
From Symmetric Pattern-Matching to
Quantum Control

Amr Sabry1, Benôıt Valiron2?, and Juliana Kaizer Vizzotto3?

1 Indiana University sabry@indiana.edu
2 LRI, CentraleSupélec, Université Paris-Saclay benoit.valiron@lri.fr

3 Universidade Federal de Santa Maria juvizzotto@inf.ufsm.br

Abstract. One perspective on quantum algorithms is that they are clas-
sical algorithms having access to a special kind of memory with exotic
properties. This perspective suggests that, even in the case of quantum
algorithms, the control flow notions of sequencing, conditionals, loops,
and recursion are entirely classical. There is however, another notion
of control flow, that is itself quantum. The notion of quantum condi-
tional expression is reasonably well-understood: the execution of the two
expressions becomes itself a superposition of executions. The quantum
counterpart of loops and recursion is however not believed to be mean-
ingful in its most general form.
In this paper, we argue that, under the right circumstances, a reasonable
notion of quantum loops and recursion is possible. To this aim, we first
propose a classical, typed, reversible language with lists and fixpoints.
We then extend this language to the closed quantum domain (without
measurements) by allowing linear combinations of terms and restrict-
ing fixpoints to structurally recursive fixpoints whose termination proofs
match the proofs of convergence of sequences in infinite-dimensional
Hilbert spaces. We additionally give an operational semantics for the
quantum language in the spirit of algebraic lambda-calculi and illustrate
its expressiveness by modeling several common unitary operations.

1 Introduction

The control flow of a program describes how its elementary operations are or-
ganized along the execution. Usual primitive control mechanisms are sequences,
tests, iteration and recursion. Elementary operations placed in sequence are ex-
ecuted in order. Tests allow conditionally executing a group of operations and
changing the course of the execution of the program. Finally, iteration gives the
possibility to iterate a process an arbitrary number of times and recursion gener-
alizes iteration to automatically manage the history of the operations performed
during iteration. The structure of control flow for conventional (classical) com-
putation is well-understood. In the case of quantum computation, control flow is
still subject to debate. This paper proposes a working notion of quantum control

? Partially funded by FoQCoss STIC AmSud project - STIC-AmSUD/Capes - Foun-
dations of Quantum Computation: Syntax and Semantics.

in closed quantum systems, shedding new light on the problem, and clarifying
several of the previous concerns.

Quantum computation. A good starting point for understanding quantum com-
putation is to consider classical circuits over bits but replacing the bits with
qubits, which are intuitively superpositions of bits weighed by complex num-
ber amplitudes. Computationally, a qubit is an abstract data type governed by
the laws of quantum physics, whose values are normalized vectors of complex
numbers in the Hilbert space C2 (modulo a global phase). By choosing an or-
thonormal basis, say the classical bits tt and ff, a qubit can be regarded as a
complex linear combination, α tt + β ff, where α and β are complex numbers
such that |α|2 + |β|2 = 1. This generalizes naturally to multiple qubits: the state
of a system of n qubits is a vector in the Hilbert space (C2)⊗n.

The operations one can perform on a quantum memory are of two kinds:
quantum gates and measurements. Quantum gates are unitary operations that
are “purely quantum” in the sense that they modify the quantum memory with-
out giving any feedback to the outside world: the quantum memory is viewed
as a closed system. A customary graphical representation for these operations is
the quantum circuit, akin to conventional boolean circuits: wires represent qubits
while boxes represents operations to perform on them. One of the peculiar as-
pects of quantum computation is that the state of a qubit is non-duplicable [1],
a result known as the no-cloning theorem. A corollary is that a quantum circuit
is a very simple kind of circuit: wires neither split nor merge.

Measurement is a fundamentally different kind of operation: it queries the
state of the quantum memory and returns a classical result. Measuring the state
of a quantum bit is a probabilistic and destructive operation: it produces a
classical answer with a probability that depends on the amplitudes α, β in the
state of the qubit while projecting this state onto tt or ff, based on the result.

For a more detailed introduction to quantum computation, we refer the reader
to recent textbooks (e.g., [2]).

Control flow in quantum computation. In the context of quantum programming
languages, there is a well-understood notion of control flow: the so-called classical
control flow. A quantum program can be seen as the construction, manipulation
and evaluation of quantum circuits [3, 4]. In this setting, circuits are simply
considered as special kinds of data without much computational content, and
programs are ruled by regular classical control.

One can however consider the circuit being manipulated as a program in
its own right: a particular sequence of execution on the quantum memory is
then seen as a closed system. One can then try to derive a notion of quantum
control [5], with “quantum tests” and “quantum loops”. Quantum tests are a
bit tricky to perform [5, 6] but they essentially correspond to well-understood
controlled operations. The situation with quantum loops is more subtle [6, 7].
First, a hypothetical quantum loop must terminate. Indeed, a non-terminating
quantum loop would entail an infinite quantum circuit, and this concept has so
far no meaning. Second, the interaction of quantum loops with measurement is

problematic: it is known that the canonical model of open quantum computation
based on superoperators [8, 9] is incompatible with such quantum control [6]. Fi-
nally, the mathematical operator corresponding to a quantum loop would need
to act on an infinite-dimensional Hilbert space and the question of mixing pro-
gramming languages with infinitary Hilbert spaces is still an unresolved issue.

