculus, which is confluent and strongly normalizable [24, 21, 22].
The λvC-tp calculus corresponds to a subset of the λµv calculus of Ong and Stewart [18]
which is strongly normalizing. Confluence follows from the fact that all critical pairs
converge.

Soundness and completeness properties for λvC-tp with respect to λvC are stated
in terms of operational equivalence. Given a reduction relation X, and two terms M
andN , possibly containing free variables, we sayM �X N if for every context P which
binds all the free variables of M and N , P [M]→→XV1 iff P [N]→→XV2 for some values V1

and V2. For example, any two terms that are convertible using the reduction relation
are operationally equivalent. Two non-convertible terms may still be equivalent if no
sequence of reductions in any context can invalidate their equivalence. An example of

33

this kind is the equivalence (λx.x) (y z) �λC (y z). The embedding of λvC-tp into λvC
essentially removes occurrences of the top-level continuation, which is implicit in λvC:

(C-(λk.J))• = C (λk.J•)
(tp M)• = M•

Proposition 5.8 Let M be a closed λvC term:

• If M→→λvCV then M◦ �λvC-tp
V ◦.

• If M◦→→λ
vC-tp

V then M �λvC V •.

The proof of the first clause reduces to checking that embedding both sides of
every λvC-reduction produces semantically-equivalent terms in λvC-tp. For some of the
cases embedded terms are related by a corresponding reduction in λvC-tp and hence
are obviously semantically-equivalent. For the Cidem case, the embedded left-hand side
does not reduce to the embedded right-hand side, but both can reduce to a common
term, and hence are again semantically-equivalent. The left-hand side and right-hand
side of the Ctp rule map into convertible terms. The lifting rules CL are CR introduce
a complication: proving the equivalence of the embedded terms requires using the
following equivalence:

(λx.throw k x) M �λC throw k M

even when M is not a value. This happens because in contrast to the regular sub-
stitution operation, structural substitutions can replace arbitrary jumps (k M) by
(k (V M)) even when M is not a value.

The proof of the second clause reduces to proving:

1. For all λvC-terms M , we have M �λvC M◦•

2. For every λvC-tp-reduction M → N , we have M• �λC N•.

The proof of the first statement is almost straightforward: proving that C M is
equivalent to (C M)◦• requires using Ctp which is not a reduction rule but otherwise
a valid operational equivalence.

When attempting to prove the second statement, we encounter a problem related
to free continuation variables. Even though programs are closed terms, reductions can
happen anywhere including under binders and hence it is possible for a λvC-tp-reduction
to manipulate an open term. In particular, consider C-

idem
where the continuation

variable k′ is free. The right-hand side maps to the λvC-term C(λk. J [k′/q]•) but for
the left-hand side we have:

C(λk. k′ C(λq. J•)) →
C(λk. C(λr. (λq. J•) (λx. A (r (k′ x))))) →
C(λk. C(λr. J•[λx. A (r (k′ x))/q])) →
C(λk.J•[λx. A ((λx.A x) (k′ x))/q])

34

which is equivalent to the λvC-term C(λk.J•[λx. A (k′ x)/q]). Since the variable k′ is
not special in λvC it could, as far as the λvC-theory is concerned, be substituted with
an arbitrary procedure and hence it is definitely not the case that one can assume
that k′ and (λx.A (k′ x)) are operationally equivalent. This assumption would be
correct if we could somehow guarantee that k′ is substituted by a continuation. In a
complete program, this is clearly the case as the left-hand side must occur in a context
. . . C-(λk′. . . .� . . .) . . . which binds k′ to a continuation variable. We just need to
make this information explicit in the statement of the Proposition [25, Lemma 19]:

2’. Let M → N be a λvC-tp-reduction, and let k1, . . . , kn be the free continuation
variables in M , then we have the equivalence

C (λk1 . . . C (λkn.M
•)) �λC C (λk1 . . . C (λkn.N

•))

The proof of the modified clause proceeds by cases. For the reduction C-
elim

we
use the fact that even though Celim is not a reduction of λvC, it is a valid equivalence.
The reductions C-L and C-R require the following equivalences in λvC where k is a
continuation variable and M may not be a value:

(λx.k (V x)) M �λC k (V M)
(λx.k (x N)) M �λC k (M N)

These again allow one to jump with a non-value. All the required λvC equivalences
are known to be valid [16, 25].

