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Abstract

Dynamic binding andlelimitedcontrol are useful together in many
settings, including Web applications, database cursors, and mobile
code. We examine this pair of language features to show that
the semantics of their interaction is ill-defined yet not expressive
enough for these uses.

We solve this open and subtle problem. We formalise a typed
language>B+DC that combines a calcullBB of dynamic binding
and a calculu®C of delimited control. We argue from theoretical
and practical points of view that its semantics should be based
on delimited dynamic bindingcapturing a delimited continuation
closes overpart of the dynamic environment, rather than all or
none of it; reinstating the captured continuatsupplementshe
dynamic environment, rather than replacing or inheriting it. We
introduce a type- and reduction-preserving translation fin+
DC to DC, which proves that delimited controhacro-expresses
dynamic binding. We use this translation to implemeBt+ DC in
Scheme, OCaml, and Haskell.

We extendDB + DC with mutable dynamic variables and a

to any function, dynamic variables let us pass additional data into
a function and its callees without bloating its interface. This mech-
anism especially helps to modularise and separate concerns when
applied to parameters such as line width, output port, character en-
coding, and error handler. Moreover, a dynamic variable lets us not
just provide but also change the environment in which a piece of
code executes, without changing the code itself. For example, on
a UNIX/POSIX system, we can redirect a program’s output from
the console to a network connection without changing the program.
Another example is the modular interposition on library functions
using dynamic loading. In general, dynamic binding generalises
global state and the singleton pattern to multiple application in-
stances that may coexist in the same execution environment.

The crucial property of dynamic variables that gives rise to dy-
namic scope is that dynamic bindings are not captured in a lexical
closure. This absence of closure makes dynamic variables essential
for many useful abstractions, even in languages that rightfully pride
themselves on theit-calculus lineage. For example:

1. If we compile a program while redirecting the compiler’s output

facility to obtain not only the latest binding of a dynamic variable
but also older bindings. This facility provides for stack inspection
and (more generally) folding over the execution context as an

to a file, the compiled program should not send its output to the
same file (or, for that matter, use the working directory where
the compilation took place).

inductive data structure.

run (dletoutput= file in compile sourcg 1)
Categories and Subject DescriptorsD.3.3 [Programming Lan- . . Y .
guage§ Language Constructs and Features—Control structures The expression dlqnutpyt_ ...in ..." above is analog_ous to
with-output-to-file in Scheme and to output redirection
General Terms Languages, Theory in UNIX/POSIX.

Keywords Dynamic binding, delimited continuations, monads 2. If we create a closure with an exception handler fiea, an
exception raised when the created closure is invoked later may

not be handled by the same handler.
dlethandler= h; in ((dlethandler= h; in Ax.throwx) 0) (2)

The expression “dléhandler= ... in ...” above is analogous
to exception-handling forms likeatch and try in various
languages [49].

1. Introduction

A dynamic variables a variable whose association with a value

exists only within the dynamic extent of an expression, that is,

while control remains within that expression. If several associations

exist for the same variable at the same time, the latest one takes

effect. SUCh. association Is Callgddanamlc b'“‘?"f?g The scope 3. A migrated piece of mobile code should look to its new host for

of a dynamic variable—where in a program it is used—cannot OS services such gethostname (see Section 4.2.1).

be determined statically, so it is callegnamic scopeWe follow

Moreau’s definition of these terms [49]. We also call a dynamic 4. A resumed server-side Web application should look to its

variable gparameter new request-handling thread for Web-server services such as
Dynamic binding associates data with the current execution ~ getOutputStream (see Section 4.2.2).

context (the “stack”). Because the context is an implicit argument The absence of closure is a kind efivironmental acquisition

[32, 11], where object containment is defined by caller-callee re-
lationships at run time.
Because dynamic variables lack closure, they are harder than
Permission to make digital or hard copies of all or part of this work for personal or - |exical variables to reason about and implement, especially if they
classropm use is gralnted without fee provided _that copie; are r_10t made or dist‘ribgtedare mutable or there are contrdfects. When control feects are
for profit or commercial advantage and that copies bear this notice and the full citation h . . | . ined di
on the first page. To copy otherwise, to republish, to post on servers or to redistribute present, t e_ex_ec_utlon CQnt_EXt IS no onger_malntalne accor_ Ing
to lists, requires prior specific permission gowh fee. to a stack discipline, so it is unclear what it means to associate
data with the context. This problem is acute because dynamic vari-

ICFP’06 September 16-21, 2006, Portland, Oregon, USA.
Copyright© 2006 ACM 1-59593-309/86/0009. .. $5.00. ables and controlfeects are useful in many of the same areas; it



is impractical to prohibit them from interacting. Moreau [49, Sec- 3. On the way to the translation, we add a sound type system to

tion 10] thus calls for “a single framework integrating continua- Moreau’s syntactic theory of dynamic binding (Section 2).
tions, side-fects, and dynamic binding”. In particulatelimited 4. The wav having been paved by the translation. we implement
control[20, 21, 23, 13, 15, 14] is useful for (following the order of our comybined gemantigs in bo%/h untyped (Schéme) ar?d typed
the four examples above) (OCaml, Haskell) settings.

1. partial evaluation [12, 42, 26, 59, 17,4, 5, 7, 34]; 5. We extend our semantics and implementations with mutable
2. backtracking search [14, 53, 40, 41, 8] and functional abstrac-  dynamic variables (Section 6.1) and stack inspection (Section
tion [13, Section 3.4]; 6.2), while retaining harmony with delimited control. Stack
3. mobile code [57, 52]; and inspection provides access to not just the latest binding for a
4. Web applications [50, 33]. dynamic variable but older ones as well. Using this technique,

a direct-style program can treat the context as an inductive data

Yet the interaction betweetynamicbinding anddelimitedcontrol X
structure and fold over it.

has not been addressed in the literature.
1.2 Organisation

. - We start by introducing and formalising dynamic binding and de-
This paper addresses two non-trivial problems. limited control separately. In Section 2, we recall the formal se-

1. Designing the formal semantics for a language with both dy- mantics of dynamic binding [49] and add a sound type system. In
namic variables and delimited control, which can interact. Section 3, we reformulate the formal semantics of delimited control

As far as we know, this problem has never been attempted. As when there are arbitrarily many typed delimiters [35], to simplify it

> . . > . and harmonise it with the rest of the paper.
we detail in Section 4, Gasbichlet als treatment of dynamic Section 4 delivers our first contribution, a detailed explanation

;i/?T{il{aet()jleCSog{I]’gjln?ﬁg@ﬁ;?;ﬁ;gmg?glciﬁgicl:’:gxtliC(erllst():]!a;gzisr (tjriat- that the interaction of dynamic variables and delimited continua-
ment with Filiﬁski’s translation [24] from delimited control to tions IS-S“" an open pr(_)ble_m. Section 5 d_escrlbes our solution, a
undelimited control and mutable state is ill-defined translation from dynamic binding to delimited control. We prove

: that the translation preserves the operational semantics and types,
In our combined semantics, a captured delimited continuation then demonstrate our typed implementation in OCaml. We show
may access and supplement its caller's dynamic bindings at that our design resolves the problems in the use cases in Section 4.
each call, just as any function createdbgbstraction can. This  Section 6 presents two extensions: mutable dynamic variables and
uniformity preserves a fundamental use of delimited control: to stack inspection. Section 7 discusses implementation strategies,
create ordinary functional abstractions [13, Section 3.4]. such as so-called deep and shallow binding. Finally, Section 8 con-

2. Implementing these two features in a single practical language. cludes. We discuss related work as we go, especially in Section 4.