Our contribution. In this paper, we offer a novel solution to the question of quan-
tum control: we define a purely quantum language, inspired by Theseus [10], fea-
turing tests and fixpoints in the presence of lists. More precisely, we propose (1)
a typed, reversible language, extensible to linear combinations of terms, with a
reduction strategy akin to algebraic lambda-calculi [11–13]; (2) a model for the
language based on unitary operators over infinite-dimensional Hilbert spaces,
simplifying the Fock space model of Ying [7]. This model captures lists, tests,
and structurally recursive fixpoints. We therefore settle two longstanding issues.
(1) We offer a solution to the problem of quantum loops, with the use of ter-
minating, structurally recursive, purely quantum fixpoints. We dodge previously
noted concerns (e.g., [6]) by staying in the closed quantum setting and answer
the problem of the external system of quantum “coins” [7] with the use of lists.
(2) By using a linear language based on patterns and clauses, we give an exten-
sible framework for reconciling algebraic calculi with quantum computation [16,
12, 11].

In the remainder of the paper, we first introduce the key idea underlying our
classical reversible language in a simple first-order setting. We then generalize the
setting to allow second-order functions, recursive types (e.g., lists), and fixpoints.
After illustrating the expressiveness of this classical language, we adapt it to the
quantum domain and give a semantics to the resulting quantum language in
infinite-dimensional Hilbert spaces. Technical material that would interrupt the
flow or that is somewhat complementary has been relegated to an extended
version of the paper [17].

2 Pattern-Matching Isomorphisms

The most elementary control structure in a programming language is the ability
to conditionally execute one of several possible code fragments. Expressing such
an abstraction using predicates and nested if -expressions makes it difficult for
both humans and compilers to reason about the control flow structure. Instead,
in modern functional languages, this control flow paradigm is elegantly expressed
using pattern-matching. This approach yields code that is not only more concise
and readable but also enables the compiler to easily verify two crucial properties:
(i) non-overlapping patterns and (ii) exhaustive coverage of a datatype using a
collection of patterns. Indeed most compilers for functional languages perform
these checks, warning the user when they are violated. At a more fundamental
level, e.g., in type theories and proof assistants, these properties are actually nec-
essary for correct reasoning about programs. Our first insight, explained in this
section, is that these properties, perhaps surprisingly, are sufficient to produce
a simple and intuitive first-order reversible programming language.

f :: Either Int Int -> a
f (Left 0) = undefined
f (Left (n+1)) = undefined
f (Right n) = undefined

Fig. 1. A skeleton

g :: (Bool,Int) -> a
g (False,n) = undefined
g (True,0) = undefined
g (True,n+1) = undefined

Fig. 2. Another skeleton

h :: Either Int Int <-> (Bool,Int)
h (Left 0) = (True,0)
h (Left (n+1)) = (False,n)
h (Right n) = (True,n+1)

Fig. 3. An isomorphism

2.1 An Example

We start with a small illustrative example, written in a Haskell-like syntax. Fig. 1
gives the skeleton of a function f that accepts a value of type Either Int Int;
the patterns on the left-hand side exhaustively cover every possible incoming
value and are non-overlapping. Similarly, Fig. 2 gives the skeleton for a function g

that accepts a value of type (Bool,Int); again the patterns on the left-hand side
exhaustively cover every possible incoming value and are non-overlapping. Now
we claim that since the types Either Int Int and (Bool,Int) are isomor-
phic, we can combine the patterns of f and g into symmetric pattern-matching
clauses to produce a reversible function between the types Either Int Int and
(Bool,Int). Fig. 3 gives one such function; there, we suggestively use <-> to
indicate that the function can be executed in either direction. This reversible
function is obtained by simply combining the non-overlapping exhaustive pat-
terns on the two sides of a clause. In order to be well-formed in either direction,
these clauses are subject to the constraint that each variable occurring on one
side must occur exactly once on the other side (and with the same type). Thus
it is acceptable to swap the second and third right-hand sides of h but not the
first and second ones.

2.2 Terms and Types

We present a formalization of the ideas presented above using a simple typed
first-order reversible language. The language is two-layered. The first layer con-
tains values, which also play the role of patterns. These values are constructed
from variables ranged over x and the introduction forms for the finite types a, b
constructed from the unit type and sums and products of types. The second
layer contains collections of pattern-matching clauses that denote isomorphisms
of type a↔ b. Computations are chained applications of isomorphisms to values:

(Value types) a, b ::= 1 | a⊕ b | a⊗ b
(Iso types) T ::= a↔ b

(Values) v ::= () | x | injl v | injr v | 〈v1, v2〉
(Isos) ω ::= { | v1 ↔ v′1 | v2 ↔ v′2 . . . }
(Terms) t ::= v | ω t

The typing rules are defined using two judgments: ∆ `v v : a for typing
values (or patterns) and terms; and `ω ω : a ↔ b for typing collections of

pattern-matching clauses denoting an isomorphism. As it is customary, we write
a1 ⊗ a2 ⊗ · · · ⊗ an for ((a1 ⊗ a2) ⊗ · · · ⊗ an), and similarly 〈x1, x2, . . . , xn〉 for
〈〈x1, x2〉, . . . , xn〉.

The typing rules for values are the expected ones. The only subtlety is the
fact that they are linear: because values act as patterns, we forbid the repetition
of variables. A typing context ∆ is a set of typed variables x1 : a1, . . . , xn : an.
A value typing judgment is valid if it can be derived from the following rules:

`v () : 1, x : a `v x : a,

∆1 `v v1 : a ∆2 `v v2 : b

∆1, ∆2 `v 〈v1, v2〉 : a⊗ b.