Remark 5.9 Reducing the term corresponding to C(λk. k I x) 1 we have:

(C-(λk. tp ((λq.q I x)(λf. throw k f)))) 1 →
(C-(λk. tp (((λf. throw k f) I) x))) 1 →
(C-(λk. tp ((throw k I) x))) 1 →
(C-(λk. tp (throw k I))) 1 →
C-(λk. tp (throw k (I 1))) →
C-(λk. k (I 1)) →
C-(λk. k 1) →
1

This reduction sequence is better than the corresponding sequence in λvC. However,
the rules are still not complete with respect to evaluation. In particular, it is not
possible to simulate the computation rules:

C-(λk. k. M) → M [tp/k]
C-(λ . tp M) → M

For example, the reduction rules cannot reduce the following program:

C-(λc. c (λx. throw c (λy. x)))

to λx.A-(λy. x). To do that the calculus must be extended with a notion of prompt [2].

35

t, x ::= x | λx.t | t s | µα.c
c ::= [β]t | [tp]t
Γ ::= · | Γx

∆ ::= · | ∆α

Γ, Ax � x : A; ∆

Ax

Γ, Ax � t : B; ∆

Γ � λx.t : A → B; ∆

→i
Γ � t : A → B; ∆ Γ � s : A; ∆

Γ � t s : B; ∆

→e

Γ � t : A;Aα,∆

[α]t : Γ �;Aα,∆
Passivate

c : Γ �;Aα,∆

Γ � µα.c : A; ∆
Activate

Γ � t : ⊥; ∆

[tp]t : Γ �; ∆ ⊥e

Figure 22: The λµtp calculus and Classical Natural Deduction

6 Computational Content of Classical Natural De-

duction

Figure 22 describes the λµ calculus of Parigot [19] which is a term assignment for
classical natural deduction. The Passivate rule reads as follows: given a term produc-
ing a value of type A, if α is a continuation variable waiting for something of type A
(i.e. A cont), then by invoking the continuation variable we leave the current context.
Terms of the form [α]t are called commands. The Activate rule reads as follows: given
a command (i.e. no formula is focused) we can select which result to get by capturing
the associated continuation. If Aα is not present in the precondition then the rule
corresponds to weakening. The rule ⊥e differs from Parigot’s version as follows. In
the original formulation, the elimination rule for ⊥ is interpreted by a named term
[γ]t, where γ is any continuation variable (not always the same for every instance of
the rule). In contrast, the rule is here systematically associated to the same primitive
continuation variable, called tp, considered as a constant. This was also observed by
Streicher and Reus [27]. In Parigot’s style, DN is represented with the term:

λy.µα.[γ](y (λx.µδ.[α]x))

whereas our representation is:

λy.µα.[tp](y (λx.µδ.[α]x)) .

We use λµtp to denote the whole calculus with ⊥e and λµ to denote the calculus
without ⊥e (see Figure 23). The need for an extra continuation constant to interpret

36

t, s ::= x | λx.t | t s | µα.c
c ::= [β]t

Γ, Ax � x : A; ∆

Ax

Γ, Ax � t : B; ∆

Γ � λx.t : A → B; ∆

→i
Γ � t : A → B; ∆ Γ � s : A; ∆

Γ � t s : B; ∆

→e

Γ � t : A;Aα,∆

[α]t : Γ �;Aα,∆
Passivate

c : Γ �;Aα,∆

Γ � µα.c : A; ∆
Activate

Figure 23: The λµ calculus and Minimal Classical Natural Deduction

the elimination of ⊥ can be emphasized by the following statement.

Proposition 6.1 A formula A is provable in minimal classical logic (resp. classical
logic) iff there exists a closed λµ term (resp. λµtp term) t such that � t : A is provable.

