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Abstract
Dynamic binding anddelimitedcontrol are useful together in many
settings, including Web applications, database cursors, and mobile
code. We examine this pair of language features to show that
the semantics of their interaction is ill-defined yet not expressive
enough for these uses.

We solve this open and subtle problem. We formalise a typed
languageDB+DC that combines a calculusDB of dynamic binding
and a calculusDC of delimited control. We argue from theoretical
and practical points of view that its semantics should be based
on delimited dynamic binding: capturing a delimited continuation
closes overpart of the dynamic environment, rather than all or
none of it; reinstating the captured continuationsupplementsthe
dynamic environment, rather than replacing or inheriting it. We
introduce a type- and reduction-preserving translation fromDB +
DC to DC, which proves that delimited controlmacro-expresses
dynamic binding. We use this translation to implementDB+DC in
Scheme, OCaml, and Haskell.

We extendDB + DC with mutable dynamic variables and a
facility to obtain not only the latest binding of a dynamic variable
but also older bindings. This facility provides for stack inspection
and (more generally) folding over the execution context as an
inductive data structure.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guages]: Language Constructs and Features—Control structures

General Terms Languages, Theory

Keywords Dynamic binding, delimited continuations, monads

1. Introduction
A dynamic variableis a variable whose association with a value
exists only within the dynamic extent of an expression, that is,
while control remains within that expression. If several associations
exist for the same variable at the same time, the latest one takes
effect. Such association is called adynamic binding. The scope
of a dynamic variable—where in a program it is used—cannot
be determined statically, so it is calleddynamic scope. We follow
Moreau’s definition of these terms [49]. We also call a dynamic
variable aparameter.

Dynamic binding associates data with the current execution
context (the “stack”). Because the context is an implicit argument
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to any function, dynamic variables let us pass additional data into
a function and its callees without bloating its interface. This mech-
anism especially helps to modularise and separate concerns when
applied to parameters such as line width, output port, character en-
coding, and error handler. Moreover, a dynamic variable lets us not
just provide but also change the environment in which a piece of
code executes, without changing the code itself. For example, on
a UNIX/POSIX system, we can redirect a program’s output from
the console to a network connection without changing the program.
Another example is the modular interposition on library functions
using dynamic loading. In general, dynamic binding generalises
global state and the singleton pattern to multiple application in-
stances that may coexist in the same execution environment.

The crucial property of dynamic variables that gives rise to dy-
namic scope is that dynamic bindings are not captured in a lexical
closure. This absence of closure makes dynamic variables essential
for many useful abstractions, even in languages that rightfully pride
themselves on theirλ-calculus lineage. For example:

1. If we compile a program while redirecting the compiler’s output
to a file, the compiled program should not send its output to the
same file (or, for that matter, use the working directory where
the compilation took place).

run (dletoutput= file in compile source) (1)

The expression “dletoutput= . . . in . . . ” above is analogous to
with-output-to-file in Scheme and to output redirection
in UNIX /POSIX.

2. If we create a closure with an exception handler in effect, an
exception raised when the created closure is invoked later may
not be handled by the same handler.

dlethandler= h1 in
(
(dlethandler= h2 in λx. throwx) 0

)
(2)

The expression “dlethandler= . . . in . . . ” above is analogous
to exception-handling forms likecatch and try in various
languages [49].

3. A migrated piece of mobile code should look to its new host for
OS services such asgethostname (see Section 4.2.1).

4. A resumed server-side Web application should look to its
new request-handling thread for Web-server services such as
getOutputStream (see Section 4.2.2).

The absence of closure is a kind ofenvironmental acquisition
[32, 11], where object containment is defined by caller-callee re-
lationships at run time.

Because dynamic variables lack closure, they are harder than
lexical variables to reason about and implement, especially if they
are mutable or there are control effects. When control effects are
present, the execution context is no longer maintained according
to a stack discipline, so it is unclear what it means to associate
data with the context. This problem is acute because dynamic vari-
ables and control effects are useful in many of the same areas; it



is impractical to prohibit them from interacting. Moreau [49, Sec-
tion 10] thus calls for “a single framework integrating continua-
tions, side-effects, and dynamic binding”. In particular,delimited
control [20, 21, 23, 13, 15, 14] is useful for (following the order of
the four examples above)

1. partial evaluation [12, 42, 26, 59, 17, 4, 5, 7, 34];
2. backtracking search [14, 53, 40, 41, 8] and functional abstrac-

tion [13, Section 3.4];
3. mobile code [57, 52]; and
4. Web applications [50, 33].

Yet the interaction betweendynamicbinding anddelimitedcontrol
has not been addressed in the literature.

1.1 Problems and contributions

This paper addresses two non-trivial problems.

1. Designing the formal semantics for a language with both dy-
namic variables and delimited control, which can interact.

As far as we know, this problem has never been attempted. As
we detail in Section 4, Gasbichleret al.’s treatment of dynamic
variables andundelimitedcontrol [30] explicitly disclaims de-
limited control. The straightforward combination of their treat-
ment with Filinski’s translation [24] from delimited control to
undelimited control and mutable state is ill-defined.

In our combined semantics, a captured delimited continuation
may access and supplement its caller’s dynamic bindings at
each call, just as any function created byλ-abstraction can. This
uniformity preserves a fundamental use of delimited control: to
create ordinary functional abstractions [13, Section 3.4].

2. Implementing these two features in a single practical language.

Some Scheme systems (such as Scheme 48) provide both dy-
namic variables and delimited control. However, as we illustrate
in Section 4 and the accompanying code, the combined imple-
mentation has undesirable properties that, for instance, prevent
the four applications of dynamic variables listed above.

We implement our combined semantics in untyped as well as
typed settings. Our strategy is tomacro-express[22] dynamic
binding in terms of delimited control and thus reduce a lan-
guage with both features to the language with just delimited
control.

Our specific contributions are as follows.

1. Given that much has been said in the literature about how
dynamic binding interacts with other control facilities, our first
contribution is to pinpoint the fact that the interaction with
delimited control remains an open issue (Section 4). We use
concrete and realistic code examples, never before collected in
the literature, to demonstrate the undesirable combination of
delimited control and dynamic binding in existing systems.

We contend that the interaction betweendelimited continua-
tions and even a single dynamic variable is neither well-under-
stood nor reducible to the interaction betweenundelimitedcon-
tinuations and dynamic variables. We then argue fordelimited
dynamic environments on theoretical and practical grounds.

2. We macro-express dynamically-bound parameters in terms of
delimited-control prompts, so as to provide the formal seman-
tics for a language with arbitrarily many of both. We provide
a type system for the language and show that our macro trans-
lation preserves the operational semantics and the types. The
type-preserving translation (Section 5.2) is especially tricky. We
thus formalise what it means to associate data with the context
in the presence of delimited control.

3. On the way to the translation, we add a sound type system to
Moreau’s syntactic theory of dynamic binding (Section 2).

4. The way having been paved by the translation, we implement
our combined semantics in both untyped (Scheme) and typed
(OCaml, Haskell) settings.

5. We extend our semantics and implementations with mutable
dynamic variables (Section 6.1) and stack inspection (Section
6.2), while retaining harmony with delimited control. Stack
inspection provides access to not just the latest binding for a
dynamic variable but older ones as well. Using this technique,
a direct-style program can treat the context as an inductive data
structure and fold over it.

1.2 Organisation

We start by introducing and formalising dynamic binding and de-
limited control separately. In Section 2, we recall the formal se-
mantics of dynamic binding [49] and add a sound type system. In
Section 3, we reformulate the formal semantics of delimited control
when there are arbitrarily many typed delimiters [35], to simplify it
and harmonise it with the rest of the paper.

Section 4 delivers our first contribution, a detailed explanation
that the interaction of dynamic variables and delimited continua-
tions is still an open problem. Section 5 describes our solution, a
translation from dynamic binding to delimited control. We prove
that the translation preserves the operational semantics and types,
then demonstrate our typed implementation in OCaml. We show
that our design resolves the problems in the use cases in Section 4.
Section 6 presents two extensions: mutable dynamic variables and
stack inspection. Section 7 discusses implementation strategies,
such as so-called deep and shallow binding. Finally, Section 8 con-
cludes. We discuss related work as we go, especially in Section 4.

Our full paper, online athttp://pobox.com/~oleg/ftp/
papers/DDBinding.pdf, includes an appendix. The appendix
describes extensive, self-contained code that illustrates the prob-
lems and implements our solution. The code is available athttp:
//pobox.com/~oleg/ftp/packages/DBplusDC.tar.gz.