Some Scheme systems (such as Scheme 48) provide both dy. _ 017 L PRen 9N SUELPL/bober BENTO e TR
namic variables and delimited control. However, as we illustrate : ! :

in Section 4 and the accompanying code, the combined imple- describes extensive, self-contained code that illustrates the prob-

. X : : lems and implements our solution. The code is availablecap :
mentation has undesirable properties that, for instance, prevent// obox. com/~oleg/ftp/packages/DBplusDC. tar . gz
the four applications of dynamic variables listed above. P ’ g/2tp/p € P ) 8%

We impler_nent our combined_ semantics in untyped as v\_/eII as o Dynamic binding
typed settings. Our strategy is macro-expres§22] dynamic ; ) ) ) ] )
binding in terms of delimited control and thus reduce a lan- We review the semantics of dynamic variables using a simple call-

guage with both features to the language with just delimited by-value calculus introduced by Moreau [49, Section 4]. We then
control. embed the calculus in OCaml and show a small example.

1.1 Problems and contributions

Our specific contributions are as follows. 2.1 The languageDB

1. Given that much has been said in the literature about how We add typing to Moreau’s calculus and calDB. Figure 1 shows
dynamic binding interacts with other control facilities, our first ~the syntax, operational semantics, and typing ruleBBfAdding
contribution is to pinpoint the fact that the interaction with ~conditional forms, numbers, etc., along with the corresponding
delimited control remains an open issue (Section 4). We use transition ¢-) and typing rules would be a standard exercise.
concrete and realistic code examples, never before collected in ~ There are two disjoint sorts of variables: static (lexical vari-
the literature, to demonstrate the undesirable combination of ables) and dynamic (parameters). The latter are bound using the
delimited control and dynamic binding in existing systems. syntax dletp = V in M; the value of the most recent binding is
We contend that the interaction betweealimited continua- obtained by referencing the paramepeFor example, the program

tions and even a single dynamic variable is neither well-under- dletp=1indletp=2inp

stood nor reducible to the interaction betwesmlelimitedcon- . . .

tinuations and dynamic variables. We then arguediimited 5‘3’?;3?& ijc;/r?énfit?t\l/gr\i/:t?lzgl?:chr?c:]t'k;\jlg?grsr%ssteiﬂgig?)??ﬁeﬁs

dynamic environments on theoretical and practical grounds. dynamic variables are not equivalent [49]. For example, the terms
2. We macro-express dynamically-bound parameters in terms of o o

delimited-control prompts, so as to provide the formal seman- dietp=1inaz p and dlelg=1in1zq

tics for a language with arbitrarily many of both. We provide are not equivalent, because each term evaluates to a lexical closure

a type system for the language and show that our macro trans-that does not include the dynamic binding: p and Az g, respec-

lation preserves the operational semantics and the types. Thetively. Thus, evaluating these expressions in the context

type-preserving translation (Section 5.2) is especially tricky. We o o

thus formalise what it means to associate data with the context dletp = 3in dletq=41in ([]0)

in the presence of delimited control. produces 3 and 4, respectively.



Syntax

Terms M:==V|MM|p|detp=VinM

Values Vi=Xx|Ax. M

Variables x:=flglx|ylzlu|v]|---

Parameters p:=plq|r]|---

Contexts  E[] =[] | E[[IM]]|E[V[]] | E[dletp=Vin[]]

Bound parameters
BP([1)=0  BRE[[IM]) = BRE[V[]]) = BPE)
BP(E[dletp = V in []]) = BPE) U {p}
Operational semantics
E[(Ax. M)V] - E[M {V/x}]
E[dletp=VinV'] » E[V']

E[dletp=V in E'[p]] -~ E[dletp =V in E'[V]]
if pg BP(E')
Typing
Types ti=alb|c| - |TtoT
Type environments T':=0|T, x:7

Parameter signatures :==0 | %, p: 7

I'xX)=7 ILX:tiksMity T Miimo—>71 T My
F'ts XiT T AXM:iT > 10 I'rs MMy 0 T
p=r1 Xp =711 TreVity TsMin
Crs p:itT Tty dletp=VinM: 1,

Figure 1. DB, the language of dynamic binding

As the last clause in the definition of evaluation contexts shows,
evaluation contexts may capture dynamic variables. We refer to the
set of dynamic variables captured Byas BPE). Moreau [49]

shows that the sequential evaluation of the language can be ex-.

pressed using simple transition rules as shown in the figure. In
the second transition rule, the vali¢ may contain occurrences

of p; these are allowed to escape and be later captured by anothe
dynamic binding of the same variable. Similarly, the valién

the first transition rule may contain occurrencegdgfor example,

V = Ax. p), which are captured during the substitution. However,
the parameter access tepis not a value by itself.

Figure 1 shows our type system fBB. The type system is
conventional, except that judgements are parameterised by a sig
natureX, which associates every dynamic variable with its type.
The types and terms include an unspecified set of basic constants.

This type system does not prevent access to an unbound param

eter. It is possible to refine the type system to do just that, by anno-

tating each judgement and each function type with the parameters

used! The simple type system fiices for us—we leave it to future
work to track which dynamic variables are used in the presence of
delimited control.

Definition 1 A BP-stuck ternis a term Hp] where pg¢ BP(E).

Informally, a term is BP-stuck if its evaluation immediately reads
an unbound parameter.

1Such a refinement would be along the lines of Leroy and Pessaux’s type
system for preventing uncaught exceptions [43] and Filinskiot system

for tracking layered monadicfiects [25]. The latter guarantees that well-
typed programs will not fail due to a missing prompt.

Unbound parameters notwithstanding, our type system for dy-
namic variables is sound, as described by the following two theo-
rems. To prove them, we introduce two lemmas.

Lemma 2 (Value substitution) If ' +s V:tgandl, X: 1o ks M7
thenl' s M {V/X} : 7.

Lemma 3 (Context substitution) If I s E[M]:7 then there exists
tosuchthal ry M:tgandVM’. T +y M’ :1g = [+ E[M']:7.

Theorem 4 (Preservation) If M is a DB term such thaf +s M:t,
and M~ M’, thenll +yx M’ : 7.

Proof The theorem is a straightforward consequence of the two
lemmas above and the transition rule$d. O

Theorem 5 (Progress) If M is a DB term such thal vz M : 7, and
M is neither a value nor BP-stuck, then there exists some tetm M
such that M— M’.

Proof The proof is conventional and based on the observation
that any closed term that is neither a value nor BP-stuck can be
uniquely decomposed to match one of the three transition rutes.

Thus a sequence of transitions starting with a closed well-typed
term M, if it terminates, must terminate with either a value or a
BP-stuck term. As an example of the latter outcome, the closed
term(dlet p = Ax. x in (1y. p)) 1 (which is well-typed assuming
¥(p) = T — 1) evaluates to the BP-stuck tenm

2.2 Embedding in OCaml

The untyped fragment @B is a part of any RSRS Scheme system,
which introduces two dynamic variables, the input and output ports,
and special terms to bind and access them. Many Scheme systems
let the users define their own dynamic variables (often called fluid
variables or parameters [19]), bound using a distinguished form
like fluid-let Or parameterize [19]. We have embedded the
untyped version oDB in Scheme.

We have also embedded the fl@lB language in OCaml and
Haskell. We focus on the OCaml embedding in this paper as it in-
cludes the types, which are interesting, but not the monadic treat-
ment, which is slightly more complicated. The accompanying code
includes examples in all three languages.

To avoid extending OCaml with new syntax foB, we encode
f parameter of type as a value of the abstract typedynvar,
wheredynvar is a dedicated abstract type constructor. Accessing
the value of the parameteris written in OCaml afiref p, where
dref is a function. As inDB, this expression is not a value. We
represent the syntactic form “dlpt= V in M” of DB in OCaml as
the function applicatiodlet p V (fun () -> M).
To simplify the formalism, the languad@B had no explicit con-
struction to create parameters. One may assume [49] that parame-
ters are identified by manifest constants; the signaiutieen as-
sociates every possible paramepewith its type. In our OCaml
realisation ofDB, we make a similar assumption, only we intro-
duce a functiorinew such that evaluating the expressiew ()
chooses a distinct element fraiwith the appropriate type. Even
in a language with polymorphic types, a parameter always has a
monomorphic type. This property is guaranteed by the standard
value restriction on polymorphitet, because creating a param-
eter using the expressiathew () incurs a computationalfiect.
We may regard an OCaml expressist p = dnew () in ...
as a declaration for the parameter

To summarise, we embdaB into OCaml by three functions.

dnew : unit -> ’a dynvar
dref : ’a dynvar -> ’a
dlet : ’a dynvar -> ’a -> (unit -> ’b) -> ’b

Section 5 below reveals the implementation of these signatures.