∆ `v v : a

∆ `v injl v : a⊕ b,
∆ `v v : b

∆ `v injr v : a⊕ b,

The typing rule for term construction is simple and forces the term to be closed:

`v t : a `ω ω : a↔ b

`v ω t : b

The most interesting type rule is the one for isomorphisms. We present the rule
and then explain it in detail:

∆1 `v v1 : a
∆1 `v v′1 : b

. . .
∆n `v vn : a
∆n `v v′n : b

∀i 6= j, vi⊥vj
∀i 6= j, v′i⊥v′j

dim(a) = n
dim(b) = n

`ω { | v1 ↔ v′1 | v2 ↔ v′2 . . . } : a↔ b, (1)

The rule relies on two auxiliary conditions as motivated in the beginning of the
section. These conditions are (i) the orthogonality judgment v⊥v′ that formalizes
that patterns must be non-overlapping and (ii) the condition dim(a) = n which
formalizes that patterns are exhaustive. The rules for deriving orthogonality of
values or patterns are:

injl v1 ⊥ injr v2 injr v1 ⊥ injl v2

v1 ⊥ v2
injl v1 ⊥ injl v2

v1 ⊥ v2
injr v1 ⊥ injr v2

v1 ⊥ v2
〈v, v1〉 ⊥ 〈v′, v2〉

v1 ⊥ v2
〈v1, v〉 ⊥ 〈v2, v′〉

The idea is simply that the left and right injections are disjoint subspaces of val-
ues. To characterize that a set of patterns is exhaustive, we associate a dimension
with each type. For finite types, this is just the number of elements in the type
and is inductively defined as follows: dim(1) = 1; dim(a⊕ b) = dim(a) + dim(b);
and dim(a⊗ b) = dim(a) · dim(b). For a given type a, if a set of non-overlapping
clauses has cardinality dim(a), it is exhaustive. Conversely, any set of exhaus-
tive clauses for a type a either has cardinality dim(a) or can be extended to an
equivalent exhaustive set of clauses of cardinality dim(a).

2.3 Semantics

We equip our language with a simple operational semantics on terms, using the
natural notion of matching. To formally define it, we first introduce the notion
of variable assignation, or valuation, which is a partial map from a finite set of
variables (the support) to a set of values. We denote the matching of a value w
against a pattern v and its associated valuation σ as σ[v] = w and define it as
follows:

σ[()] = ()

σ = {x 7→ v}
σ[x] = v

σ[v] = w

σ[injl v] = injl w

σ[v] = w

σ[injr v] = injr w

σ2[v1] = w1 σ1[v2] = w2 supp(σ1) ∩ supp(σ2) = ∅ σ = σ1 ∪ σ2
σ[〈v1, v2〉] = 〈w1, w2〉

If σ is a valuation whose support contains the variables of v, we write σ(v) for
the value where the variables of v have been replaced with the corresponding
values in σ.

Given these definitions, we can define the reduction relation on terms. The
redex { | v1 ↔ v′1 | v2 ↔ v′2 . . . } v reduces to σ(v′i) whenever σ[vi] = v′i. Be-
cause of the conditions on patterns, a matching pattern exists by exhaustivity of
coverage, and this pattern is unique by the non-overlapping condition. Congru-
ence holds: ω t → ω t′ whenever t → t′. As usual, we write s → t to say that s
rewrites in one step to t and s→∗ t to say that s rewrites to t in 0 or more steps.

Because of the conditions set on patterns, the rewrite system is deterministic.
More interestingly, we can swap the two sides of all pattern-matching clauses in
an isomorphism ω to get ω−1. The execution of ω−1 is the reverse execution of
ω in the sense that ω−1(ω t)→∗ t and ω(ω−1 t′)→∗ t′.

3 Second-Order Functions, Lists, and Recursion

The first-order reversible language from the previous section embodies symmet-
ric-pattern matching clauses as its core notion of control. Its expressiveness is
limited, however. We now show that it is possible to extend it to have more in
common with a conventional functional language. To that end, we extend the
language with the ability to parametrically manipulate isomorphisms, with a
recursive type (lists), and with recursion.

3.1 Terms and Types

Formally, the language is now defined as follows.

(Val & term types) a, b ::= 1 | a⊕ b | a⊗ b | [a]

(Iso types) T ::= a↔ b | (a↔ b)→ T

(Values) v ::= () | x | injl v | injr v | 〈v1, v2〉

∅;Ψ `v () : 1 x : a;Ψ `v x : a

∆;Ψ `v t : a

∆;Ψ `v injl t : a⊕ b
∆;Ψ `v t : b

∆;Ψ `v injr t : a⊕ b
∆1;Ψ `v t1 : a ∆2;Ψ `v t2 : b

∆1,∆2;Ψ `v 〈t1, t2〉 : a⊗ b

Ψ `ω ω : a↔ b ∆;Ψ `v t : a

∆;Ψ `v ω t : b

∆;Ψ `v t1 : a⊗ b ∆, x : a, y : b;Ψ `v t2 : c

∆;Ψ `v let 〈x, y〉 = t1 in t2 : c

Table 1. Typing rules for terms and values

(Products) p ::= () | x | 〈p1, p2〉
(Extended Values) e ::= v | let p1 = ω p2 in e

(Isos) ω ::= { | v1 ↔ e1 | v2 ↔ e2 . . . } | λf.ω |
µf.ω | f | ω1 ω2

(Terms) t ::= () | x | injl t | injr t | 〈t1, t2〉 |
ω t | let p = t1 in t2

We use variables f to span a set of iso-variables and variables x to span a set
of term-variables. We extend the layer of isos so that it can be parameterized
by a fixed number of other isos, i.e., we now allow higher-order manipulation
of isos using λf.ω, iso-variables, and applications. Isos can now be used inside
the definition of other isos with a let-notation. These let-constructs are however
restricted to products of term-variables: they essentially serve as syntactic sugar
for composition of isos. An extended value is then a value where some of its free
variables are substituted with the result of the application of one or several isos.
Given an extended value e, we define its bottom value, denoted with Val(e) as
the value “at the end” of the let-chain: Val(v) = v, and Val(let p = ωp in e) =
Val(e). The orthogonality of extended values is simply the orthogonality of their
bottom value.