2. Dynamic binding
We review the semantics of dynamic variables using a simple call-
by-value calculus introduced by Moreau [49, Section 4]. We then
embed the calculus in OCaml and show a small example.

2.1 The languageDB

We add typing to Moreau’s calculus and call itDB. Figure 1 shows
the syntax, operational semantics, and typing rules ofDB. Adding
conditional forms, numbers, etc., along with the corresponding
transition (δ-) and typing rules would be a standard exercise.

There are two disjoint sorts of variables: static (lexical vari-
ables) and dynamic (parameters). The latter are bound using the
syntax dletp = V in M; the value of the most recent binding is
obtained by referencing the parameterp. For example, the program

dlet p = 1 in dlet p = 2 in p

evaluates to 2. Static variables can be consistentlyα-renamed as
usual, but dynamic variables cannot: two terms that differ by their
dynamic variables are not equivalent [49]. For example, the terms

dlet p = 1 in λz. p and dletq = 1 in λz.q

are not equivalent, because each term evaluates to a lexical closure
that does not include the dynamic binding:λz. p andλz.q, respec-
tively. Thus, evaluating these expressions in the context

dlet p = 3 in dletq = 4 in ([ ] 0)

produces 3 and 4, respectively.



Syntax

Terms M F V | MM | p | dlet p = V in M

Values VF x | λx.M

Variables xF f | g | x | y | z | u | v | · · ·

Parameters pF p | q | r | · · ·

Contexts E[ ] F [ ] | E
[
[ ] M
]
| E
[
V[ ]
]
| E
[
dlet p = V in [ ]

]
Bound parameters

BP
(
[ ]
)
= ∅ BP

(
E
[
[ ] M
])
= BP

(
E
[
V[ ]
])
= BP(E)

BP
(
E
[
dlet p = V in [ ]

])
= BP(E) ∪ {p}

Operational semantics

E
[
(λx.M)V

]
7→ E
[
M {V/x}

]
E
[
dlet p = V in V′

]
7→ E
[
V′
]

E
[
dlet p = V in E′[p]

]
7→ E
[
dlet p = V in E′[V]

]
if p < BP(E′)

Typing

Types τF a | b | c | · · · | τ→ τ

Type environments ΓF ∅ | Γ, x : τ

Parameter signaturesΣF ∅ | Σ, p : τ

Γ(x) = τ

Γ `Σ x : τ

Γ, x : τ1 `Σ M : τ2
Γ `Σ λx.M : τ1→ τ2

Γ `Σ M1 : τ2→ τ Γ `Σ M2 : τ2
Γ `Σ M1M2 : τ

Σ(p) = τ

Γ `Σ p : τ

Σ(p) = τ1 Γ `Σ V : τ1 Γ `Σ M : τ2
Γ `Σ dlet p = V in M : τ2

Figure 1. DB, the language of dynamic binding

As the last clause in the definition of evaluation contexts shows,
evaluation contexts may capture dynamic variables. We refer to the
set of dynamic variables captured byE as BP(E). Moreau [49]
shows that the sequential evaluation of the language can be ex-
pressed using simple transition rules as shown in the figure. In
the second transition rule, the valueV′ may contain occurrences
of p; these are allowed to escape and be later captured by another
dynamic binding of the same variable. Similarly, the valueV in
the first transition rule may contain occurrences ofp (for example,
V = λx. p), which are captured during the substitution. However,
the parameter access termp is not a value by itself.

Figure 1 shows our type system forDB. The type system is
conventional, except that judgements are parameterised by a sig-
natureΣ, which associates every dynamic variable with its type.
The types and terms include an unspecified set of basic constants.

This type system does not prevent access to an unbound param-
eter. It is possible to refine the type system to do just that, by anno-
tating each judgement and each function type with the parameters
used.1 The simple type system suffices for us—we leave it to future
work to track which dynamic variables are used in the presence of
delimited control.

Definition 1 A BP-stuck termis a term E[p] where p< BP(E).

Informally, a term is BP-stuck if its evaluation immediately reads
an unbound parameter.

1 Such a refinement would be along the lines of Leroy and Pessaux’s type
system for preventing uncaught exceptions [43] and Filinski’s effect system
for tracking layered monadic effects [25]. The latter guarantees that well-
typed programs will not fail due to a missing prompt.

Unbound parameters notwithstanding, our type system for dy-
namic variables is sound, as described by the following two theo-
rems. To prove them, we introduce two lemmas.

Lemma 2 (Value substitution) If Γ `Σ V : τ0 andΓ, x : τ0 `Σ M : τ
thenΓ `Σ M {V/x} : τ.

Lemma 3 (Context substitution) If Γ `Σ E
[
M
]
:τ then there exists

τ0 such thatΓ `Σ M : τ0 and∀M′. Γ `Σ M′ : τ0 =⇒ Γ `Σ E
[
M′
]
: τ.

Theorem 4 (Preservation) If M is a DB term such thatΓ `Σ M :τ,
and M 7→ M′, thenΓ `Σ M′ : τ.

Proof The theorem is a straightforward consequence of the two
lemmas above and the transition rules ofDB. �

Theorem 5 (Progress) If M is a DB term such that∅ `Σ M :τ, and
M is neither a value nor BP-stuck, then there exists some term M′

such that M7→ M′.

Proof The proof is conventional and based on the observation
that any closed term that is neither a value nor BP-stuck can be
uniquely decomposed to match one of the three transition rules.�

Thus a sequence of transitions starting with a closed well-typed
term M, if it terminates, must terminate with either a value or a
BP-stuck term. As an example of the latter outcome, the closed
term

(
dlet p = λx. x in (λy. p)

)
1 (which is well-typed assuming

Σ(p) = τ→ τ) evaluates to the BP-stuck termp.

2.2 Embedding in OCaml

The untyped fragment ofDB is a part of any R5RS Scheme system,
which introduces two dynamic variables, the input and output ports,
and special terms to bind and access them. Many Scheme systems
let the users define their own dynamic variables (often called fluid
variables or parameters [19]), bound using a distinguished form
like fluid-let or parameterize [19]. We have embedded the
untyped version ofDB in Scheme.

We have also embedded the fullDB language in OCaml and
Haskell. We focus on the OCaml embedding in this paper as it in-
cludes the types, which are interesting, but not the monadic treat-
ment, which is slightly more complicated. The accompanying code
includes examples in all three languages.

To avoid extending OCaml with new syntax forDB, we encode
a parameter of typeτ as a value of the abstract typeτ dynvar,
wheredynvar is a dedicated abstract type constructor. Accessing
the value of the parameterp is written in OCaml asdref p, where
dref is a function. As inDB, this expression is not a value. We
represent the syntactic form “dletp = V in M” of DB in OCaml as
the function applicationdlet p V (fun () -> M).

To simplify the formalism, the languageDB had no explicit con-
struction to create parameters. One may assume [49] that parame-
ters are identified by manifest constants; the signatureΣ then as-
sociates every possible parameterp with its type. In our OCaml
realisation ofDB, we make a similar assumption, only we intro-
duce a functiondnew such that evaluating the expressiondnew ()
chooses a distinct element fromΣ with the appropriate type. Even
in a language with polymorphic types, a parameter always has a
monomorphic type. This property is guaranteed by the standard
value restriction on polymorphiclet, because creating a param-
eter using the expressiondnew () incurs a computational effect.
We may regard an OCaml expressionlet p = dnew () in ...
as a declaration for the parameterp.

To summarise, we embedDB into OCaml by three functions.

dnew : unit -> 'a dynvar
dref : 'a dynvar -> 'a
dlet : 'a dynvar -> 'a -> (unit -> 'b) -> 'b

Section 5 below reveals the implementation of these signatures.