Syntax
Terms M ==V | MM |shiftpasf in M | resetpin M
Values V= x| Ax. M
Variables x:=flglx|ylzlu|v]|---
Prompts p==plqlr|--:

Contexts E[] ==[]|E[[IM]|E[V[]] | E[resetpin[]]
Controlled prompts
CR[)=0  CRE[[IM])=CRE[V[]]) = CPE)
CHE[resetpin[]]) = CPE) U {p}
Operational semantics
E[(Ax. M)V] - E[M {V/x}]
E[resetpin V] — E[V]
E[resetp in E’[shift pasf in M]] — E[resetpin M {V/f}]
if p¢ CPE’) andV = Ay.resetpin E’[y], wherey is fresh
Typing
Types
Type environments T :=0Q | T, x: 7
Prompt signatures X =0 |X, p:71

Ti=alb|c|--|Tto7

I'xX)=t IX:tiks Mty TresMiito—>7 Thg Moo
F'ts XiT T AXM:iT > 10 I'rs MMy 0 T
¥p=1 [LfiromnrkMin ¥p=1 TrsM:7

Ity shiftpasfinM:r I'+yresetpinM:t

Figure 2. DC, the language of delimited control

2.3 Example

With this interface of dynamic variables, we can write the following
example in OCaml.

let p = dnew () in
dlet p 0 (fun () ->
let £ = fun () -> dref p in

let x = f () in
let y =dlet p 1 (fun () -> £ ()) in
let z = £ () in (x,y,2))

This example evaluates to,(0 0). The OCaml code and execution

correspond to the followin®B term and transitions (where we use

let as the usual abbreviation for applying-&xpression):
dletp=0inletf =A_.pinletx=f ()in
lety=(dletp=121inf ())inletz=f ()in(x,y,2)

— dletp=0inletx= pin
lety=(dletp=21in(A_p)())inletz=(1_.p) Q) in(xy,2

—*dletp=0in
lety=(dletp=21in(1_p)())inletz=(1_.p)()in(0,y,2)

—*dletp=0inletz=(1_.p)()in(0,1,2 —* (0,1,0)

3. Delimited control

We review the semantics of delimited continuations using a variant
of Gunteret al’s call-by-value calculus with control operators [35].
We then embed the calculus in OCaml and show a small example.

3.1 ThelanguageDC

Figure 2 presents the languaD€ of delimited control. The lan-
guage, likeDB, is based on the simply-typed call-by-value

calculus. It adds expressions to reset a prompt and to shift to
a prompt. The language is essentially Gurgeral's [35], har-
monised withDB in Figure 1. The main dierence is that we use
the control operatathift rather tharcupto. As Gunteret al.note

[35, Section 2], either variation preserves type soundness (Theo-
rems 6 and 8 below). The otheffidirence is that we make prompts

a distinct syntactic category and track them in the sign&uather

than a special piece of state collecting the set of allocated prompts.
We also omit polymorphiget, an orthogonal extension.

Theorem 6 (Preservation [35]) If M is a DC term such thal ry
M: 7, and M— M’, thenl' +sx M’ : 7.

Definition 7 A CP-stuck ternis of the form Eshift pasf in M],
where p¢ CPE).

Theorem 8 (Progress [35]) If M is a DC term such thal +s M:7,
and M is neither a value nor CP-stuck, then there exists some term
M’ such that M— M’.

3.2 Embedding in OCaml

We could use Guntegt al's SML implementation otupto [35] to
embedDC in OCaml. We instead implemeBtC natively, without
resorting to undelimited continuations, based on a native imple-
mentation of Dybviget al’s framework [18]. The implementation

is a library that adds to OCaml the following three functions.

new_prompt : unit -> ’a prompt
push_prompt : ’a prompt -> (unit -> ’a) -> ’a
shift ¢ ’a prompt -> ((°b -> ’a) -> ’a) -> ’b

The functionnew_prompt creates a new prompt. The expres-
sion push_prompt p (fun () -> M) evaluatesM in the dy-
namic extent of the reset prompt This expression equivalent
to resetp in M, but it is a regular function application to a
thunk. The expressioshift p (fun f -> M) corresponds to
shift p as f in M, which captures and removes the context up
to the closest dynamically-enclosing prommpt reifies that con-
text as a functionf, then evaluates the expressibh The pre-
cise operational semantics is given in Figure 2. The functions
push_prompt andshift are same as the standard operatets:t
andshift [13, 14, 15], except parameterised by prompts.

Our OCaml implementation of delimited control faithfully re-
alises Gunteet al’s system modulo theupto/shift distinction.
However, our formal languadeC in Figure 2 keeps prompts as a
distinct syntactic category and eschewes:_prompt. The prompt
signaturex associates every possible prompt with its type. Even ex-
tendingDC with polymorphiclet, the types of the prompts shall
remain monomorphic. In our OCaml implementation, this property
is guaranteed by the standard value restriction on polymoajhtic
because creating a prompt using the expressén prompt ()
incurs a computationalfect.

3.3 Example

As a simple example of the use of our control operators, the fol-
lowing expression evaluates to 4.

let p = new_prompt () in push_prompt p (fun () ->
1 + shift p (fun £ -> £ (£ 2)))

The evaluation first creates a new prompt and resets it for the
duration of the computation. Thehift expression captures the
continuation up te, whichis1 + [], reifies it as a functiort, and
applies it twice to the argumeatto yield 4.

4. The problem

First-clasgdelimitedcontinuations and first-class undelimited con-
tinuations share inspiration but qualitativelyffdr. For example,



delimited continuations can express state [24], whereas undelim-With dynamic variables in play, this equivalence no longer holds,

ited continuations cannot, even with exceptions added to the lan- becauseéE; and E; may contain diferent dynamic bindings. Thus

guage in the usual way [58]. dynamic variables behaveftéirently depending on which imple-
To understand how dynamic variables interact with delimited mentation of delimited control is used.

continuations, it is tempting to reduce the problem to how dynamic For examplé, let p be a dynamic variable. The program

variables interact with undelimited continuations. There has been

extensive work on this latter subject. The interaction between dy- dietp=1inp ®)
namic binding (or its more controversial cougifnamic-wind evaluates to 1 as expected, but the program

[54]) with the following control facilities is fairly well-understood: . .
first-classundelimitedcontinuations [29, 37, 30, 47], threads [31, dletp = 1inresetinp )