We write λµn and λµv (resp. λnµtp and λvµtp) for the λµ calculus (resp. λµtp calcu-
lus) equipped with call-by-name and call-by-value reduction rules, respectively. The
reduction rules are given in Figure 24 (substitutions [[α](ws)/[α]w] and [[α](sw)/[α]w]
are defined as in the original formulation of the λµ calculus [19]). The rules are the
same for the λµ and λµtp calculi. The calculus λµn is Parigot’s original calculus, while
our presentation of λµv is similar to the presentation of Ong and Stewart [18]. Both
sets of reduction rules are well-typed and satisfy subject reduction.

6.1 Relation between the λµtp and the λC-tp calculi

The λµtp calculi and the λC-tp calculi are in one-to-one correspondence:

λx.t = λx.t
ts = ts

C-(λα.γt) = µα.[γ]t

This correspondence extends to the reduction rules (Figure 21 matches Figure 24),
as expressed by the following statement.

Lemma 6.2 Let t, s be λµtp-terms, then:

• t →λnµtp s iff t →λnC-tp
s

• t →λvµtp s iff t →λvC-tp
s .

37

v ::= x | λx.t

λµn and λnµtp

Logical rule: (λx.t)s → t[s/x]
Structural rule: (µα.t)s → (µα.t[[α](ws)/[α]w])
Renaming rule: µα.[β]µγ.u → µα.u[β/γ]
Renaming rule’: µα.[tp]µγ.u → µα.u[tp/γ]
Simplification rule: µα.[α]u → u α �∈ FV (u)

λµv and λvµtp

Logical rule: (λx.t)v → t[v/x]
Left structural rule: (µα.t)s → (µα.t[[α](ws)/[α]w])
Right structural rule: v(µα.t) → (µα.t[[α](vw)/[α]w])
Renaming rule: µα.[β]µγ.u → µα.u[β/γ]
Renaming rule’: µα.[tp]µγ.u → µα.u[tp/γ]
Simplification rule: µα.[α]u → u α �∈ FV (u)

Figure 24: Call-by-name and call-by-value λµ and λµtp reduction rules

The above proposition implies that Parigot’s λµ is a correct implementation of λC.
Correctness of Parigot’s λµ with respect to a modified reduction theory for C was
already shown by de Groote [7]. However, the reduction rules did not contain the
abort steps. The relation between λµ and this modified theory was also studied by
Ong and Stewart [18].

Corollary 6.3 Parigot’s λµ calculus is sound and complete with respect to λC in the
sense that the reductions of one calculus can be simulated by the other.

7 Related Work

The relation between Parigot’s λµ and λC has been investigated by de Groote [7],
who only considers the λµ structural rule but not renaming and simplification. As
for λC, he only considers CL and Ctp. However, these rules are not the original rules of
Felleisen, since they do not contain abort. For example, Ctp is CM → C(λk.M(λf.kf))
which is in fact a reduction rule for λF [8]. This work fails in relating λµ to λC in an
untyped framework, since it does not express continuations as abortive functions. It
says in fact that F behaves as C in the simply-typed case. Ong and Stewart [18] also
do not consider the abort step in Felleisen’s rules. This could be justified because
in a simply-typed setting these steps are of type ⊥ → ⊥. Therefore, it seems we
have a mismatch. While the aborts are essential in the reduction semantics, they are
irrelevant in the corresponding proof. We are the first to provide a proof theoretic