Syntax

Terms M F V | MM | shift p as f in M | resetp in M

Values VF x | λx.M

Variables xF f | g | x | y | z | u | v | · · ·

Prompts pF p | q | r | · · ·

Contexts E[ ] F [ ] | E
[
[ ] M
]
| E
[
V[ ]
]
| E
[
resetp in [ ]

]
Controlled prompts

CP
(
[ ]
)
= ∅ CP

(
E
[
[ ] M
])
= CP

(
E
[
V[ ]
])
= CP(E)

CP
(
E
[
resetp in [ ]

])
= CP(E) ∪ {p}

Operational semantics

E
[
(λx.M)V

]
7→ E
[
M {V/x}

]
E
[
resetp in V

]
7→ E
[
V
]

E
[
resetp in E′[shift p as f in M]

]
7→ E
[
resetp in M {V/ f }

]
if p < CP(E′) andV = λy. resetp in E′[y], wherey is fresh

Typing

Types τF a | b | c | · · · | τ→ τ

Type environments ΓF ∅ | Γ, x : τ

Prompt signatures ΣF ∅ | Σ, p : τ

Γ(x) = τ

Γ `Σ x : τ

Γ, x : τ1 `Σ M : τ2
Γ `Σ λx.M : τ1→ τ2

Γ `Σ M1 : τ2→ τ Γ `Σ M2 : τ2
Γ `Σ M1M2 : τ

Σ(p) = τ2 Γ, f : τ→ τ2 `Σ M : τ2
Γ `Σ shift p as f in M : τ

Σ(p) = τ Γ `Σ M : τ

Γ `Σ resetp in M : τ

Figure 2. DC, the language of delimited control

2.3 Example

With this interface of dynamic variables, we can write the following
example in OCaml.

let p = dnew () in
dlet p 0 (fun () ->
let f = fun () -> dref p in
let x = f () in
let y = dlet p 1 (fun () -> f ()) in
let z = f () in (x,y,z))

This example evaluates to (0,1,0). The OCaml code and execution
correspond to the followingDB term and transitions (where we use
let as the usual abbreviation for applying aλ-expression):

dlet p = 0 in let f = λ_. p in let x = f () in
let y =

(
dlet p = 1 in f ()

)
in let z= f () in (x, y, z)

7→ dlet p = 0 in let x = p in
let y =

(
dlet p = 1 in (λ_. p) ()

)
in let z= (λ_. p) () in (x, y, z)

7→+ dlet p = 0 in
let y =

(
dlet p = 1 in (λ_. p) ()

)
in let z= (λ_. p) () in (0, y, z)

7→+ dlet p = 0 in letz= (λ_. p) () in (0,1, z) 7→+ (0,1,0)

3. Delimited control
We review the semantics of delimited continuations using a variant
of Gunteret al.’s call-by-value calculus with control operators [35].
We then embed the calculus in OCaml and show a small example.

3.1 The languageDC

Figure 2 presents the languageDC of delimited control. The lan-
guage, likeDB, is based on the simply-typed call-by-valueλ-

calculus. It adds expressions to reset a prompt and to shift to
a prompt. The language is essentially Gunteret al.’s [35], har-
monised withDB in Figure 1. The main difference is that we use
the control operatorshift rather thancupto. As Gunteret al.note
[35, Section 2], either variation preserves type soundness (Theo-
rems 6 and 8 below). The other difference is that we make prompts
a distinct syntactic category and track them in the signatureΣ rather
than a special piece of state collecting the set of allocated prompts.
We also omit polymorphiclet, an orthogonal extension.

Theorem 6 (Preservation [35]) If M is a DC term such thatΓ `Σ
M : τ, and M 7→ M′, thenΓ `Σ M′ : τ.

Definition 7 A CP-stuck termis of the form E
[
shift p as f in M

]
,

where p< CP(E).

Theorem 8 (Progress [35]) If M is a DC term such that∅ `Σ M:τ,
and M is neither a value nor CP-stuck, then there exists some term
M′ such that M7→ M′.

3.2 Embedding in OCaml

We could use Gunteret al.’s SML implementation ofcupto [35] to
embedDC in OCaml. We instead implementDC natively, without
resorting to undelimited continuations, based on a native imple-
mentation of Dybviget al.’s framework [18]. The implementation
is a library that adds to OCaml the following three functions.

new_prompt : unit -> 'a prompt
push_prompt : 'a prompt -> (unit -> 'a) -> 'a
shift : 'a prompt -> (('b -> 'a) -> 'a) -> 'b

The function new_prompt creates a new prompt. The expres-
sion push_prompt p (fun () -> M) evaluatesM in the dy-
namic extent of the reset promptp. This expression equivalent
to reset p in M, but it is a regular function application to a
thunk. The expressionshift p (fun f -> M) corresponds to
shift p as f in M, which captures and removes the context up
to the closest dynamically-enclosing promptp, reifies that con-
text as a functionf , then evaluates the expressionM. The pre-
cise operational semantics is given in Figure 2. The functions
push_prompt andshift are same as the standard operatorsreset
andshift [13, 14, 15], except parameterised by prompts.

Our OCaml implementation of delimited control faithfully re-
alises Gunteret al.’s system modulo thecupto/shift distinction.
However, our formal languageDC in Figure 2 keeps prompts as a
distinct syntactic category and eschewsnew_prompt. The prompt
signatureΣ associates every possible prompt with its type. Even ex-
tendingDC with polymorphiclet, the types of the prompts shall
remain monomorphic. In our OCaml implementation, this property
is guaranteed by the standard value restriction on polymorphiclet,
because creating a prompt using the expressionnew_prompt ()
incurs a computational effect.

3.3 Example

As a simple example of the use of our control operators, the fol-
lowing expression evaluates to 4.

let p = new_prompt () in push_prompt p (fun () ->
1 + shift p (fun f -> f (f 2)))

The evaluation first creates a new prompt and resets it for the
duration of the computation. Theshift expression captures the
continuation up top, which is1 + [ ], reifies it as a functionf, and
applies it twice to the argument2 to yield 4.

4. The problem
First-classdelimitedcontinuations and first-class undelimited con-
tinuations share inspiration but qualitatively differ. For example,



delimited continuations can express state [24], whereas undelim-
ited continuations cannot, even with exceptions added to the lan-
guage in the usual way [58].

To understand how dynamic variables interact with delimited
continuations, it is tempting to reduce the problem to how dynamic
variables interact with undelimited continuations. There has been
extensive work on this latter subject. The interaction between dy-
namic binding (or its more controversial cousindynamic-wind
[54]) with the following control facilities is fairly well-understood:
first-classundelimitedcontinuations [29, 37, 30, 47], threads [31,
30], and exceptions [49]. In particular, Gasbichleret al. [30] for-
malise dynamic variables,dynamic-wind, undelimited continua-
tions, threads, and mutable state all together. Separately, Matthews
and Findler [47] formalisedynamic-wind in R5RS Scheme, which
includes undelimited continuations. In contrast, Moreau expresses
exceptions using dynamic variables, yet explicitly disregards con-
tinuations [49, Section 6].

Although—as Sitaram and Felleisen show [55]—undelimited
control cannot express delimited control, Filinski [24] uses unde-
limited control and mutable state together to express delimited con-
trol. One might then hope that Filinski’s translation would turn the
formalisation of dynamic variables in the presence of undelimited
continuations into an account of how dynamic binding interacts
with delimited control. We dash this hope in Section 4.1. Indeed,
Gasbichleret al. [30] conclude that work on delimited continua-
tions is “largely orthogonal to ours”, and no other work seems to
have treated dynamic binding in conjunction with first-classdelim-
ited continuations. We motivate our new proposal in Section 4.2.

4.1 A couple of obvious (non-)solutions

An obvious attempt to treat dynamic binding with delimited control
is to combine Filinski’s implementation of delimited control using
undelimited control and mutable state [24] with Gasbichleret al.’s
formalisation of dynamic binding with undelimited control and
mutable state [30]. Unfortunately, this combination is ill-defined:
it leads to at least two possible semantics, and worse, neither of
these semantics is desirable in practise.

Filinski implements the delimited-control operatorsshift and
reset using a single mutable cellmk, which contains a first-class
undelimited continuation. Filinski’s implementation relies on an
abort operation, which can be defined in Scheme as follows.

(define (abort thunk) (let ((v (thunk))) (mk v)))

In words,(abort thunk) first computes the value of(thunk),
then throws it to the undelimited continuation inmk. Due to the
throw, the context in which(abort thunk) is evaluated is irrel-
evant and should be subject to garbage collection. Jonathan Rees
hacks this optimisation in Scheme 48 using an internal primitive
with-continuation, whose meaning is not formalised.

(define null-continuation #f)
(define (abort thunk)
(with-continuation null-continuation
(lambda () (let ((v (thunk))) (mk v)))))

It is more portable to implement this optimisation by a trampoline
[18, Section 5.1].

(define abort
((call-with-current-continuation

(lambda (k0) (lambda () (lambda (thunk)
(k0 (lambda ()

(let ((v (thunk))) (mk v))))))))))

Filinski’s result does not favour any one of these implementations
of abort over the others, because they are all equivalent in usual
calculi of control: two evaluation contextsE1

[
k[ ]
]

and E2
[
k[ ]
]

are equivalent ifk is an undelimited continuation being invoked.

With dynamic variables in play, this equivalence no longer holds,
becauseE1 andE2 may contain different dynamic bindings. Thus
dynamic variables behave differently depending on which imple-
mentation of delimited control is used.