30], and exceptions [49]. In particular, Gasbichétral. [30] for- only evaluates to 1 with the non-trampoline and Scheme 48 im-
malise dynamic variableglynamic-wind, undelimited continua-  plementations ofbort. With the trampoline implementation of

tions, threads, and mutable state all together. Separately, Matthewsbort, the latter program gets stuck because it looksptip the
and Findler [47] formaliséynamic-wind in RSRS Scheme, which  empty dynamic environment. (We omit the reset prompt here be-
includes undelimited continuations. In contrast, Moreau expressescause we consider only one prompt.)
exceptions using dynamic variables, yet explicitly disregards con-  To take a more severe example, the program
tinuations [49, Section 6]. . . . . .
Although—as Sitaram and Felleisen show [55]—undelimited dletp = 1in resetin dlep = 2 in shift asf in p Q)

control cannot express delimited control, Filinski [24] uses unde- goes not evaluate to 1 as one might expect. Rather, it evaluates to 2
limited cont.rol and mutable state.t.oge.therto express delimited con- \ith the unoptimised and Scheme 48 implementationsbofrt,
trol. One mlght then hope that Fllln?kl’s translation would tUr.n the and again gets stuck with the trampo“ne imp'ementatimfrt_
formalisation of dynamic variables in the presence of undelimited  of course, one can obtain a technically well-defined treatment
continuations into an account of how dynamic binding interacts of dgynamic binding and delimited control by choosing one of
with delimited control. We dash this hope in Section 4.1. Indeed, the three inequivalent implementationsatfort above. However,
Gasbichleret al. [30] conclude that work on delimited continua-  sych a choice is purely arbitrary: the trampoline optimisation is no
tions is “largely orthogonal to ours”, and no other work seems to more and no less at fault as the non-trampoline pessimisation for
have treated dynamic binding in conjunction with first-cldem- affecting how dynamic variables behave. Since there appears to be
ited continuations. We motivate our new proposal in Section 4.2.  three obvious solutions, there is in fact no obvious solution—the
. . embarrassment of riches only shows that some foundation is amiss.
4.1 A couple of obvious (non-)solutions More seriously, ignoring the non-formalised Scheme 48 imple-
An obvious attempt to treat dynamic binding with delimited control mentation ofabort, the remaining two implementations abort
is to combine Filinski’s implementation of delimited control using  (with and without the trampoling)othlead to an undesirable se-
undelimited control and mutable state [24] with Gasbicleleal’s mantics in practise. Denotationally these correspond to two ways of
formalisation of dynamic binding with undelimited control and combining the reader and continuation monads [45]: map theatype
mutable state [30]. Unfortunately, this combination is ill-defined: to eitherp — (@ — w) = w or (@ — p — w) — p — w, Wherep is the
it leads to at least two possible semantics, and worse, neither ofénvironment type of the reader monad ands the answer type of
these semantics is desirable in practise. the continuation monad. In other words, we are forced to have de-
Filinski implements the delimited-control operatetsift and limited continuations eitheclose over(captureall or noneof the
reset using a single mutable cetik, which contains a first-class ~ dynamic environment. In the next section, we argue that both of
undelimited continuation. Filinski's implementation relies on an these choices are undesirable and propose a middle ground which
abort operation, which can be defined in Scheme as follows. lets a delimited continuation close oveart of the dynamic envi-
ronment. This middle ground corresponds to combining multiple

(define (abort thunk) (let ((v (thunk))) (mk v))) layers of reader and continuation monads in succession, without

In words, (abort thunk) first computes the value dfthunk), ordering them statically.
then throws it to the undelimited continuationdit. Due to the o ) )
throw, the context in whict(abort thunk) is evaluated is irrel- 4.2 Delimiting the dynamic environment

evant and should be subject to garbage collection. Jonathan Reegyp|ike the possibilities considered in Section 4.1 above, our solu-
hacks this optimisation in Scheme 48 using an internal primitive jon to combining dynamic binding with delimited control does not

with-continuation, whose meaning is not formalised. rely on undelimited control. Our model returns to the intuition that
(define null-continuation #f) dynamic binding associates data with the execution context. A con-
(define (abort thunk) trol delimiter delimits the context and hence the data; a delimited
(with-continuation null-continuation continuation contains part of the context and hence part of the data.
(lambda () (let ((v (thunk))) (mk v))))) For example, the “shift” in (5) above discards the later binding
It is more portable to implement this optimisation by a trampoline Put not the earlier one, so it evaluates to 1.
[18, Section 5.1]. A more involved example is the expression
(define abort (Af.dletp = 2indletr = 20 in f(0))
((call-with-current-continuation (dletp=1in r_eset n dlet =10in (6)
(lambda (k0) (lambda () (lambda (thunk) (AX. p+ r)(shift asf in f)).

(k0 (lambda () o . . . .
The captured delimited continuation contains the dynamic binding
(Let ((v (thunk))) (mk v))))))))) r = 10 but notp = 1, so the result is 12. This result cannot be ob-
Filinski’s result does not favour any one of these implementations tained by capturing either all or none of the dynamic environment
of abort over the others, because they are all equivalent in usual
calculi of control: two evaluation ConteXE]_[k[ ]] and Ez[k[ ]] 25ee trampoline-petite.scm, dynvar-scheme48-problem.scm,
are equivalent ik is an undelimited continuation being invoked. anddynvar.sml in the accompanying code.




at “shift asf in f”. Yet our design naturally generalises the basic 1. On one hand, a resumed piece of application code should look
intuition behind dynamic binding, beyond the ordinary case where to its new execution context (such as its new server thread) for
the execution context is accessed as a stack or a tree: at any point  server services such as the dynamic varidhleputStream
during execution, the dynamic bindings in scope are those in the  and exception handlers. Therefore, a delimited continuation
context, a prefix of which can be delimited by a control delimiter should not close over all of its dynamic context.

such axeset, removed by a control operator suchsasift, and 2. On the other hand, the application code may bind and use dy-
reinstated by invoking a captured delimited continuation. In other namic variables internally as well, for instance to parameterise

words, we add dynamic binding to the langudg€ by manipu- the display by the end-user’s preferences: line width, time zone,
lating the evaluation context, following the footsteps of Cartwright language, and so on. Therefore, a delimited continuation should

and Felleisen [9]. : : :
. . . close over some of its dynamic environment.
Our design has theoretical and practical advantages. From a Y

theoretical point of view, our use of the execution context for both We conclude that a delimited continuation for suspended code
delimited control and dynamic binding seems more likely to admit should close over some but not all of its dynamic environment. For
the kind of local, axiomatic reasoning achieved by Sabry [51] and example, the PLT Web server uses both thread-local and continua-
Kameyama and Hasegawa [39] for delimited control with a single tion-local variables [46]. The dynamic bindings that the delimited
prompt. For example, our operational semantics directly enforces continuation should close over are precisely those in the suspended

Kameyama and Hasegawa's reset-shift axiom, code, that is, those within the control delimiter.
. . . Sometimes the same dynamic variable is bound both within
resetpin E[Sh'_ﬁ pasfinMf] . ) and beyond the control delimiter. To continue the Web example,
= resetpin M(4x. resetpin E[x]) the application and the server may each install a handler for the

for any promptp such thatp ¢ CP(E), and f does not appear free ~ Same type of exceptions, and the formgr handler may rethrow the

in M, andx does not appear free . This axiom is key to using exception to the latter. For the rethrowing to work, in these cases

delimited control for functional abstraction (Section 4.2.3). too, the delimited continuation should close over precisely those
In the remainder of this section, we illustrate the practical ben- bindings within the control delimitet.

efit of this design using three examples, starting with the mobile-

code example from Section 1. 4.2.3 Database cursors

. Analogous design considerations apply whether delimited contin-
4.2.1  Mobile code uations are used as coroutines (when each delimited continuation
Sumii [57] demonstrates that a running program can be migrated to is invoked exactly once) or for backtracking (when some delimited
another location on the network by capturing the current continu- continuations are invoked more than once) [14, 53, 40, 41, 8]. As
ation, delimited by the boundary between the mobile code and the Danvy and Filinski observe [13, Section 3.4], capturing a delimited
fixed code. Thus a piece of mobile code is a delimited continuation. continuation creates a functional abstraction. Over the lifetime of
) ) . a delimited continuation, just as over the lifetime of an ordinary
1. On one hand, a migrated piece of mobile code should 100k fnction, its caller may parameterise each call ijedent dynamic
to its new host for OS services such as the dynamic variable bindings, which it may access as well as supplement.
hostname. Therefore,_a delimited continuatio_n should not close For example, a cursor (in other words, a lazy stream) that iter-
over all of its dynamic context. (If the mobile code needs t0 a5 gver database records is easy to construct as a delimited contin-
remember the current hostname at any time, it may store the ation [40]. The cursor and its client may each install an exception
value in a lexical variablé) handler to clean up and release resources in case the database con-
2. On the other hand, the mobile code may bind and use dynamicnection fails>
variables internally as well, for instance to handle exceptions
or to limit the search depth in a distributed backtracking com-
putation. Therefore, a delimited continuation should close over
some of its dynamic environment.