As usual, the type of lists [a] of elements of type a is a recursive type and
is equivalent to 1 ⊕ (a × [a]). We build the value [] (empty list) as injl () and
the term t1 : t2 (cons of t1 and t2) as injr 〈t1, t2〉. In addition, to take full
advantage of recursive datatypes, it is natural to consider recursion. Modulo a
termination guarantee it is possible to add a fixpoint to the language: we extend
isos with the fixpoint constructor µf.ω. Some reversible languages allow infinite
loops and must work with partial isomorphisms instead. Since we plan on using
our language as a foundation for a quantum language we insist of termination.

Since the language features two kinds of variables, there are typing contexts
(written ∆) consisting of base-level typed variables of the form x : a, and typing
context (written Ψ) consisting of typed iso-variables of the form f : T . As terms
and values contain both base-level and iso-variables, one needs two typing con-
texts. Typing judgments are therefore written respectively as ∆;Ψ `v t : a. The
updated rules for (`v) are found in Tab. 1. As the only possible free variables

∆1;Ψ `v v1 : a . . . ∆n;Ψ `v vn : a ODa{v1, . . . , vn}
∆1;Ψ `v e1 : b . . . ∆n;Ψ `v en : b ODext

b {e1, . . . , en}
Ψ `ω { | v1 ↔ e1 | v2 ↔ e2 . . . } : a↔ b.

Ψ, f : a↔ b `ω ω : T

Ψ `ω λf.ω : (a↔ b)→ T Ψ, f : T `ω f : T

Ψ `ω ω1 : (a↔ b)→ T Ψ `ω ω2 : a↔ b

Ψ `ω ω1ω2 : T

Ψ, f : a↔ b `ω ω : (a1 ↔ b1)→ · · · → (an ↔ bn)→ (a↔ b)
µf.ω terminates in any finite context

Ψ `ω µf.ω : (a1 ↔ b1)→ · · · → (an ↔ bn)→ (a↔ b)

Table 2. Typing rules for isos

in isos are iso-variables, their typing judgments only need one context and are
written as Ψ `ω ω : T .

The rules for typing derivations of isos are in Tab. 2. It is worthwhile men-
tioning that isos are treated in a usual, non-linear way: this is the purpose of
the typing context separation. The intuition is that an iso is the description of
a closed computation with respect to inputs: remark that isos cannot accept
value-types. As computations, they can be erased or duplicated without issues.
On the other hand, value-types still need to be treated linearly.

In the typing rule for recursion, the condition “µf.ω terminates in any finite
context” formally refers to the following requirement. A well-typed fixpoint µf.ω
of type Ψ `ω µf.ω : (a1 ↔ b1) → · · · → (an ↔ bn) → (a ↔ b) is terminating
in a 0-context if for all closed isos ωi : ai ↔ bi not using fixpoints and for every
closed value v of type a, the term ((µf.ω)ω1 . . . ωn)v terminates. We say that
the fixpoint is terminating in an (n+ 1)-context if for all closed isos ωi : ai ↔ bi
terminating in n-contexts, and for every closed value v of type a, the term
((µf.ω)ω1 . . . ωn)v terminates. Finally, we say that the fixpoint is terminating in
any finitary context if for all n it is terminating in any n-context.

With the addition of lists, the non-overlapping and exhaustivity conditions
need to be modified. The main problem is that we can no longer define the
dimension of types using natural numbers: [a] is in essence an infinite sum, and
would have an “infinite” dimension. Instead, we combine the two conditions
into the concept of orthogonal decomposition. Formally, given a type a, we say
that a set S of patterns is an orthogonal decomposition, written ODa(S), when
these patterns are pairwise orthogonal and when they cover the whole type. We
formally define ODa(S) as follows. For all types a, ODa{x} is valid. For the unit
type, OD1{()} is valid. If ODa(S) and ODb(T), then

ODa⊕b({injl v | v ∈ S} ∪ {injr v | v ∈ T})
and ODa⊗b{〈v1, v2〉 | v1 ∈ S, v2 ∈ T, FV(v1) ∩ FV(v2) = ∅},

t1 → t2
C[t1]→ C[t2]

Cong
σ[p] = v1

let p = v1 in t2 → σ(t2)
LetE

σ[vi] = v

{ | v1 ↔ t1 | . . . | vn ↔ tn } v → σ(ti)
IsoApp

(λf.ω) ω2 → ω[ω2/f]
HIsoApp

Ψ, f : a↔ b `ω ω : (a1 ↔ b1)→ · · · → (an ↔ bn)→ (a↔ b)

µf.ω → λf1 . . . fn.(ω[((µf.ω)f1 . . . fn)/f])f1 . . . fn
IsoRec

Table 3. Reduction rules

where FV(t) stands for the set of free value-variables in t. We then extend the
notion of orthogonal decomposition to extended values as follows. If S is a set
of extended values, ODext

a (S) is true whenever ODa{Val(e) | e ∈ S}. With this
new characterization, the typing rule of iso in Eq. 1 still holds, and then can be
re-written using this notion of orthogonal decomposition as shown in Tab. 2.

3.2 Semantics

In Tab. 3 we present the reduction rules for the reversible language. We assume
that the reduction relation applies to well-typed terms. In the rules, the notation
C[−] stands for an applicative context, and is defined as: C[−] ::= [−] | injl C[−] |
injr C[−] | (C[−])ω | {· · · } (C[−]) | let p = C[−] in t2 | 〈C[−], v〉 | 〈v, C[−]〉.