For example,2 let p be a dynamic variable. The program

dlet p = 1 in p (3)

evaluates to 1 as expected, but the program

dlet p = 1 in reset inp (4)

only evaluates to 1 with the non-trampoline and Scheme 48 im-
plementations ofabort. With the trampoline implementation of
abort, the latter program gets stuck because it looks upp in the
empty dynamic environment. (We omit the reset prompt here be-
cause we consider only one prompt.)

To take a more severe example, the program

dlet p = 1 in reset in dletp = 2 in shift asf in p (5)

does not evaluate to 1 as one might expect. Rather, it evaluates to 2
with the unoptimised and Scheme 48 implementations ofabort,
and again gets stuck with the trampoline implementation ofabort.

Of course, one can obtain a technically well-defined treatment
of dynamic binding and delimited control by choosing one of
the three inequivalent implementations ofabort above. However,
such a choice is purely arbitrary: the trampoline optimisation is no
more and no less at fault as the non-trampoline pessimisation for
affecting how dynamic variables behave. Since there appears to be
three obvious solutions, there is in fact no obvious solution—the
embarrassment of riches only shows that some foundation is amiss.

More seriously, ignoring the non-formalised Scheme 48 imple-
mentation ofabort, the remaining two implementations ofabort
(with and without the trampoline)both lead to an undesirable se-
mantics in practise. Denotationally these correspond to two ways of
combining the reader and continuation monads [45]: map the typeα
to eitherρ→ (α→ω)→ω or (α→ ρ→ω)→ ρ→ω, whereρ is the
environment type of the reader monad andω is the answer type of
the continuation monad. In other words, we are forced to have de-
limited continuations eitherclose over(capture)all or noneof the
dynamic environment. In the next section, we argue that both of
these choices are undesirable and propose a middle ground which
lets a delimited continuation close overpart of the dynamic envi-
ronment. This middle ground corresponds to combining multiple
layers of reader and continuation monads in succession, without
ordering them statically.

4.2 Delimiting the dynamic environment

Unlike the possibilities considered in Section 4.1 above, our solu-
tion to combining dynamic binding with delimited control does not
rely on undelimited control. Our model returns to the intuition that
dynamic binding associates data with the execution context. A con-
trol delimiter delimits the context and hence the data; a delimited
continuation contains part of the context and hence part of the data.
For example, the “shift” in (5) above discards the later bindingp
but not the earlier one, so it evaluates to 1.

A more involved example is the expression(
λ f .dlet p = 2 in dletr = 20 in f (0)

)(
dlet p = 1 in reset in dletr = 10 in
(λx. p+ r)(shift as f in f )

)
.

(6)

The captured delimited continuation contains the dynamic binding
r = 10 but notp = 1, so the result is 12. This result cannot be ob-
tained by capturing either all or none of the dynamic environment

2 See trampoline-petite.scm, dynvar-scheme48-problem.scm,
anddynvar.sml in the accompanying code.



at “shift as f in f ”. Yet our design naturally generalises the basic
intuition behind dynamic binding, beyond the ordinary case where
the execution context is accessed as a stack or a tree: at any point
during execution, the dynamic bindings in scope are those in the
context, a prefix of which can be delimited by a control delimiter
such asreset, removed by a control operator such asshift, and
reinstated by invoking a captured delimited continuation. In other
words, we add dynamic binding to the languageDC by manipu-
lating the evaluation context, following the footsteps of Cartwright
and Felleisen [9].

Our design has theoretical and practical advantages. From a
theoretical point of view, our use of the execution context for both
delimited control and dynamic binding seems more likely to admit
the kind of local, axiomatic reasoning achieved by Sabry [51] and
Kameyama and Hasegawa [39] for delimited control with a single
prompt. For example, our operational semantics directly enforces
Kameyama and Hasegawa’s reset-shift axiom,

resetp in E[shift p as f in M f ]
= resetp in M(λx. resetp in E[x])

(7)

for any promptp such thatp < CP(E), and f does not appear free
in M, andx does not appear free inE. This axiom is key to using
delimited control for functional abstraction (Section 4.2.3).

In the remainder of this section, we illustrate the practical ben-
efit of this design using three examples, starting with the mobile-
code example from Section 1.

4.2.1 Mobile code

Sumii [57] demonstrates that a running program can be migrated to
another location on the network by capturing the current continu-
ation, delimited by the boundary between the mobile code and the
fixed code. Thus a piece of mobile code is a delimited continuation.

1. On one hand, a migrated piece of mobile code should look
to its new host for OS services such as the dynamic variable
hostname. Therefore, a delimited continuation should not close
over all of its dynamic context. (If the mobile code needs to
remember the current hostname at any time, it may store the
value in a lexical variable.3)

2. On the other hand, the mobile code may bind and use dynamic
variables internally as well, for instance to handle exceptions
or to limit the search depth in a distributed backtracking com-
putation. Therefore, a delimited continuation should close over
some of its dynamic environment.

We conclude that a delimited continuation for mobile code should
close over some but not all of its dynamic environment. The dy-
namic bindings that the delimited continuation should close over
are precisely those in the mobile code, that is, those within the con-
trol delimiter.

Control delimiters correspond tomarksin Sewellet al.’s pro-
gramming language and system for distributed computation [52].
When their system migrates a piece of code, the bindings within
the mark are shipped to the new host, whereas the bindings beyond
the mark are rebound at the new host. This design matches ours.

4.2.2 Server-side Web applications

Instead of migrating to run remotely right away, code may sus-
pend to run locally later. For example, an interactive session in a
server-side Web application can be suspended by capturing the cur-
rent continuation [50, 33], delimited by the boundary between the
session-oriented application code and the request-oriented server
code. Thus a piece of suspended code is a delimited continuation.

3 Seetest4 in new-parameters.scm in the accompanying code.

1. On one hand, a resumed piece of application code should look
to its new execution context (such as its new server thread) for
server services such as the dynamic variableOutputStream
and exception handlers. Therefore, a delimited continuation
should not close over all of its dynamic context.

2. On the other hand, the application code may bind and use dy-
namic variables internally as well, for instance to parameterise
the display by the end-user’s preferences: line width, time zone,
language, and so on. Therefore, a delimited continuation should
close over some of its dynamic environment.

We conclude that a delimited continuation for suspended code
should close over some but not all of its dynamic environment. For
example, the PLT Web server uses both thread-local and continua-
tion-local variables [46]. The dynamic bindings that the delimited
continuation should close over are precisely those in the suspended
code, that is, those within the control delimiter.

Sometimes the same dynamic variable is bound both within
and beyond the control delimiter. To continue the Web example,
the application and the server may each install a handler for the
same type of exceptions, and the former handler may rethrow the
exception to the latter. For the rethrowing to work, in these cases
too, the delimited continuation should close over precisely those
bindings within the control delimiter.4

4.2.3 Database cursors

Analogous design considerations apply whether delimited contin-
uations are used as coroutines (when each delimited continuation
is invoked exactly once) or for backtracking (when some delimited
continuations are invoked more than once) [14, 53, 40, 41, 8]. As
Danvy and Filinski observe [13, Section 3.4], capturing a delimited
continuation creates a functional abstraction. Over the lifetime of
a delimited continuation, just as over the lifetime of an ordinary
function, its caller may parameterise each call by different dynamic
bindings, which it may access as well as supplement.

For example, a cursor (in other words, a lazy stream) that iter-
ates over database records is easy to construct as a delimited contin-
uation [40]. The cursor and its client may each install an exception
handler to clean up and release resources in case the database con-
nection fails.5

1. On one hand, because the client’s handler may change for each
step through the iteration, the delimited continuation should not
close over dynamic bindings beyond the control delimiter.

2. On the other hand, because the cursor’s handler may persist
from one step to the next, the delimited continuation should
close over dynamic bindings within the control delimiter.

We conclude that a delimited continuation, like an ordinary func-
tion, should be able to access and supplement its callers’ dynamic
bindings at each call. In other words, capturing a delimited contin-
uation should close over the dynamic bindings within the delimiter
but discard those beyond the delimiter.

4.3 Comparison with layered monads

We have argued from practice that a delimited continuation must
close over some dynamic variables but not others. This require-
ment is not satisfied if we combine delimited control and dynamic
binding as two monad transformers [45, 48], following Filinski’s
layered-monads approach [25]. However, as a reviewer points out,

4 The file exceptions-shift.scm in the accompanying code demon-
strates that such rethrowing does not work in common implementations,
which letshift capture bindings beyond the control delimiter.
5 Seeexceptions-shift.scm in the accompanying code.



we can combine many monad transformers, one for delimited con-
trol and one for each dynamic variable.