1. On one hand, because the client’s handler may change for each
step through the iteration, the delimited continuation should not
close over dynamic bindings beyond the control delimiter.

- . . ) 2. On the other hand, because the cursor’s handler may persist

We conclude that a delimited continuation for mobile code should 57 one step to the next, the delimited continuation should

close over some but not all of its dynamic environment. The dy- close over dynamic bindings within the control delimiter.

namic bindings that the delimited continuation should close over

are precisely those in the mobile code, that is, those within the con- We conclude that a delimited continuation, like an ordinary func-

trol delimiter. tion, should be able to access and supplement its callers’ dynamic
Control delimiters correspond tmarksin Sewellet al's pro- bindings at each call. In other words, capturing a delimited contin-

gramming language and system for distributed computation [52]. uation should close over the dynamic bindings within the delimiter

When their system migrates a piece of code, the bindings within but discard those beyond the delimiter.

the mark are shipped to the new host, whereas the bindings beyond

the mark are rebound at the new host. This design matches ours. 4.3 Comparison with layered monads

We have argued from practice that a delimited continuation must
close over some dynamic variables but not others. This require-
Instead of migrating to run remotely right away, code may sus- ment is not satisfied if we combine delimited control and dynamic
pend to run locally later. For example, an interactive session in a binding as two monad transformers [45, 48], following Filinski’s
server-side Web application can be suspended by capturing the curdayered-monads approach [25]. However, as a reviewer points out,
rent continuation [50, 33], delimited by the boundary between the
session-oriented application code and the request-oriented servef The file exceptions-shift.scm in the accompanying code demon-
code. Thus a piece of suspended code is a delimited continuation. strates that such rethrowing does not work in common implementations,
which letshift capture bindings beyond the control delimiter.

3Seetest4 in new-parameters.scm in the accompanying code. 5Seeexceptions-shift.scmin the accompanying code.

4.2.2 Server-side Web applications




we can combine many monad transformers, one for delimited con-

trol and one for each dynamic variable. [X] = x

For example, to close over one dynamic variaplebut not
another dynamic variablp,, we can feed the reader monad for [AX MT = ax. [M]
to the continuation monad transformer, then to the reader monad [M1M5] = [M11TM>]

transformer forp;. The resulting monad maps each typé¢o the
typep1 — (@ - p2 — w) = p2 = w, Wherep; is the type of the
dynamic variablep, andw is the answer type for delimited control. [dletp=Vin M] = (resetpin (1z 1y.2) [M1)[V]
A delimited continuation then has the type- p, — w, so it closes Mm1=1I1
over the value op; where it is captured but takes up the valuggf
where it is invoked, as desired. . X . . .
In general, we can specify which dynamic variables a delimited Figure 3. TranslatingDB to DC, first attempt with broken typing
continuation should close over by layering the continuation monad
transformer just under those reader monad transformers. Unfortu-
nately, this hierarchical approach forces each delimited continua-
tion to close over a fixed set of dynamic variables, even when the
continuation monad transformer is applied more than once. This . N )
limitation is appropriate in some situations—we could for exam- N Section 5.1, we prove that a simplified, untyped translation

ple declare that mobile code never closes dvartname—but too from DB to DC preserves the operational semanticsD. In
restrictive in other situations. Section 5.2, we adjust the first translation to preserve types as well.

For example, during the lifetime of a delimited continuation, the & then turn to the combined languaB® + DC, of dynamic
same kind of exception may be handled both inside and outside thePinding and delimited control. We redu@ + DC to justDC—
delimiter: at some points during a database iteration, both the cursorthat is, we show that adding dynamic bindind@ does not make
and its client may need to clean up in case the network faNe it more expressive. To be more precise, wacro-expresdynamic
can use parameters to carry exception handlers, yet we do not want/

[p] =shiftpasf in ay. fyy

thermore, the fact that a dynamic variable may be bound several
times in several places presents a unique typing challenge that has
not been dealt with before.

ariables in terms of delimited continuations. We thus resolve the

to handle each kind of exception either only inside or only outside Problem of how dynamic binding and delimited control interact.
the delimiter. Generalising from catching and throwing exceptions 51 Afirst att ¢
to binding and reading parameters, we note a common pdttern: ) Irst attemp

dletp=0inletf = (resetinleiv = pindletp=1in @® Figure 3 shows a first try at the translation. It is completely syntax-
letx = (shiftasf in f)inv+p)in ... directed. Since a context is a term with a hole []! the t(anslatlon
) ) T on terms along with the translation of the hole (to itself) induces a
On one hand, the continuation captured by shift as f includes translation on contexts. Each parameief DB is translated into a
the binding ofp to 1, so our layered monad must map each type unique prompt oDC.
to some type int> (@ — w) — w. On the other hand, the reset ex- The intuition behind the translation is that a dynamic binding

pression receives the binding pfto O from the current dynamic  «gjet p = Vin M” of a parameterp to a valueV in a body M

environment, so “int>" must appear inside rather than outside resets the prompt immediately inside the context /] A normal

This contradiction means that no static layering of reader and con- retyrn fromM with a valueV’ should simply yieldv’ and ignoreV,

tinuation monad transformers can implement this pattedence, so the translation applies the functiaz 1y.z to V’. The result

a static hierarchy of monad transformers is not enough in practice. Ay.V’ receives the current value of the parameter and ignores it
as required. IM needs to access the binding, then the continuation

5. Translation up to and including the prompt is captured fasnd the function

Ay. fyy is returned as the result. This function binds the current

valueV of the parameter ty and plugs the first copy of into

the delimited continuation. The second copy is kept immediately

outside the re-installed prompt, in the contex¥/[ds before.

This translation is correct, in that it respects the operational

mantics oDB andDC.

In order to define a combined semantics of dynamic binding and de-
limited control that supports delimiting the dynamic environment,
we translate dynamic binding to delimited control. More precisely,
we first translateDB to DC, then translate a combined language
DB+ DC to DC. The latter translation shows that dynamic binding o
is macro-expressible in terms of delimited control.

It may seem like overkill to translate a computationfieet as Lemma9 If E isaDB contextand M is a DB term, theB[M]] =
trivial as dynamic binding to one as powerful as delimited control. [g7[Mm7].
However, Section 4 shows that dynamic binding is not so trivial an
effect in the presence of delimited control, so our translation is not Lemma 10 If E is a DB context, theBP(E) = CP(E]).
as much a mismatch as it may seem.

The basic idea behind our translation is in fact used in a techni- Lemma 11 If V is a DB value, thefivV] is a DC value.
cal report by Gunteet al.[36] for a different purpose: simulating . )
top-level mutable cells (not dynamic variables) using control oper- Lémma 12 If M is a BP-stuck DB term, thefMT is CP-stuck.
i he users code, they 46 ot interact with delimiiod control Fur- [7ECTeM 13 Let M be any DB term. If W DB term such thax

! ) M — M’, then[M] »* [M’]. Conversely, if Mis a DC term such

that[M] — My, then there exists a DB term’Much that M— M’
and My —* [M].

6 Seeexceptions-shift.scmin the accompanying code.
"This pattern appears in (5) and (6), anctist4 in new-parameters.

scm in the accompanying code. See also discussionshiadp:// Proof For the first half of the theorem, we show that each of the

lambda-the-ultimate.org/node/1396comment-16007. The Zipper o0 possible kinds dPB transitions translates to a sequence of
file-system project shows more examples of this pattettp: //okmij. DC transitions. First. if th@B transition is
org/ftp/Computation/Continuations.htmlzipper-£s. ) !