The inversion of isos is still possible but more subtle than in the first-order
case. We define an inversion operation (−)−1 on iso types with, (a ↔ b)−1 :=
(b↔ a), ((a↔ b)→ T)−1 := ((b↔ a)→ (T−1)). Inversion of isos is defined as
follows. For fixpoints, (µf.ω)−1 = µf.(ω−1). For variables, (f)−1 := f . For ap-
plications, (ω1 ω2)−1 := (ω1)−1 (ω2)−1. For abstraction, (λf.ω)−1 := λf.(ω−1).
Finally, clauses are inverted as follows: v1 ↔ let p1 = ω1 p

′
1 in

· · ·
let pn = ωn p

′
n in v′1

−1

:=

 v′1 ↔ let p′n= ω−1
n pn in

· · ·
let p′1 = ω−1

1 p1 in v1

 .

Note that (−)−1 only inverts first-order arrows (↔), not second-order arrows
(→). This is reflected by the fact that iso-variable are non-linear while value-
variables are. This is due to the clear separation of the two layers of the language.

The rewriting system satisfies the usual properties for well-typed terms: it
is terminating, well-typed closed terms have a unique normal value-form, and it
preserves typing.

Theorem 1. The inversion operation is well-typed, in the sense that if f1 :
a1 ↔ b1, . . . , fn : an ↔ bn `ω ω : T then we also have f1 : b1 ↔ a1, . . . , fn :
bn ↔ an `ω ω−1 : T−1. ut

Thanks to the fact that the language is terminating, we also recover the
operational result of Sec. 2.3.

Theorem 2. Consider a well-typed, closed iso `ω ω : a ↔ b, and suppose that
`v v : a and that `v w : b, then ω−1(ω v)→∗ v and ω(ω−1 w)→∗ w. ut

4 Examples

In the previous sections, we developed a novel classical reversible language with
a familiar syntax based on pattern-matching. The language includes a limited
notion of higher-order functions and (terminating) recursive functions. We illus-
trate the expressiveness of the language with a few examples and motivate the
changes and extensions needed to adapt the language to the quantum domain.

We encode booleans as follows: B = 1 ⊕ 1, tt = injl (), and ff = injr ().
One of the easiest function to define is not : B ↔ B which flips a boolean. The
controlled-not gate which flips the second bit when the first is true can also be
expressed:

not : B↔ B =

(
ff ↔ tt
tt ↔ ff

)
, cnot : B⊗ B↔ B⊗ B =

 〈ff, x〉 ↔ 〈ff, x〉
〈tt, ff〉 ↔ 〈tt, tt〉
〈tt, tt〉 ↔ 〈tt, ff〉

 .

All the patterns in the previous two functions are orthogonal decompositions
which guarantee reversibility as desired.

By using the abstraction facilities in the language, we can define higher-
order operations that build complex reversible functions from simpler ones. For
example, we can define a conditional expression parameterized by the functions
used in the two branches:

if : (a↔ b)→ (a↔ b)→ (B⊗ a↔ B⊗ b)

if = λg.λh.

(
〈tt, x〉 ↔ let y = g x in 〈tt, y〉
〈ff, x〉 ↔ let y = h x in 〈ff, y〉

)

Using if and the obvious definition for the identity function id, we can define
ctrl :: (a ↔ a) → (B ⊗ a ↔ B ⊗ a) as ctrl f = if f id and recover an
alternative definition of cnot as ctrl not. We can then define the controlled-
controlled-not gate (aka the Toffoli gate) by writing ctrl cnot. We can even
iterate this construction using fixpoints to produce an n-controlled-not function
that takes a list of n control bits and a target bit and flips the target bit iff all
the control bits are tt:

cnot∗ : ([B]⊗ B)↔ ([B]⊗ B)

cnot∗ = µf.

 〈[], tb〉 ↔ let tb′ = not tb in 〈[], tb′〉
〈ff : cbs, tb〉 ↔ 〈ff : cbs, tb〉
〈tt : cbs, tb〉 ↔ let 〈cbs′, tb′〉 = f 〈cbs, tb〉 in 〈tt : cbs′, tb′〉

The language is also expressible enough to write conventional recursive (and

higher-order) programs. We illustrate this expressiveness using the usual map

operation and an accumulating variant mapAccu:

map : (a↔ b)→ ([a]↔ [b])

λg.µf.

 [] ↔ []
h : t ↔ let x = g h in

let y = f t in x : y

 ,

mapAccu : (a⊗ b↔ a⊗ c)→ (a⊗ [b]↔ a⊗ [c])

λg.µf.

〈x, []〉 ↔ 〈x, []〉

〈x, (h : t)〉 ↔ let 〈y, h′〉 = g 〈x, h〉 in
let 〈z, t′〉 = f 〈y, t〉 in
〈z, (h′ : t′)〉

 .