For example, to close over one dynamic variablep1 but not
another dynamic variablep2, we can feed the reader monad forp2

to the continuation monad transformer, then to the reader monad
transformer forp1. The resulting monad maps each typeα to the
type ρ1 → (α → ρ2 → ω) → ρ2 → ω, whereρi is the type of the
dynamic variablepi andω is the answer type for delimited control.
A delimited continuation then has the typeα→ρ2→ω, so it closes
over the value ofp1 where it is captured but takes up the value ofp2

where it is invoked, as desired.
In general, we can specify which dynamic variables a delimited

continuation should close over by layering the continuation monad
transformer just under those reader monad transformers. Unfortu-
nately, this hierarchical approach forces each delimited continua-
tion to close over a fixed set of dynamic variables, even when the
continuation monad transformer is applied more than once. This
limitation is appropriate in some situations—we could for exam-
ple declare that mobile code never closes overhostname—but too
restrictive in other situations.

For example, during the lifetime of a delimited continuation, the
same kind of exception may be handled both inside and outside the
delimiter: at some points during a database iteration, both the cursor
and its client may need to clean up in case the network fails.6 We
can use parameters to carry exception handlers, yet we do not want
to handle each kind of exception either only inside or only outside
the delimiter. Generalising from catching and throwing exceptions
to binding and reading parameters, we note a common pattern:7

dlet p = 0 in let f =
(
reset in letv = p in dlet p = 1 in
let x = (shift as f in f ) in v+ p

)
in . . . (8)

On one hand, the continuation captured by shift asf in f includes
the binding ofp to 1, so our layered monad must map each typeα
to some type int→ (α→ ω)→ ω. On the other hand, the reset ex-
pression receives the binding ofp to 0 from the current dynamic
environment, so “int→” must appear inside rather than outsideω.
This contradiction means that no static layering of reader and con-
tinuation monad transformers can implement this pattern.8 Hence,
a static hierarchy of monad transformers is not enough in practice.

5. Translation
In order to define a combined semantics of dynamic binding and de-
limited control that supports delimiting the dynamic environment,
we translate dynamic binding to delimited control. More precisely,
we first translateDB to DC, then translate a combined language
DB+DC to DC. The latter translation shows that dynamic binding
is macro-expressible in terms of delimited control.

It may seem like overkill to translate a computational effect as
trivial as dynamic binding to one as powerful as delimited control.
However, Section 4 shows that dynamic binding is not so trivial an
effect in the presence of delimited control, so our translation is not
as much a mismatch as it may seem.

The basic idea behind our translation is in fact used in a techni-
cal report by Gunteret al. [36] for a different purpose: simulating
top-level mutable cells (not dynamic variables) using control oper-
ators. Since these cells are global and outside any control delimiter
in the user’s code, they do not interact with delimited control. Fur-

6 Seeexceptions-shift.scm in the accompanying code.
7 This pattern appears in (5) and (6), and intest4 in new-parameters.
scm in the accompanying code. See also discussions athttp://
lambda-the-ultimate.org/node/1396comment-16007. The Zipper
file-system project shows more examples of this pattern:http://okmij.
org/ftp/Computation/Continuations.htmlzipper-fs.
8 Seereader.hs in the accompanying code.

dxe = x

dλx.Me = λx. dMe

dM1M2e = dM1e dM2e

dpe = shift p as f in λy. f yy

ddlet p = V in Me =
(
resetp in (λz. λy. z) dMe

)
dVe

d[ ]e = [ ]

Figure 3. TranslatingDB to DC, first attempt with broken typing

thermore, the fact that a dynamic variable may be bound several
times in several places presents a unique typing challenge that has
not been dealt with before.

In Section 5.1, we prove that a simplified, untyped translation
from DB to DC preserves the operational semantics ofDB. In
Section 5.2, we adjust the first translation to preserve types as well.
We then turn to the combined languageDB + DC, of dynamic
binding and delimited control. We reduceDB + DC to just DC—
that is, we show that adding dynamic binding toDC does not make
it more expressive. To be more precise, wemacro-expressdynamic
variables in terms of delimited continuations. We thus resolve the
problem of how dynamic binding and delimited control interact.

5.1 A first attempt

Figure 3 shows a first try at the translation. It is completely syntax-
directed. Since a context is a term with a hole [ ], the translation
on terms along with the translation of the hole (to itself) induces a
translation on contexts. Each parameterp of DB is translated into a
unique prompt ofDC.

The intuition behind the translation is that a dynamic binding
“dlet p = V in M” of a parameterp to a valueV in a body M
resets the promptp immediately inside the context [ ]V. A normal
return fromM with a valueV′ should simply yieldV′ and ignoreV,
so the translation applies the functionλz. λy. z to V′. The result
λy.V′ receives the current value of the parameter and ignores it
as required. IfM needs to access the binding, then the continuation
up to and including the prompt is captured asf and the function
λy. f yy is returned as the result. This function binds the current
value V of the parameter toy and plugs the first copy ofV into
the delimited continuation. The second copy is kept immediately
outside the re-installed prompt, in the context [ ]V as before.

This translation is correct, in that it respects the operational
semantics ofDB andDC.

Lemma 9 If E is a DB context and M is a DB term, thendE[M]e =
dEe [dMe].

Lemma 10 If E is a DB context, thenBP(E) = CP(dEe).

Lemma 11 If V is a DB value, thendVe is a DC value.

Lemma 12 If M is a BP-stuck DB term, thendMe is CP-stuck.

Theorem 13 Let M be any DB term. If M′ is a DB term such that
M 7→ M′, thendMe 7→+ dM′e. Conversely, if M1 is a DC term such
that dMe 7→ M1, then there exists a DB term M′ such that M7→ M′

and M1 7→
∗ dM′e.

Proof For the first half of the theorem, we show that each of the
three possible kinds ofDB transitions translates to a sequence of
DC transitions. First, if theDB transition is

E
[
(λx.M)V

]
7→ E
[
M {V/x}

]
, (9)



then theDC transition is

dEe
[
(λx. dMe) dVe

]
7→ dEe

[
dMe {dVe /x}

]
. (10)

Because the translation commutes with substitution,E
[
M {V/x}

]
translates todEe

[
dMe {dVe /x}

]
. Second, if theDB transition is

E
[
dlet p = V in V′

]
7→ E
[
V′
]
, (11)

then theDC transitions are
dEe
[(

resetp in (λz. λy. z) dV′e
)
dVe
]

7→ dEe
[(

resetp in λy. dV′e
)
dVe
]

7→ dEe
[(
λy. dV′e

)
dVe
]
7→ dEe

[
dV′e
]
.

(12)

Finally, if theDB transition is

E
[
dlet p = V in E′[p]

]
7→ E
[
dlet p = V in E′[V]

]
(13)

wherep < BP(E′), then theDC transitions are

dEe
[(

resetp in (λz. λy. z)(dE′e [shift p asx in λy. xyy])
)
dVe
]

7→ dEe
[(

resetp in λy. (λy′. resetp in (λz. λy. z)(dE′e [y′]))yy
)
dVe
]

7→ dEe
[(
λy. (λy′. resetp in (λz. λy. z)(dE′e [y′]))yy

)
dVe
]

(14)

7→ dEe
[
(λy′. resetp in (λz. λy. z)(dE′e [y′]))VV

]
7→ dEe

[(
resetp in (λz. λy. z)(dE′e [V])

)
V
]

wherep < CP(dE′e) andy′ is fresh.
Conversely,9 we inspect Figure 3 and consider each of the three

possible kinds ofDC transitions that can occur, starting from the
translationdMe of aDB termM and ending at aDC termM1. If the
DC transition is

Ec
[
(λx.Mc)Vc

]
7→ Ec

[
Mc {Vc/x}

]
, (15)

then eitherM = Eb[(λx.Mb)Vb] for someEb, Mb, andVb, in which
case letM′ = Eb[Mb {Vb/x}], or M = Eb[dlet p = Vb in V′b] for
someEb, Vb, andV′b, in which case letM′ = Eb[V′b]. Second, the
DC transition

Ec
[
resetp in Vc

]
7→ Ec

[
Vc
]

(16)
is impossible. Finally, if theDC transition is

E
[
resetp in E′[shift p as f in M]

]
7→ E
[
resetp in M {V/ f }

]
, (17)

thenM = Eb
[
dlet p = Vb in E′b[p]

]
for someEb, E′b, andVb such

that p < BP(E′b), so letM′ = Eb
[
dlet p = Vb in E′b[Vb]

]
. �

Informally speaking, this translation may be viewed as a refunc-
tionalised version of Gunteret al.’s definition of top-level mutable
cells in terms of delimited continuations [36]. They state no formal
property for their translation.