38

justification for those abort steps, they correspond to the step ⊥ →⊥⊥. In addition
to Ong and Stewart, Py [24] and Bierman [5] have pointed out the peculiarity of
having an open λµ term corresponding to a tautology. Their solution is to abolish
the distinction between commands and terms. A command is a term returning ⊥.
The body of a µ-abstraction is not restricted to a command, but can be of the form
µα.t, where t is of type ⊥. Thus, we have λy.µα.(y λx.[α]x) : ¬¬A → A. We
would then represent the term C(λk.(kI)x) (where I is λx.x) as µα.([α]I)x. Whereas
C(λk.kIx) would reduce to C(λk.kI) according to λnC and to I in λnµtp, it would be
in normal form in their calculus. Thus, their work in relating λµ to λC only applies
to typed λC, whereas our work also applies to the untyped case. Crolard [6] studied
the relation between Parigot’s λµ and a calculus with a catch and throw mechanism.
He showed that contraction corresponds to the catch operator (µα.[α]t = catch α t)
and weakening corresponds to the throw operator (µδ.[α]t = throw α t for δ not free
in t). He only considers terms of the form µα.[α]t and µβ.[α]t, where β does not occur
free in t. This property is not preserved by the renaming rule, therefore reduction is
restricted. We do not require such restrictions on reduction. We can simulate Ong
and Stewart’s λµ and Crolard’s calculus via this simple translation: µα.t becomes
µα.[tp]t and [β]t becomes µδ.[β]t, where δ is not free in t.

A categorical semantics of the call-by-name and call-by-value Parigot’s λµ-calculus
extended with disjunction has been provided by Selinger in [26].

8 Conclusions

M
in

In
tui

t

M
in

Clas
s

Clas
s

λ λµ

λC-

λA-

λ

λtp

�M �MC

RAA⊥⊥, ⊥⊥i�M�M

⊥e, RAA⊥⊥, ⊥⊥i�M

�I
λµtp �C

EFQ⊥
⊥⊥ �MλC-tp

Our analysis of the logical strengths of EFQ, PL (or EM), and DN has led naturally
to a restricted form of classical logic called minimal classical logic. Depending on
whether EFQ, PL, or both are assumed in minimal logic, we get intuitionistic, minimal
classical, or classical logic. Depending on whether or not we admit RAA⊥⊥ and ⊥e

in full classical natural deduction (on top of minimal natural deduction), we get the
correspondences with the λ-calculi considered in this paper, as summarized above.
The calculus λtp is the subset of λµtp in which expressions of the form µδ.[α]t are only
allowed when δ is not free in t and α is tp. The symbol EFQ⊥

⊥⊥ stands for ⊥e and
Weakening. Among these systems, λC-tp is a confluent extension of Felleisen’s theory
of control.

39

Acknowledgements

We thank Matthias Felleisen for numerous discussions about his theory of control.

References

[1] Ariola, Z. M., and Herbelin, H. Minimal classical logic and control op-
erators. In Thirtieth International Colloquium on Automata, Languages and
Programming , ICALP’03, Eindhoven, The Netherlands, June 30 - July 4, 2003
(2003), vol. 2719, Springer-Verlag, LNCS, pp. 871–885.

[2] Ariola, Z. M., Herbelin, H., and Sabry, A. A type-theoretic foundation
of continuations and prompts. In ACM SIGPLAN International Conference on
Functional Programming (2004), ACM Press, New York, pp. 40–53.

[3] Barbanera, F., and Berardi, S. Extracting constructive content from clas-
sical logic via control-like reductions. In Proceedings 1st Intl. Conf. on Typed
Lambda Calculi and Applications, TLCA’93, Utrecht, The Netherlands, 16-18
March 1993, M. Bezem and J. F. Groote, Eds., vol. 664. Springer-Verlag, Berlin,
1993, pp. 45–59.

[4] Barendregt, H. P. Lambda calculi with types. In Handbook of Logic in
Computer Science, A. . G. . Maibaum, Ed., vol. 2. Oxford University Press, Inc.,
1992, pp. 117–309.

[5] Bierman, G. A computational interpretation of the lambda-mu calculus. In
Mathematical foundations of computer science semantics, LNCS 1450 (1998),
L. Brim, J. Gruska, and J. Zlatuska, Eds., Springer-Verlag, pp. 336–345.

[6] Crolard, T. A confluent lambda-calculus with a catch/throw mechanism.
Journal of Functional Programming 9(6) (1999), 625–647.

[7] de Groote, P. On the relation between the lambda-mu calculus and the
syntactic theory of sequential control. In Logic Programming and Automated
Reasoning, Proc. of the 5th International Conference, LPAR’94, F. Pfennig, Ed.
Springer, Berlin, Heidelberg, 1994, pp. 31–43.