8 Seereader.hs in the accompanying code. E[(Ax. M)V] - E[M {V/x}], 9



then theDC transition is

[ET[(Ax. M) V1] = TET[TMT{IV]/x}]. (10)

Because the translation commutes with substitutiBfivl {V/x}]
translates t6E][[M1{[V]/x}]. Second, if theDB transition is

E[dletp=Vin V'] > E[V'], (11)
then theDC transitions are
[ET1[(resetpin (Az y.2) [V'1) [V1]
— [E7[(resetpin Ay. [V']) V1]
- TET[Y. VDIV = TET[TV ).
Finally, if the DB transition is
E[dletp=V in E'[p]] + E[dletp =V in E'[V]]
wherep ¢ BP(E’), then theDC transitions are
[ET[(resetpin (1z Ay. 2)([E'] [shift pasxin Ay. xyW)) V1]
— [E][(resetpin Ay. (Ay'.resetpin (A1z Ay. 2(TE1[Y])yy) [V1]
= [E1[(2y. (1Y .resetpin (1z 2y. A(TE1[Y])yy) V1] (14)
— [E][(Ay.resetpin (Az Ay.2([E'1[y]))VV]
— [E][(resetpin (1z 1y. 2)([E"1[V]))V]

wherep ¢ CP(E’]) andy’ is fresh.

Conversely, we inspect Figure 3 and consider each of the three
possible kinds oDC transitions that can occur, starting from the
translatio M7 of aDB termM and ending at ®C term M;. If the
DC transition is

Ec[(A% M)Ve] — E¢[Mc {Vc/X}], (15)
then eitheMM = Ep[(Ax. Mp)Vy] for someE,, My, andV,, in which
case letM’ = Ey[Mp {Vu/x)], or M = Ey[dlet p = V, in /] for

someEy, Vy,, andV;, in which case leM’ = Ey[V[]. Second, the
DC transition

(12)

(13)

E.[resetpin V;] — E[Vc]
is impossible. Finally, if théC transition is

E[resetpin E'[shift pasf in M]] — E[resetpin M {V/f}], (17)

thenM = Ey[dlet p = V, in E[[p]] for someEy, Ef, andV, such
thatp ¢ BP(E}), so letM’ = Ep[dlet p = Vj in Ej[Vy]]. |

Informally speaking, this translation may be viewed as a refunc-
tionalised version of Gunteat als definition of top-level mutable
cells in terms of delimited continuations [36]. They state no formal
property for their translation.

In the special case with just one dynamic variable, our transla-
tion can be obtained by applying Filinski’s shift-and-reset represen-
tation [24, 25] to the reader monad. For multiple dynamic variables,
we diverge from Filinski's representation by using one prompt for
each dynamic variable.

Our translation works well in the untyped setting. Indeed, our
Scheme implementation is based offitn the typed setting, how-
ever, we get a problem, which we deal with in the next section.

(16)

5.2 Atype-preserving translation

The translation in Section 5.1 fails to preserve types. The problem

is in the following rule from Figure 3.

[dletp =V in M] = (resetpin (1z y.2) [M1) [V1] (18)

91f we assume that the terl is well-typed inDB, then the following
(simpler) proof is available for the second half of Theorem 13. The tdrm

[dletp=Vin M]
= resetq in ignorg((resetp in (1z shiftqasf in 2) [M1)[V])
whereq is fresh
01=0
[, p:r]=[Z],p:Tt—>T1

Figure 4. TranslatingDB to DC, fixed typing from Figure 3

On one hand, the typing rule in Figure 1 says that the type of the
DB expression “dlep = V in M” is independent of the type of the
parametemp. On the other hand, the typing rule in Figure 2 says
that the type of théC expression “resep in M” depends on the
answer type of the promgt both types must be the type bf.

In particular, the translation of the example in Section 2.3 does
not type-check: Th@ush_prompt for the secondilet returns a
function from integers to integers, whereas glwah_prompt for
the firstdlet returns a function from integers to integer-triples.
This stymies the type system because the prompt’s answer type is
always monomorphic and cannot be both of these function types. In
general, this translation forces every binding for the same dynamic
variable to return the same type.

This restriction may seem to prevent us from fully implement-
ing dynamic variables using delimited continuations. Fortunately,
the restriction can be eliminated. Figure 4 shows the necessary
changes to Figure 3. In this final translation, neither the reset nor
its body ever returns normally. When we are done evaluating a dy-
namic binding form “dletp = V in ...” to a resultz, we do not
returnz normally but insteacbort the delimited context with the
binding and jump to a surrounding delimiter with a fresh prompt

To convince the type system that “regein ..." never returns,
we use a functiorignore of the form Ax. Q, which never returns
when called. Such a function has any function type- 7., and
can be implemented in various ways.IXC, we can definégnore
asAx. M, whereM is a CP-stuck term. In OCaml, we can simply
saylet ignore x = failwith '"cannot happen".

This translation uses auxiliary promgmgswhich are assumed to
be absent from th®B signatureX. In the DC translation[~] of a
DB signaturez, we translate each parameter type to the prompt
typep:t— 7, but any prompt typ@: v — 7’ will do.

The translation in Figure 4 still preserves transitions as stated
in Theorem 13. (The conclusion of Lemma 10 is now BP€
CP(EY).) In particular, for theDB transition

E[dletp=VinV'] » E[V],
the newDC transitions are
[ET[resetq in ignorg((resetp in (Az shiftqasf in 2 [V'7) [V1)]
— [E][resetq in ignoreg((resetp in shiftqasf in [V'1) [VT])]
— [El[resetgin [V']] — [ET[[V']]. (20)

We need no transition fagnorebecause the corresponding context
is aborted. Thus the exact naturegrforeis immaterial.
The new translation respects the type systeni3®andDC.

Theorem 14 If M is a DB term such thal" +s M : 7, then
I' bz [M7: 7 for some prompt signatut® disjoint from[X].

(19)

Proof The proof is by induction on the structure of the term,
merging the prompt signaturé at each inductive step using a

is either a value, BP-stuck, or can make a transition (Theorem 5). Lemmas trivial weakening lemma. The two interesting cases are:

11 and 12 rule out the first two possibilities. The conclusion follows from

the first half of Theorem 13 and the fact that the transitions are deterministic.

105ee the filmew-parameters.scm in the accompanying code.

1. fT +g p:7, thenI kg [P]: 7, Or equivalently,

[ty shiftpasfin dy. fyy:r, (21)



becaus¢x](p) = r—7andl, fit—>(1—>7) ki AY. fyy:t— . dynamic binding associates data with the execution context. We

Hence e’ = 0. show OCaml code below to illustrate the typing; the accompanying
2. fTrg dletp=Vin M:7,thenl +y Vi1, andl’ +x M:7, where code |rllclud46$ ti:je é:o_rrespocr;(élng lS_,ch?me and_ Haske(ljl code. The
7, = 3(p). According to the translatiofiz] (p) = 7> — 5. By examples (4) and (5) in our OCaml implementation read as
the induction hypothesi:?,rmy1 V7.7, andll Fre1s, [M7:7 for let test_eqd = (* (4) *)
some prompt signatureg andX),. Sinceq is fresh, we can let let p = dnew () and q = new_prompt () in
¥ =%, %), q:7,sothal’(g) = 7. Then we have successively dlet p 1 (fun () ->
. . shi PR push_prompt q (fun () -> dref p))
I,Z:Tkys shfftqasf !n Z:Ty— To, (22) let test_eqs = (+ (5) *)
[ty (Azshiftqasfin (M7, - 75, (23) let p = dnew () and q = new_prompt () in
[ gy (resetpin (Az shiftqasf in2) [MT)[V]: 1. (24) dlet p 1 (fun OO ->
. . . . h_ t f ->
The construction oignorejustifies thaf x5 ignore: t, — 7. glllzt ﬁrgm}()fug E)m_l>()
Therefore iz x [dletp=Vin M]: 7. | shift q (fun f -> dref p))))
The new translation lets us implement the dynamic variables and both evaluate to 1—the result that we could not obtain with the
used in Section 2, as follows. implementations discussed in Section 4.1.
, — (> , Before we write (6) in the typed setting of OCaml, we note that
t d = (’a -> ’a) t . . i . -
1zzedn:w Sér)wirnew_pzompt ?) pronp the continuation captured by shift &sn f is recursive. Therefore,
let dref p = shift p (fun x -> fun v -> x v v) to properly type the body afhift, we have to define the corre-
let dlet p v body = let q = new_prompt () in sponding (iso-)recursive type
push_prompt q (fun () -> -
ignore ((push_prompt p (fun () -> type (Pa,’b) r = J of (’a -> (’a,’d) r) | R of ’b
(fun z -> shift q (fun _ -> 2)) The example (6) thus reads
(body ())))
) let test_eq6 = (* (6) *)
let p = dnew () and r = dnew ()
5.3 Dynamic variables and delimited continuations, revisited and q = new_prompt () in