In the special case with just one dynamic variable, our transla-
tion can be obtained by applying Filinski’s shift-and-reset represen-
tation [24, 25] to the reader monad. For multiple dynamic variables,
we diverge from Filinski’s representation by using one prompt for
each dynamic variable.

Our translation works well in the untyped setting. Indeed, our
Scheme implementation is based on it.10 In the typed setting, how-
ever, we get a problem, which we deal with in the next section.

5.2 A type-preserving translation

The translation in Section 5.1 fails to preserve types. The problem
is in the following rule from Figure 3.

ddlet p = V in Me =
(
resetp in (λz. λy. z) dMe

)
dVe (18)

9 If we assume that the termM is well-typed inDB, then the following
(simpler) proof is available for the second half of Theorem 13. The termM
is either a value, BP-stuck, or can make a transition (Theorem 5). Lemmas
11 and 12 rule out the first two possibilities. The conclusion follows from
the first half of Theorem 13 and the fact that the transitions are deterministic.
10See the filenew-parameters.scm in the accompanying code.

ddlet p = V in Me
= resetq in ignore

(
(resetp in (λz. shift q as f in z) dMe) dVe

)
whereq is fresh

d∅e = ∅

dΣ, p : τe = dΣe, p : τ→ τ

Figure 4. TranslatingDB to DC, fixed typing from Figure 3

On one hand, the typing rule in Figure 1 says that the type of the
DB expression “dletp = V in M” is independent of the type of the
parameterp. On the other hand, the typing rule in Figure 2 says
that the type of theDC expression “resetp in M” depends on the
answer type of the promptp: both types must be the type ofM.

In particular, the translation of the example in Section 2.3 does
not type-check: Thepush_prompt for the seconddlet returns a
function from integers to integers, whereas thepush_prompt for
the first dlet returns a function from integers to integer-triples.
This stymies the type system because the prompt’s answer type is
always monomorphic and cannot be both of these function types. In
general, this translation forces every binding for the same dynamic
variable to return the same type.

This restriction may seem to prevent us from fully implement-
ing dynamic variables using delimited continuations. Fortunately,
the restriction can be eliminated. Figure 4 shows the necessary
changes to Figure 3. In this final translation, neither the reset nor
its body ever returns normally. When we are done evaluating a dy-
namic binding form “dletp = V in . . . ” to a resultz, we do not
returnz normally but insteadabort the delimited context with the
binding and jump to a surrounding delimiter with a fresh promptq.

To convince the type system that “resetp in . . . ” never returns,
we use a functionignore of the formλx.Ω, which never returns
when called. Such a function has any function typeτ1 → τ2, and
can be implemented in various ways. InDC, we can defineignore
asλx.M, whereM is a CP-stuck term. In OCaml, we can simply
saylet ignore x = failwith "cannot happen".

This translation uses auxiliary promptsq, which are assumed to
be absent from theDB signatureΣ. In theDC translationdΣe of a
DB signatureΣ, we translate each parameter typep:τ to the prompt
type p : τ→ τ, but any prompt typep : τ→ τ′ will do.

The translation in Figure 4 still preserves transitions as stated
in Theorem 13. (The conclusion of Lemma 10 is now BP(E) ⊆
CP(dEe).) In particular, for theDB transition

E
[
dlet p = V in V′

]
7→ E
[
V′
]
, (19)

the newDC transitions are

dEe
[
resetq in ignore

(
(resetp in (λz. shift q as f in z) dV′e) dVe

)]
7→ dEe

[
resetq in ignore

(
(resetp in shift q as f in dV′e) dVe

)]
7→ dEe

[
resetq in dV′e

]
7→ dEe

[
dV′e
]
. (20)

We need no transition forignorebecause the corresponding context
is aborted. Thus the exact nature ofignore is immaterial.

The new translation respects the type systems ofDB andDC.

Theorem 14 If M is a DB term such thatΓ `Σ M : τ, then
Γ `dΣe,Σ′ dMe : τ for some prompt signatureΣ′ disjoint fromdΣe.

Proof The proof is by induction on the structure of the term,
merging the prompt signaturesΣ′ at each inductive step using a
trivial weakening lemma. The two interesting cases are:

1. If Γ `Σ p : τ, thenΓ `dΣe dpe : τ, or equivalently,

Γ `dΣe shift p as f in λy. f yy : τ, (21)



becausedΣe (p) = τ→τ andΓ, f :τ→(τ→τ) `dΣe λy. f yy:τ→τ.
Hence letΣ′ = ∅.

2. If Γ `Σ dlet p = V in M :τ, thenΓ `Σ V :τ2 andΓ `Σ M :τ, where
τ2 = Σ(p). According to the translation,dΣe (p) = τ2→ τ2. By
the induction hypothesis,Γ `dΣe,Σ′1 dVe:τ2 andΓ `dΣe,Σ′2 dMe:τ for
some prompt signaturesΣ′1 andΣ′2. Sinceq is fresh, we can let
Σ′ = Σ′1, Σ

′
2, q : τ, so thatΣ′(q) = τ. Then we have successively

Γ, z : τ `dΣe,Σ′ shift q as f in z : τ2→ τ2, (22)

Γ `dΣe,Σ′ (λz. shift q as f in z) dMe : τ2→ τ2, (23)

Γ `dΣe,Σ′ (resetp in (λz. shift q as f in z) dMe) dVe : τ2. (24)

The construction ofignorejustifies thatΓ `dΣe,Σ′ ignore: τ2→ τ.
Therefore,Γ `dΣe,Σ′ ddlet p = V in Me : τ. �

The new translation lets us implement the dynamic variables
used in Section 2, as follows.

type 'a dynvar = ('a -> 'a) prompt
let dnew () = new_prompt ()
let dref p = shift p (fun x -> fun v -> x v v)
let dlet p v body = let q = new_prompt () in
push_prompt q (fun () ->
ignore ((push_prompt p (fun () ->

(fun z -> shift q (fun _ -> z))
(body ())))

v))

5.3 Dynamic variables and delimited continuations, revisited

We introduce the languageDB+DC, the language of dynamic bind-
ing and delimited control. This language is a straightforward com-
bination ofDB andDC; we relegate the formal details to Figure 5 in
the appendix. InDB+ DC, the sets of parametersp and promptsq
are disjoint, so binding and control effects do not interfere with
each other. InDC, as the definition of controlled prompts and the
last transition rule in Figure 2 shows, a delimited continuation may
capture delimiters for some prompts but not others. InDB+ DC, it
may as well capture bindings for some dynamic variables but not
others. In other words, our combined language realises delimiting
the dynamic environment, as we advocate in Section 4.2.

It is trivial to embedDB into DB + DC and to embedDC into
DB + DC. It is almost as trivial to extend the translation fromDB
to DC in Section 5.2 to a translation fromDB+DC to DC. We need
only take care to use two disjoint sets of prompts inDC to represent
parameters and prompts inDB+DC. This way, binding and control
effects do not interfere with each other, just as control effects
for two different prompts do not interfere with each other. The
proof of Theorems 13 and 14 then goes through unchanged. (The
conclusion of Lemma 10 is now BP(E) ∪ CP(E) ⊆ CP(dEe).) This
situation is analogous to that of Gunteret al.’s Theorem 12, where
they considerDC enhanced with exceptions. In sum, Theorems 13
and 14, along with the form of the translation, show the following.

Theorem 15 (Macro-expressibility) The language DC macro-
expresses the language DB+ DC.

So long as the prompts that correspond to dynamic variables are
not accessible to the user, our embedding ofDB + DC into DC is
correct. In our OCaml implementation, we use the module system
to make the type'a dynvar abstract. In our Scheme code, we hide
the dynamic variable’s prompt in a closure.

This translation is in some sense dual to Ariolaet al.’s result [1]
that dynamic binding gives rise to delimited control in the pres-
ence of first-class undelimited continuations. However, we assume
neither first-class undelimited continuations nor that the whole pro-
gram is enclosed in a control delimiter.