The three examples cnot*, map and mapAccu uses fixpoints which are clearly
terminating in any finite context. Indeed, the functions are structurally recursive.
A formal definition of this notion for the reversible language is as follows.

v1 v2 v3()
v′1 1 0 0
v′2 0 1 0
v′3 0 0 1

v1 v2 v3()
v′1 a11 a12 a13
v′2 a21 a22 a23
v′3 a31 a32 a33

〈tt, x〉 〈ff, x〉()〈tt, x〉 1√
2
Had 1√

2
Id

〈ff, x〉 1√
2
Had −1√

2
Id

Fig. 4. Classical iso Fig. 5. Quantum iso Fig. 6. Semantics of Gate

Definition 1. Define a structurally recursive type as a type of the form [a] ⊗
b1⊗ . . .⊗bn. Let ω = {vi ↔ ei | i ∈ I} be an iso such that f : a↔ b `ω ω : a↔ c
where a is a structurally recursive type. We say that µf.ω is structurally recursive
provided that for each i ∈ I, the value vi is either of the form 〈[], p1, . . . pn〉 or
of the form 〈h : t, p1, . . . pn〉. In the former case, ei does not contain f as a free
variable. In the latter case, ei is of the form C[f〈t, p′1, . . . , p′n〉] where C is a
context of the form C[−] ::= [−] | let p = C[−] in t | let p = t in C[−].

This definition will be critical for quantum loops in the next section.

5 From Reversible Isos to Quantum Control

In the language presented so far, an iso ω : a↔ b describes a bijection between
the set Ba of closed values of type a and the set Bb of closed values of type b. If
one regards Ba and Bb as the basis elements of some vector space JaK and JbK,
the iso ω becomes a 0/1 matrix.

As an example, consider an iso ω defined using three clauses of the form
{ | v1 ↔ v′1 | v2 ↔ v′2 | v3 ↔ v′3 }. From the exhaustivity and non-overlapping
conditions derives the fact that the space JaK can be split into the direct sum
of the three subspaces JaKvi (i = 1, 2, 3) generated by vi. Similarly, JbK is split
into the direct sum of the subspaces JbKv′i generated by v′i. One can therefore

represent ω as the matrix JωK in Fig. 4: The “1” in each column vi indicates to
which subspace JbKv′j an element of JaKvi is sent to.

In Sec. 2.2 we discussed the fact that vi⊥vj when i 6= j. This notation hints
at the fact that JaK and JbK could be seen as Hilbert spaces and the mapping JωK
as a unitary map from JaK to JbK. The purpose of this section is to extend and
formalize precisely the correspondence between isos and unitary maps.

The definition of clauses is extended following this idea of seeing isos as
unitaries, and not only bijections on basis elements of the input space. We

 | v1 ↔ a11v
′
1 + a21v

′
2 + a31v

′
3

| v2 ↔ a12v
′
1 + a22v

′
2 + a23v

′
3

| v3 ↔ a31v
′
1 + a32v

′
2 + a33v

′
3

therefore essentially propose to generalize the
clauses to complex, linear combinations of val-
ues on the right-hand-side, such as shown on the
left, with the side conditions on that the matrix

of Fig. 5 is unitary. We define in Sec. 5.1 how this extends to second-order.

5.1 Extending the Language to Linear Combinations of Terms

The quantum unitary language extends the reversible language from the previ-
ous section by closing extended values and terms under complex, finite linear

combinations. For example, if v1 and v2 are values and α and β are complex
numbers, α · v1 + β · v2 is now an extended value.

Several approaches exist for performing such an extension. One can update
the reduction strategy to be able to reduce these sums and scalar multiplications
to normal forms [12, 18], or one can instead consider terms modulo the usual
algebraic equalities [13, 18]: this is the strategy we follow for this paper.

When extending a language to linear combination of terms in a naive way, this
added structure might generate inconsistencies in the presence of unconstrained
fixpoints [13, 12, 18]. The weak condition on termination we imposed on fixpoints
in the classical language was enough to guarantee reversibility. With the presence
of linear combinations, we want the much stronger guarantee of unitarity. For
this reason, we instead impose fixpoints to be structurally recursive.

The quantum unitary language is defined by allowing sums of terms and
values and multiplications by complex numbers: if t and t′ are terms, so is
α · t + t′. Terms and values are taken modulo the equational theory of mod-
ules. We furthermore consider the value and term constructs 〈−,−〉, let p =
− in −, injl (−), injr (−) distributive over sum and scalar multiplication. We
do not however take iso-constructions as distributive over sum and scalar mul-
tiplication: { | v1 ↔ αv2 + βv3 } is not the same thing as α { | v1 ↔ v2 } +
β { | v1 ↔ v3 }. This is in the spirit of Lineal [12, 11].

The typing rules for terms and extended values are updated as follows. We
only allow linear combinations of terms and values of the same type and of the
same free variables. Fixpoints are now required to be structurally recursive, as
introduced in Def. 1. Finally, an iso is now not only performing an “identity” as
in Fig. 4 but a true unitary operation:

∆1;Ψ `v v1 : a . . . ∆n;Ψ `v vn : a
∆1;Ψ `v e1 : b . . . ∆n;Ψ `v en : b
ODa{v1, . . . , vn} ODext

b {e1, . . . , en}

a11 · · · a1n
.
.
.

.

.

.
an1 · · · ann

 is unitary

Ψ `ω

 v1 ↔ a11 · e1 + · · ·+ a1n · en
. . .

vn ↔ an1 · e1 + · · ·+ ann · en

 : a↔ b.

The reduction relation is updated in a way that it remains deterministic in
this extended setting. It is split into two parts: the reduction of pure terms, i.e.
non-extended terms or values, and linear combinations thereof. Pure terms and
values reduce using the reduction rules found in Tab. 3. We do not extend ap-
plicative contexts to linear combinations. For linear combinations of pure terms,
we simply ask that all pure terms that are not normal forms in the combination
are reduced. This makes the extended reduction relation deterministic.

Example 1. This allows one to define an iso behaving as the Hadamard gate, or
a slightly more complex iso conditionally applying another iso, whose behavior
as a matrix is shown in Fig. 6.