(fun (J £f) —>
dlet p 2 (fun () ->
dlet r 20 (fun () ->

We introduce the languad@B+DC, the language of dynamic bind-
ing and delimited control. This language is a straightforward com-
bination ofDB andDC; we relegate the formal details to Figure 5 in ;
the appendix. IlDB + DC, the sets of parametepsand prompts match £ 0 with R x -> x)))

are disjoint, so binding and controffects do not interfere with (dlet p 1 (fun O ->

each other. I'DC, as the definition of controlled prompts and the push_prompt g (fun () ->

last transition rule in Figure 2 shows, a delimited continuation may dlet r 10 (fun O ->

capture delimiters for some prompts but not other©Bw DC, it R ((fur} x -> dref p + dref 1)

may as well capture bindings for some dynamic variables but not (shift q (fun £ -> J £)))))))

others. In other words, our combined language realises delimiting and evaluates to the value 12, as expectedBr+ DC, which we

the dynamic environment, as we advocate in Section 4.2. could not obtain with the implementations discussed in Section 4.1.
It is trivial to embedDB into DB + DC and to embedDC into
DB + DC. It is almost as trivial to extend the translation fraB 6. Extensions

to DCin Section 5.2 to a translation frodB+ DC to DC. We need ) ) . L .
only take care to use two disjoint sets of promptB@ to represent Havmg established that the core.of the implementation in Section 5
parameters and prompts@B+ DC. This way, binding and control IS Sound, we present two extensions.

effects do not interfere with each other, just as contieats 6.1 Mutable dynamic variables

for two different prompts do not interfere with each other. The ) ) )

proof of Theorems 13 and 14 then goes through unchanged. (TheDynamlc variables are mutable in many Scheme systems [19]. To

conclusion of Lemma 10 is now BBj U CPE) C CP(ET1).) This Enodel the’r’n, we extenDB (Figur_e 1) with_e_1 new expression form
situation is analogous to that of Gunteral’s Theorem 12, where ~ “SeétptoV”, and the corresponding transition and typing rules.
they consideDC enhanced with exceptions. In sum, Theorems 13 Terms Mz:=..-|setptoV (25)

and 14, along with the form of the translation, show the following. E[dletp = V in E/[setpto V'] ~ E[dletp = V" in E'[V]]

Theorem 15 (Macro-expressibility) The language DC macro- if p¢ BPE') (26)
expresses the language BEDC. ()=t TrVit

So long as the prompts that correspond to dynamic variables are [+s setptoV:t
not accessible to the user, our embeddin®Bf+ DC into DC is
correct. In our OCaml implementation, we use the module system
to make the typea dynvar abstract. In our Scheme code, we hide
the dynamic variable’s prompt in a closure.

This translation is in some sense dual to Arietal.s result [1]
that dynamic binding gives rise to delimited control in the pres-
ence of first-class undelimited continuations. However, we assume
neither first-class undelimited continuations nor that the whole pro-
gram is enclosed in a control delimiter.

We now return to the examples from Section 4.1 and show
that our system gives the results expected from the intuition that [setpto V'] = shift pasf in ay. fyV’ (28)

(27)

The expression “sagb to V’”, like p, gives us the value associated
with p in the current dynamic environment. In addition, it updates
the associated value to b& in the same dynamic environment.
Unlike ordinary mutation, the mutation gfis visible only in the
same environment where it occurs. The exteridBdanguage still
satisfies the type preservation and progress theorems of Section 2.
The extende®B language can be translated in D€ language
of Section 3. No extensions to the latter are needed. We merely need
to add an additional translation rule®® in Figure 3.



When compared to the translation pf the above clause fiiers I 00 ->0

only in usingV’ instead ofy in the last position. The evaluation of | hi:t ->

the mutation form thus proceeds exactly as if we were looking up if dmemberp p h (* We have seen h before *)
the value of the dynamic parameter except that the continuation is then nub’ t

re-installed on top of the context Y/]. The addition clearly pre- _Slse dcoms p b (fun ) ->h :: aub’ )

serves the theorems of Section 5. Our implementation of dynamic in dnil p (fun () -> nub? lst)

variables (both OCaml and Scheme) include ‘s¢b V’”; the ac- For examplenub [1;1;3;2;1;1;2;1] evaluates to[1;3;2].

companying code contains the implementation along with the tests. This code uses the context—or to be precise, the sequence of
Gunteret al. [36] were the first to reduce (top-level only) mu-  dconss in the context—as an implicit accumulator argument, iso-
table variables to delimited continuations in a similar way, as dis- morphic to the list being built. Because we do not assume any order
cussed at the end of Section 5.1. We should stress that their globakelation on the list elements, the complexity has to be, in general,
mutable cells are much simpler than our mutable dynamic vari- quadratic in the size of the input list. In fact, auib hasO(nyn)
ables: the typing problem of Section 5.1 does not arise; since all complexity, wheren, is the size of the output list. For an input list
binding forms occur (implicitly) only at the top level, they obvi-  with many duplicates, our algorithm saves space over a solution

ously are not captured or aborted in delimited contffdas. that does not use an accumulator.
The extendedB language can be translated to the unmodified
6.2 Stack inspection DC language of Section 3. We merely need to add the following

Another extension of thBB language adds afiierent way of ac- clause to Figure 3:

cessing a parametev,p, which applies the functional valué to [Vpl] =shiftpasf in Ay. (f([V1y)y). (33)
the current value of the parameter That application however is
evaluated in the dynamic environmamitside the closest binding
form. One may compare the dynamic binding facility to the reflec-
tive tower [56, 60, 16, 6]: dlep = V in M evaluatesM at a higher
(that is, less interpreted) level of the tower.

The extended translation preserves the theorems of Section 5. The
source code accompanying the article gives the complete imple-
mentation of this feature. In OCaml, we write the expressiqgras

dupp p V. We then implement stack inspection as follows.