We now return to the examples from Section 4.1 and show
that our system gives the results expected from the intuition that

dynamic binding associates data with the execution context. We
show OCaml code below to illustrate the typing; the accompanying
code includes the corresponding Scheme and Haskell code. The
examples (4) and (5) in our OCaml implementation read as

let test_eq4 = (* (4) *)
let p = dnew () and q = new_prompt () in
dlet p 1 (fun () ->
push_prompt q (fun () -> dref p))

let test_eq5 = (* (5) *)
let p = dnew () and q = new_prompt () in
dlet p 1 (fun () ->
push_prompt q (fun () ->
dlet p 2 (fun () ->
shift q (fun f -> dref p))))

and both evaluate to 1—the result that we could not obtain with the
implementations discussed in Section 4.1.

Before we write (6) in the typed setting of OCaml, we note that
the continuation captured by shift asf in f is recursive. Therefore,
to properly type the body ofshift, we have to define the corre-
sponding (iso-)recursive type

type ('a,'b) r = J of ('a -> ('a,'b) r) | R of 'b

The example (6) thus reads

let test_eq6 = (* (6) *)
let p = dnew () and r = dnew ()
and q = new_prompt () in
(fun (J f) ->
dlet p 2 (fun () ->
dlet r 20 (fun () ->
match f 0 with R x -> x)))

(dlet p 1 (fun () ->
push_prompt q (fun () ->
dlet r 10 (fun () ->
R ((fun x -> dref p + dref r)

(shift q (fun f -> J f)))))))

and evaluates to the value 12, as expected inDB + DC, which we
could not obtain with the implementations discussed in Section 4.1.

6. Extensions
Having established that the core of the implementation in Section 5
is sound, we present two extensions.

6.1 Mutable dynamic variables

Dynamic variables are mutable in many Scheme systems [19]. To
model them, we extendDB (Figure 1) with a new expression form
“set p to V”, and the corresponding transition and typing rules.

Terms M F · · · | setp to V (25)

E
[
dlet p = V in E′[set p to V′]

]
7→ E
[
dlet p = V′ in E′[V]

]
if p < BP(E′) (26)

Σ(p) = τ Γ `Σ V : τ

Γ `Σ setp to V : τ
(27)

The expression “setp to V′”, like p, gives us the value associated
with p in the current dynamic environment. In addition, it updates
the associated value to beV′ in the same dynamic environment.
Unlike ordinary mutation, the mutation ofp is visible only in the
same environment where it occurs. The extendedDB language still
satisfies the type preservation and progress theorems of Section 2.

The extendedDB language can be translated in theDC language
of Section 3. No extensions to the latter are needed. We merely need
to add an additional translation rule toDB in Figure 3.

dsetp to V′e = shift p as f in λy. f yV′ (28)



When compared to the translation ofp, the above clause differs
only in usingV′ instead ofy in the last position. The evaluation of
the mutation form thus proceeds exactly as if we were looking up
the value of the dynamic parameter except that the continuation is
re-installed on top of the context [ ]V′. The addition clearly pre-
serves the theorems of Section 5. Our implementation of dynamic
variables (both OCaml and Scheme) include “setp to V′”; the ac-
companying code contains the implementation along with the tests.

Gunteret al. [36] were the first to reduce (top-level only) mu-
table variables to delimited continuations in a similar way, as dis-
cussed at the end of Section 5.1. We should stress that their global
mutable cells are much simpler than our mutable dynamic vari-
ables: the typing problem of Section 5.1 does not arise; since all
binding forms occur (implicitly) only at the top level, they obvi-
ously are not captured or aborted in delimited control effects.

6.2 Stack inspection

Another extension of theDB language adds a different way of ac-
cessing a parameter,V p, which applies the functional valueV to
the current value of the parameterp. That application however is
evaluated in the dynamic environmentoutside the closest binding
form. One may compare the dynamic binding facility to the reflec-
tive tower [56, 60, 16, 6]: dletp = V in M evaluatesM at a higher
(that is, less interpreted) level of the tower.

The extensionV padds the complementary facility of evaluating
an expression at a lower (that is, more interpreted) level. The
extension adds the following to Figure 1.

Terms M F · · · | V p (29)

E
[
dlet p = V′ in E′[V p]

]
7→ E
[
(λz.dlet p = V′ in E′[z])(VV′)

]
if p < BP(E′) (30)

Σ(p) = τ1 Γ `Σ V : τ1→ τ2
Γ `Σ V p : τ2

(31)

It is crucial that the applicationVV′ above occurs outside of the
dynamic extent of dletp = . . . in . . . . This feature lets us access
not only the current binding ofp but anypreviousbinding as well.
For example, Unix’s dynamic-linking interface defines an option
RTLD_NEXT to the functiondlsym to find the next occurrence of
a symbol in the search order after the current library—so that one
shared library can wrap around a function in another library.

We can use this extension to implement stack inspection (such
as for authorisation in the Java virtual machine) [10]: we can access
a dynamic variable not just to get its value but also to check whether
it has ever been bound to a given value in the current context. For
example, we can define the forms dconsp = V in M, dnil p in M,
and dmemberpp V, such that dmemberpp V in

dnil p in E1
[
dconsp = 1 in

E2
[
dconsp = 2 in E3

[
dmemberpp V

]]]
wherep < BP(E1) ∪ BP(E2) ∪ BP(E3) (32)

evaluates to true ifV is either 1 or 2, and to false otherwise. This
implementation is compatible with tail-call optimisation: any tail
calls in the termM can be optimised [10].

We can generalise stack inspection to arbitrary folding over the
context: for example, we can write a functionnub : 'a list ->
'a list that removes duplicates from a list while maintaining the
order: if an element occurs several times in the input, only itsfirst
occurrence remains in the output. Furthermore, we do not assume
any order relation on the elements of the list. Here is the OCaml
implementation of the function, using the forms introduced earlier:

let nub lst =
let p = dnew () in
let rec nub' = function

| [] -> []
| h::t ->

if dmemberp p h (* We have seen h before *)
then nub' t
else dcons p h (fun () -> h :: nub' t)

in dnil p (fun () -> nub' lst)

For example,nub [1;1;3;2;1;1;2;1] evaluates to[1;3;2].
This code uses the context—or to be precise, the sequence of
dconss in the context—as an implicit accumulator argument, iso-
morphic to the list being built. Because we do not assume any order
relation on the list elements, the complexity has to be, in general,
quadratic in the size of the input list. In fact, ournub hasO(non)
complexity, whereno is the size of the output list. For an input list
with many duplicates, our algorithm saves space over a solution
that does not use an accumulator.

The extendedDB language can be translated to the unmodified
DC language of Section 3. We merely need to add the following
clause to Figure 3:

dV pe = shift p as f in λy.
(
f (dVe y)y

)
. (33)

The extended translation preserves the theorems of Section 5. The
source code accompanying the article gives the complete imple-
mentation of this feature. In OCaml, we write the expressionV pas
dupp p V. We then implement stack inspection as follows.

let dnil p body = dlet p None body
let dcons p v body = dlet p (Some v) body
let rec dmemberp p v = dupp p

(function | None -> false
| Some y -> v == y || dmemberp p v)

7. Implementation strategies
Three traditional ways to implement dynamic variables aredeep
binding, shallow binding[2, 49], andacquaintance vectors[3].

In deep binding, we literally associate data with the execution
context. We maintain the dynamic environment as a list of bindings
from youngest to oldest, either part of or parallel to the execution
context. To bind a dynamic variable is fast: add the binding to the
front of the list. To look up a dynamic variable is more involved
and potentially not constant-time: search the list for it from front to
back, so that the youngest binding shadows older ones.

In shallow binding, we cache the current value of each dynamic
variable in a mutable cell. These mutable cells together consti-
tute the dynamic environment. Every dynamic variable is either a
pointer to its cache or, if the dynamic environment is a table, the key
for its cache in the table. In addition, we maintain a list of bindings
from second-youngest to oldest. To look up a dynamic variable is
fast: retrieve its current value from its cache. To bind a dynamic
variable is slightly more involved but still constant-time: move the
old value from the cache to the list, put the new value on the cache,
and remember to restore the old value from the list to the cache
when the execution context pops past the current continuation.

An acquaintance vector is an immutable table that maps each
dynamic variable to a value. Looking up a dynamic variable is fast
as with shallow binding, but each binding copies the entire table,
which takes more time the more dynamic variables there are.