Had : B↔ B(
tt ↔ 1√

2
tt + 1√

2
ff

ff ↔ 1√
2
tt− 1√

2
ff

)
,

Gate : B⊗ B↔ B⊗ B(
〈tt, x〉 ↔ let y = Had x in 1√

2
〈tt, y〉+ 1√

2
〈ff, y〉

〈ff, x〉 ↔ let y = Id x in 1√
2
〈tt, y〉 − 1√

2
〈ff, y〉

)
.

With this extension to linear combinations of terms, one can characterize
normal forms as follows.

Lemma 1 (Structure of the normal forms). Let ω be such that `ω ω :
a↔ b. For all closed values v of type a, the term ω v rewrites to a normal form∑N
i=1 αi · wi where N <∞, each wi is a closed value of type b and

∑
i |αi| = 1.

Proof. The fact that ω v converges to a normal form is a corollary of the fact
that we impose structural recursion on fixpoints. The property of the structure
of the normal form is then proven by induction on the maximal number of steps
it takes to reach it. It uses the restriction on the introduction of sums in the
typing rule for clauses in isos and the determinism of the reduction. ut

In the classical setting, isos describe bijections between sets of closed values:
it was proven by considering the behavior of an iso against its inverse. In the
presence of linear combinations of terms, we claim that isos describe more than
bijections: they describe unitary maps. In the next section, we discuss how types
can be understood as Hilbert spaces (Sec. 5.2) and isos as unitary maps (Secs 5.3
and 5.4).

5.2 Modeling Types as Hilbert Spaces

By allowing complex linear combinations of terms, closed normal forms of finite
types such as B or B ⊗ B can be regarded as complex vector spaces with basis
consisting of closed values. For example, B is associated with JBK = {α · tt + β ·
ff | α, β ∈ C} ≡ C2. We can consider this space as a complex Hilbert space where
the scalar product is defined on basis elements in the obvious way: 〈v|v〉 = 1 and
〈v|w〉 = 0 if v 6= w. The map Had of Ex. 1 is then effectively a unitary map on
the space JBK.

The problem comes from lists: the type [1] is inhabited by an infinite number
of closed values: [], [()], [(), ()], [(), (), ()],. . . To account for this case, we need to
consider infinitely dimensional complex Hilbert spaces. In general, a complex
Hilbert space [19] is a complex vector space endowed with a scalar product that
is complete with respect the distance induced by the scalar product. The com-
pleteness requirement implies for example that the infinite linear combination
[]+ 1

2 · [()]+
1
4 [(), ()]+ 1

8 [(), (), ()]+ · · · needs to be an element of J[B]K. To account
for these limit elements, we propose to use the standard [19] Hilbert space `2 of
infinite sequences.

Definition 2. Let a be a value type. As before, we write Ba for the set of closed
values of type a, that is, Ba = {v | `v v : a}. The span of a is defined as the
Hilbert space JaK = `2(Ba) consisting of sequences (φv)v∈Ba

of complex numbers
indexed by Ba such that

∑
v∈Ba

|φv|2 <∞. The scalar product on this space is

defined as 〈(φv)v∈Ba
|(ψv)v∈Ba

〉 =
∑
v∈Ba

φvψv.

We shall use the following conventions. A closed value v of JaK is identified
with the sequence (δv,v′)v′∈Ba

where δv,v = 1 and δv,v′ = 0 if v 6= v′. An element
(φv)v∈Ba

of JaK is also written as the infinite, formal sum
∑
v∈Ba

φv · v.

5.3 Modeling Isos as Bounded Linear Maps

We can now define what is the linear map associated to an iso.

Definition 3. For each closed iso `ω ω : a↔ b we define JωK as the linear map
from JaK to JbK sending the closed value v : a to the normal form of ω v : b under
the rewrite system.

In general, the fact that JωK is well-defined is not trivial. If it is formally
stated in Theorem 3, we can first try to understand what could go wrong. The
problem comes from the fact that the space JaK is not finite in general. Consider
the iso map Had : [B] ↔ [B]. Any closed value v : [B] is a list and the term
(map Had) v rewrites to a normal form consisting of a linear combination of lists.
Denote the linear combination associated to v with Lv. An element of J[B]K is
a sequence φ = (φv)v∈B[B]

. From Definition 3, the map JωK sends the element
φ ∈ J[B]K to

∑
v∈B[B]

φv ·Lv. This is an infinite sum of sums of complex numbers:

we need to make sure that it is well-defined: this is the purpose of the next
result. Because of the constraints on the language, we can even show that it is
a bounded linear map.

In the case of the map map Had, we can understand why it works as follows.
The space J[B]K can be decomposed as the direct sum

∑∞
i=0Ei, where Ei is

generated with all the lists in B of size i. The map map Had is acting locally on
each finitely-dimensional subspace Ei. It is therefore well-defined. Because of the
unitarity constraint on the linear combinations appearing in Had, the operation
performed by map Had sends elements of norm 1 to elements of norm 1. This idea
can be formalized and yield the following theorem.

Theorem 3. For each closed iso `ω ω : a↔ b the linear map JωK : JaK→ JbK is
well-defined and bounded. ut

5.4 Modeling Isos as Unitary Maps

In this section, we show that not only closed isos can be modeled as bounded
linear maps, but that these linear maps are in fact unitary maps. The problem
comes from fixpoints. We first consider the case of isos written without fixpoints,
and then the case with fixpoints.

Without recursion. The case without recursion is relatively easy to treat, as the
linear map modeling the iso can be compositionally constructed out of elemen-
tary unitary maps.