The extensiolV padds the complementary facility of evaluating let dnil p body = dlet p None body
an expression at a lower (that is, more interpreted) level. The  let dcons p v body = dlet p (Some v) body
extension adds the following to Figure 1. let rec dmemberp p v = dupp p
(function | None -> false
Terms M:u=---|Vp (29) | Some y -> v ==y || dmemberp p v)

= " 4 }—) = i 4 4
Eldietp = V"in ETVH] ~ E[(1z dietp =V i:(ang[gL((?; )](30) 7. Implementation strategies
P =71 TrVitio1 Three traditional ways to implement dynamic variables deep
(31) binding shallow binding2, 49], andacquaintance vectoig)].
In deep binding, we literally associate data with the execution

Itis crucial that the applicatioWV’ above occurs outside of the  context. We maintain the dynamic environment as a list of bindings
dynamic extent of dlep = ... in .... This feature lets us access from youngest to oldest, either part of or parallel to the execution
not only the current binding gb but anypreviousbinding as well. context. To bind a dynamic variable is fast: add the binding to the
For example, Unix’s dynamic-linking interface defines an option front of the list. To look up a dynamic variable is more involved
RTLD_NEXT to the functiondlsym to find the next occurrence of  and potentially not constant-time: search the list for it from front to
a symbol in the search order after the current library—so that one back, so that the youngest binding shadows older ones.
shared library can wrap around a function in another library. In shallow binding, we cache the current value of each dynamic

We can use this extension to implement stack inspection (suchvariable in a mutable cell. These mutable cells together consti-
as for authorisation in the Java virtual machine) [10]: we can accesstute the dynamic environment. Every dynamic variable is either a
adynamic variable not just to get its value but also to check whether pointer to its cache or, if the dynamic environment is a table, the key
it has ever been bound to a given value in the current context. For for its cache in the table. In addition, we maintain a list of bindings

e Vp:it,

example, we can define the forms dcgns V in M, dnil pin M, from second-youngest to oldest. To look up a dynamic variable is
and dmemberp V, such that dmemberpV in fast: retrieve its current value from its cache. To bind a dynamic
o ) variable is slightly more involved but still constant-time: move the

dnil pin E4[dconsp = 1 in old value from the cache to the list, put the new value on the cache,

E,[dconsp = 2 in Eg[dmemberpp V]]] and remember to restore the old value from the list to the cache

wherep ¢ BP(E;) UBP(E;) UBP(Es) (32) when the execution context pops past the current continuation.

o . . An acquaintance vector is an immutable table that maps each
evaluates to true I is either 1 or 2, and to false otherwise. This  gynamic variable to a value. Looking up a dynamic variable is fast
|mple_mentat|on is compatlbl_e Wlth tail-call optimisation: any tail 55 with shallow binding, but each binding copies the entire table,
calls in the termM can be optimised [10]. _ _ which takes more time the more dynamic variables there are.

We can generalise stack inspection to _arbltrary folding over the It is most straightforward to implement dynamic variables by
context: for example, we can write a functioab : ’a list -> deep binding, especially representing the list of bindings as part of
’a list that removes duplicates from a list while maintaining the - the execution context, because that strategy is closest to Moreau’s
order: if an element occurs several times in the input, onlfirss and our definitions [49]. On the other hand, shallow binding is more
occurrence remains in the output. Furthermore, we do not assumeggiicient if the language has no control facility and runs on just one
any order relation on the elements of the list. Here is the OCaml processor. Moreau proves shallow binding correct by showing it
implementation of the function, using the forms introduced earlier: equivalent to deep binding. The proof assumed the total absence

let nub 1st = of control facilities such as exceptions, threads, and continuations.

let p = dnew () in When such facilities are present, the cache is harder to maintain:
let rec nub’ = function When an exception is thrown, we need to unwind the stack to re-



store caches. To switch between threads (or when a first-class unthis argument to extract data, which is the essence of dynamic
delimited continuation is invoked), we need to flush and repop- binding. Delimited dynamic binding is a new and useful form of
ulate the cache for every thread-local (respectively continuation- abstraction—over parts of the dynamic environment, just ks
local) dynamic variable, unless each thread uses a separate caches abstract over parts of the lexical environment.
(so-calledwide binding[28]), in which case threads cannot share
or inherit mutable dynamic variables (Section 6.1). Such separate Acknowledgments
caching is required anyway for shallow binding on a multiprocessor ] )
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Syntax

Terms M:=V|MM|p|dletp=VinM

| shiftgasf in M | resetgin M

Values Vi=X|AX. M

Variables xz=f|glx|ylz|lu|lv]---

Parameters p:u:=p]|---

Prompts q:==q]---

Contexts  E[] ==[] | E[[IM]| E[V[]]

| E[dletp=Vin[]]|E[resetqin[]]
Bound parameters
BP([])=0  BP(E[dletp=Vin[]])=BPE)U {p}
BP(E[[IM]) = BR(E[V[]]) = BP(E[resetgin []]) = BP(E)
Controlled prompts
CAR[])=0  CRE[resetqin[]]) = CPE) U {q}
CRE[[IM]) = CAE[V[]]) = CRE[dletp = Vin[]]) = CPE)
Operational semantics
E[(Ax. M)V] — E[M {V/x}]
E[dletp=V in V'] > E[V’]
E[dletp=Vin E'[p]] - E[dletp=V in E'[V]]
if p¢ BP(E')
E[resetqin V] — E[V]
E[resetqin E'[shift qasf in M]] — E[resetgin M {V/f}]
if ¢ CPE’) andV = Ay.resetqin E’[y], wherey is fresh
Typing
Types ti=alb|c| - |TtoT
Type environments T':=0|T, x:1
Parameter signaturesX :==0 | %, p: 7
Prompt signatures X' :==01|Y,q:7

=7 T, x:t1rf Mit, TH Miito—71 TH Myl
FI—?X:T l"l-g/lx.l\/l:‘rl—vrg FI—?MlMZZT
Xp =1 (p) =11 l"l—é'V:‘rl l"l-gM:‘rz
lp:r F+idletp=VinM:1,

Q=1 Fl—g/M:‘r
I+ resetqinM: 1

Y@ =1 firomniEMin
[+ shiftqasfinM:

Figure 5. DB+DC, the language of dynamic binding and delimited

control

A. Overview of the accompanying code

lllustration of the the ill-defined interaction between common im-
plementations of dynamic variables and ghifset, Section 4:

dynvar-via-exc.scm Wwith Scheme R5RS implementation of
dynamic variables in terms of exceptions arad1/cc.

dynvar-shift-srfi.scm with the reference SRFI-39 imple-
mentation of dynamic variables.

dynvar-scheme48-problem.scm using dynamic variables, or
fluids, and delimited continuations that are both provided in the
same Scheme implementation: Scheme48.

dynvar-shift-petite.scm using (Petite) Chez Scheme’s na-
tive implementation of parameter objects.

trampoline-petite.scm Two equivalent implementations of
shift andreset (with and without trampolining) behave ob-
servably diferently in the presence of dynamic variables. This
code uses Chez Scheme’s native implementation of parameter
objects.

dynvar.sml SML/NJ implementation of dynamic variables in
terms of exceptions anth11/cc, and Filinski's implementation
of shift andreset.

More realistic examples of how easy it is to encounter the undesir-
able behaviour of the common implementations of delimited con-
tinuations and dynamic variables.

chez-extended-ex.scm Chez-specific code, which uses Chez’s
native parameter objects to control the printing of objects. The
parameterisation may fail for some print expressions clearly
within parameterisation’s dynamic scope.

exceptions-shift.scm Scheme48-specific code, which uses
Scheme48-provided delimited continuations and exception han-
dling forms (which, in turn, rely on dynamic variables). The un-
desirable behaviour is the failure to catch gmexception and do
the clean-up action.

The new implementations of dynamic binding in terms of delim-
ited continuations (Sections 5 and 6). The code also includes the
examples from the above — which now have the expected, in the
semantics oDB + DC, behaviour.

new-parameters.scm The re-implementation of parameter ob-
jects for Chez Scheme. The code is actually portable RERS
records.

caml-dynvar.ml OCaml code
Dynvar.hs Haskell code

lllustration that it is not enough to layer monad transformers stati-
cally.

reader.hs The translation of (8) into Haskell does not type-
check, no matter how the reader and continuation monad trans-
formers are ordered.

The new implementation of delimited continuatiorshift and
reset), aware of the dynamic environment and so behaves as
expected irDB + DC, with respect to Scheme48’s native dynamic
variablesand dynamic-wind: Section 7. The code, too, includes
the examples from the above — which now have the expected, in
DB + DC, behaviour.

new-shift.scm Scheme48-specific code.