It is most straightforward to implement dynamic variables by
deep binding, especially representing the list of bindings as part of
the execution context, because that strategy is closest to Moreau’s
and our definitions [49]. On the other hand, shallow binding is more
efficient if the language has no control facility and runs on just one
processor. Moreau proves shallow binding correct by showing it
equivalent to deep binding. The proof assumed the total absence
of control facilities such as exceptions, threads, and continuations.
When such facilities are present, the cache is harder to maintain:
When an exception is thrown, we need to unwind the stack to re-



store caches. To switch between threads (or when a first-class un-
delimited continuation is invoked), we need to flush and repop-
ulate the cache for every thread-local (respectively continuation-
local) dynamic variable, unless each thread uses a separate cache
(so-calledwide binding[28]), in which case threads cannot share
or inherit mutable dynamic variables (Section 6.1). Such separate
caching is required anyway for shallow binding on a multiprocessor
system. Acquaintance vectors are most efficient if there are many
lookups and few dynamic variables and bindings, but incompatible
with mutable dynamic variables.

In sum, deep binding trades constant-time lookup for a sim-
pler implementation, constant-time binding, mutable dynamic vari-
ables (especially shared or inherited), and faster control effects,
context switching, and multiprocessing. For example, Gasbichler
et al. [30] favour deep binding for thread-local dynamic variables,
and Scheme 48 uses deep binding to speed up multiprocessing.11

Because control delimiters let us slice, dice, and recombine
dynamic environments, the arguments above in favour of deep
binding are particularly severe in the presence of delimited control.
Indeed, we have implemented our semantics by deep binding in
Scheme, OCaml, and Haskell. Yet we have also implemented our
combined semantics by expressing delimited control in terms of

1. dynamic variables,be they implemented by deep binding, shal-
low binding, acquaintance vectors, or some other way;

2. concatenating and splitting dynamic environments; and
3. a strain ofcall-with-current-continuation that doesnot

close over the dynamic environment.

The existence (not details) of this implementation shows that our
proposal is compatible with deep binding, shallow binding, and
acquaintance vectors alike.

8. Conclusions
Our languageDB+ DC combines the calculiDB of dynamic bind-
ing andDC of delimited control. This language formalises typed,
mutable dynamic variables in the presence of delimited control. In
this language, the execution context and the dynamic environment
are one and the same, so delimited control gives rise todelimited
dynamic binding:

1. Capturing a delimited continuation closes overpart of the dy-
namic environment, rather than all or none of it.

2. Reinstating the captured continuationsupplementsthe dynamic
environment, rather than replacing or inheriting it.

Delimited dynamic binding is how dynamic variables and delimited
continuations should interact, because it is required in real-world
use cases including Web applications, mobile code, and traversing
the results of a database query or backtracking search.

Our type- and transition-preserving translation fromDB + DC
to DC shows that dynamic binding is macro-expressible in terms
of delimited control, even in a typed setting. Using this translation,
we have implemented the combined languageDB+DC in Scheme,
OCaml, and Haskell. Our implementation of dynamic binding does
not penalise programs that do not use dynamic variables: they run
“at full speed”. Like our formalisation, our OCaml and Haskell
implementations are statically typed and allow an arbitrary number
of arbitrarily-typed dynamic variables. The accompanying code
includes the implementations and numerous executable examples.

The context is an implicit argument to every function. Delimited
control operators let us pattern-match on (and even fold over)

11The file scheme/rts/fluid.scm in the Scheme 48 distribution says:
“Fluid variables are implemented using deep binding. This allows each
thread in a multiprocessor system to have its own fluid environment, and
allows for fast thread switching in a multitasking one.”

this argument to extract data, which is the essence of dynamic
binding. Delimited dynamic binding is a new and useful form of
abstraction—over parts of the dynamic environment, just asλ lets
us abstract over parts of the lexical environment.
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Syntax

Terms M F V | MM | p | dlet p = V in M
| shift q as f in M | resetq in M

Values VF x | λx.M

Variables xF f | g | x | y | z | u | v | · · ·

Parameters pF p | · · ·

Prompts qF q | · · ·

Contexts E[ ] F [ ] | E
[
[ ] M
]
| E
[
V[ ]
]

| E
[
dlet p = V in [ ]

]
| E
[
resetq in [ ]

]
Bound parameters

BP
(
[ ]
)
= ∅ BP

(
E
[
dlet p = V in [ ]

])
= BP(E) ∪ {p}

BP
(
E
[
[ ] M
])
= BP

(
E
[
V[ ]
])
= BP

(
E
[
resetq in [ ]

])
= BP(E)

Controlled prompts

CP
(
[ ]
)
= ∅ CP

(
E
[
resetq in [ ]

])
= CP(E) ∪ {q}

CP
(
E
[
[ ] M
])
= CP

(
E
[
V[ ]
])
= CP

(
E
[
dlet p = V in [ ]

])
= CP(E)

Operational semantics

E
[
(λx.M)V

]
7→ E
[
M {V/x}

]
E
[
dlet p = V in V′

]
7→ E
[
V′
]

E
[
dlet p = V in E′[p]

]
7→ E
[
dlet p = V in E′[V]

]
if p < BP(E′)

E
[
resetq in V

]
7→ E
[
V
]

E
[
resetq in E′[shift q as f in M]

]
7→ E
[
resetq in M {V/ f }

]
if q < CP(E′) andV = λy. resetq in E′[y], wherey is fresh

Typing

Types τF a | b | c | · · · | τ→ τ

Type environments ΓF ∅ | Γ, x : τ

Parameter signatures ΣF ∅ | Σ, p : τ

Prompt signatures Σ′ F ∅ | Σ′, q : τ

Γ(x) = τ

Γ `Σ
′

Σ x : τ

Γ, x : τ1 `
Σ′

Σ M : τ2
Γ `Σ

′

Σ λx.M : τ1→ τ2

Γ `Σ
′

Σ M1 : τ2→ τ Γ `
Σ′

Σ M2 : τ2
Γ `Σ

′

Σ M1M2 : τ

Σ(p) = τ

Γ `Σ
′

Σ p : τ

Σ(p) = τ1 Γ `Σ
′

Σ V : τ1 Γ `Σ
′

Σ M : τ2
Γ `Σ

′

Σ dlet p = V in M : τ2

Σ′(q) = τ2 Γ, f : τ→ τ2 `
Σ′

Σ M : τ2
Γ `Σ

′

Σ shift q as f in M : τ

Σ′(q) = τ Γ `Σ
′

Σ M : τ

Γ `Σ
′

Σ resetq in M : τ

Figure 5. DB+DC, the language of dynamic binding and delimited
control

A. Overview of the accompanying code
Illustration of the the ill-defined interaction between common im-
plementations of dynamic variables and shift/reset, Section 4:

dynvar-via-exc.scm with Scheme R5RS implementation of
dynamic variables in terms of exceptions andcall/cc.

dynvar-shift-srfi.scm with the reference SRFI-39 imple-
mentation of dynamic variables.

dynvar-scheme48-problem.scm using dynamic variables, or
fluids, and delimited continuations that are both provided in the
same Scheme implementation: Scheme48.

dynvar-shift-petite.scm using (Petite) Chez Scheme’s na-
tive implementation of parameter objects.

trampoline-petite.scm Two equivalent implementations of
shift andreset (with and without trampolining) behave ob-
servably differently in the presence of dynamic variables. This
code uses Chez Scheme’s native implementation of parameter
objects.

dynvar.sml SML/NJ implementation of dynamic variables in
terms of exceptions andcall/cc, and Filinski’s implementation
of shift andreset.

More realistic examples of how easy it is to encounter the undesir-
able behaviour of the common implementations of delimited con-
tinuations and dynamic variables.

chez-extended-ex.scm Chez-specific code, which uses Chez’s
native parameter objects to control the printing of objects. The
parameterisation may fail for some print expressions clearly
within parameterisation’s dynamic scope.

exceptions-shift.scm Scheme48-specific code, which uses
Scheme48-provided delimited continuations and exception han-
dling forms (which, in turn, rely on dynamic variables). The un-
desirable behaviour is the failure to catch an i/o exception and do
the clean-up action.

The new implementations of dynamic binding in terms of delim-
ited continuations (Sections 5 and 6). The code also includes the
examples from the above – which now have the expected, in the
semantics ofDB+ DC, behaviour.

new-parameters.scm The re-implementation of parameter ob-
jects for Chez Scheme. The code is actually portable R5RS+
records.

caml-dynvar.ml OCaml code

Dynvar.hs Haskell code

Illustration that it is not enough to layer monad transformers stati-
cally.

reader.hs The translation of (8) into Haskell does not type-
check, no matter how the reader and continuation monad trans-
formers are ordered.

The new implementation of delimited continuations (shift and
reset), aware of the dynamic environment and so behaves as
expected inDB+ DC, with respect to Scheme48’s native dynamic
variablesand dynamic-wind: Section 7. The code, too, includes
the examples from the above – which now have the expected, in
DB+ DC, behaviour.

new-shift.scm Scheme48-specific code.