Theorem 4. Given a closed iso `ω ω : a ↔ b defined without the use of recur-
sion, the linear map JπK : JaK→ JbK is unitary. ut

The proof of the theorem relies on the fact that to each closed iso `ω ω : a↔ b
one can associate an operationally equivalent iso `ω ω′ : a↔ b that does not use
iso-variables nor lambda-abstractions. We can define a notion of depth of an iso

as the number of nested isos. The proof is done by induction on this depth of
the iso ω: it is possible to construct a unitary map for ω using the unitary maps
for each ωij as elementary building blocks.

As an illustration, the semantics of Gate of Example 1 is given in Figure 6.

Isos with structural recursion. When considering fixpoints, we cannot rely any-
more on this finite compositional construction: the space JaK cannot anymore be
regarded as a finite sum of subspaces described by each clause.

We therefore need to rely on the formal definition of unitary maps in general,
infinite Hilbert spaces. On top of being bounded linear, a map JωK : JaK → JbK
is unitary if (1) it preserves the scalar product: 〈JωK(e)|JωK(f)〉 = 〈e|f〉 for all e
and f in JaK and (2) it is surjective.

Theorem 5. Given a closed iso `ω ω : a↔ b that can use structural recursion,
the linear map JπK : JaK→ JbK is unitary. ut

The proof uses the idea highlighted in Sec. 5.4: for a structurally recursive
iso of type [a] ⊗ b ↔ c, the Hilbert space J[a]⊗ bK can be split into a canonical
decomposition E0⊕E1⊕E2⊕· · · , where Ei contains only the values of the form
〈[x1 . . . xi], y〉, containing the lists of size i. On each Ei, the iso is equivalent to
an iso without structural recursion.

6 Conclusion

In this paper, we proposed a reversible language amenable to quantum super-
positions of values. The language features a weak form of higher-order that is
nonetheless expressible enough to get interesting maps such as generalized Toffoli
operators. We sketched how this language effectively encodes bijections in the
classical case and unitary operations in the quantum case. It would be interesting
to see how this relates to join inverse categories [14, 15].

In the vectorial extension of the language we have the same control as in
the classical, reversible language. Tests are captured by clauses, and naturally
yield quantum tests: this is similar to what can be found in QML [5, 6], yet more
general since the QML approach is restricted to if-then-else constructs. The
novel aspect of quantum control that we are able to capture here is a notion of
quantum loops. These loops were believed to be hard, if not impossible. What
makes it work in our approach is the fact that we are firmly within a closed
quantum system, without measurements. This makes it possible to only consider
unitary maps and frees us from the Löwer order on positive matrices [6]. As we
restrict fixpoints to structural recursion, valid isos are regular enough to capture
unitarity. Ying [7] also proposes a framework for quantum while-loops that is
similar in spirit to our approach at the level of denotations: in his approach the
control part of the loops is modeled using an external systems of “coins” which,
in our case, correspond to conventional lists. Reducing the manipulation of this
external coin system to iteration on lists allowed us to give a simple operational
semantics for the language.

References

1. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299
(October 1982) 802–803

2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2002)

3. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: A
scalable quantum programming language. In: Proc. PLDI’13. (2013) 333–342

4. Paykin, J., Rand, R., Zdancewic, S.: QWIRE: A core language for quantum circuits.
In: Proc, POPL’17. (2017) 846–858

5. Altenkirch, T., Grattage, J.: A functional quantum programming language. In:
Proc. LICS’05. (2005) 249–258

6. Badescu, C., Panangaden, P.: Quantum alternation: Prospects and problems. In:
Proceedings 12th International Workshop on Quantum Physics and Logic, QPL
2015, Oxford, UK, July 15-17, 2015. (2015) 33–42

7. Ying, M.: Foundations of Quantum Programming. Elsevier Science (2016)
8. Selinger, P.: Towards a quantum programming language. Mathematical Structures

in Computer Science 14(4) (August 2004) 527–586
9. Vizzotto, J.K., Altenkirch, T., Sabry, A.: Structuring quantum effects: superop-

erators as arrows. Mathematical Structures in Computer Science 16(3) (2006)
453–468

10. James, R.P., Sabry, A.: Theseus: A high-level language for reversible computation.
In: Reversible Computation, Booklet of work-in-progress and short reports. (2016)

11. Arrighi, P., Daz-Caro, A., Valiron, B.: The vectorial lambda-calculus. Information
and Computation 254(1) (2017) 105–139

12. Arrighi, P., Dowek, G.: Lineal: A linear-algebraic lambda-calculus. Logical Meth-
ods in Computer Science (2013)

13. Vaux, L.: The algebraic lambda calculus. Mathematical Structures in Computer
Science 19(5) (2009) 1029–1059

14. Glück, R., Kaarsgaard, R.: A categorical foundation for structured reversible
flowchart languages: Soundness and adequacy. Available on arXiv:1710.03666
[cs.PL] (2017)

15. Kaarsgaard, R., Axelsen, H.B., Glück, R.: Join inverse categories and reversible
recursion. Journal of Logical and Algebraic Methods in Programming 87 (2017)
33–50

16. van Tonder, A.: A lambda calculus for quantum computation. SIAM Journal of
Computing 33(5) (2004) 1109–1135

17. Sabry, A., Valiron, B., Vizzotto, J.K.: From symmetric pattern-matching to quan-
tum control (extended version). To appear (2018)

18. Assaf, A., Dı́az-Caro, A., Perdrix, S., Tasson, C., Valiron, B.: Call-by-value, call-
by-name and the vectorial behaviour of the algebraic λ-calculus. Logical Methods
in Computer Science 10:4(8) (December 2014)

19. Young, N.: An Introduction to Hilbert Space. Cambridge University Press (1988)