[8] Felleisen, M. The theory and practice of first-class prompts. In Proceedings
of the 15th ACM Symposium on Principles of Programming Languages (POPL
’88) (Jan 1988), ACM Press, New York, pp. 180–190.

[9] Felleisen, M. On the expressive power of programming languages. In ESOP
’90 3rd European Symposium on Programming, Copenhagen, Denmark, N. Jones,
Ed., vol. 432. Springer-Verlag, New York, N.Y., 1990, pp. 134–151.

40

[10] Felleisen, M., and Hieb, R. The revised report on the syntactic theories
of sequential control and state. Theoretical Computer Science 103, 2 (1992),
235–271.

[11] Gentzen, G. Investigations into logical deduction. In Collected papers of Ger-
hard Gentzen, M. Szabo, Ed. North-Holland, 1969, pp. 68–131.

[12] Girard, J.-Y. A new constructive logic: Classical logic. Mathematical Struc-
tures in Computer Science 1, 3 (1991), 255–296.

[13] Griffin, T. G. The formulae-as-types notion of control. In Conf. Record 17th
Annual ACM Symp. on Principles of Programming Languages, POPL’90, S an
Francisco, CA, USA, 17-19 Jan 1990 (1990), ACM Press, New York, pp. 47–57.

[14] Hofmann, M. Sound and complete axiomatisations of call-by-balue control
operators. Mathematical Structures in Computer Science 5, 4 (Dec. 1995), 461–
482.

[15] Johansson, I. Der minimalkalkül, ein reduzierter intuitionistischer formalis-
mus. Compositio Math. 4 (1937), 119–136.

[16] Kameyama, Y., and Hasegawa, M. A sound and complete axiomatization
of delimited continuations. In Proc. of 8th ACM SIGPLAN Int. Conf. on Func-
tional Programming, ICFP’03, Uppsala, Sweden, 25-29 Aug. 2003, vol. 38(9) of
SIGPLAN Notices. ACM Press, New York, 2003, pp. 177–188.

[17] Lalement, R. Computation as Logic. Prentice Hall International Series in
Computer Science, Amsterdam, 1993.

[18] Ong, C.-H. L., and Stewart, C. A. A Curry-Howard foundation for func-
tional computation with control. In Conf. Record 24th ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages, POPL’97, Paris, France, 15-17
Jan. 1997. ACM Press, New York, 1997, pp. 215–227.

[19] Parigot, M. Lambda-mu-calculus: An algorithmic interpretation of classi-
cal natural deduction. In Logic Programming and Automated Reasoning: In-
ternational Conference LPAR ’92 Proceedings, St. Petersburg, Russia (1992),
Springer-Verlag, pp. 190–201.

[20] Parigot, M. Classical proofs as programs. Computational logic and theory 713
(1993), 263–276.

[21] Parigot, M. Strong normalization for second order classical natural deduction.
In Proceedings 8th Annual IEEE Symp. on Logic in Computer Science, LICS’93.
IEEE Computer Society Press, 1993, pp. 39–47.

41

[22] Parigot, M. Proofs of strong normalisation for second order classical natural
deduction. Journal of Symbolic Logic 62, 4 (1997), 1461–1479.

[23] Prawitz, D. Natural Deduction, a Proof-Theoretical Study. Almquist and
Wiksell, Stockholm, 1965.

[24] Py, W. Confluence en λµ-calcul. PhD thesis, Université de Savoie, 1998.

[25] Sabry, A., and Felleisen, M. Reasoning about programs in continuation-
passing style. Lisp Symb. Comput. 6, 3-4 (1993), 289–360.

[26] Selinger, P. Control categories and duality: on the categorical semantics of
the lambda-mu calculus. Mathematical. Structures in Comp. Sci. 11, 2 (2001),
207–260.

[27] Streicher, T., and Reus, B. Classical logic: Continuation semantics and
abstract machines. Journal of Functional Programming 8(6) (1998), 543–572.

42

