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Preface

This report constitutes the proceedings of the third ACM SIGPLAN workshop on
Continuations (CW'01) held on January 16, 2001, at the Royal Society in London,
England. The workshop was held as a satellite event of the 28th Annual ACM SIG-
PLAN - SIGACT Symposium on Principles of Programming Languages (POPL).

The notion of continuations is ubiquitous in many di�erent areas of computer
science, including category theory, compilers, logic, operating systems, programming,
and semantics. Following on the 1992 and 1997 ACM SIGPLAN Workshops on Con-
tinuations, the current workshop provides a forum for the presentation and discussion
of new results and work in progress aimed at a better understanding of the nature
of continuations, the relation of continuations to other areas of logic and computer
science, and exciting new applications of continuations in contexts such as mobile
threads, simulation, distributed systems, graphical user interfaces, and education.

The program includes seven technical papers. Christopher Wadsworth (the orig-
inator of the term \continuation") and Suresh Jagannathan (at NEC Research and
Emphora, Inc.) kindly agreed to deliver invited talks at CW'01.

Review Process

A call for papers was announced on several mailing lists and newsgroups. Thir-
teen submissions were received and forty six reviews were written. Each paper was
\owned" by one committee member who was responsible for summarizing all the
reviews and making a recommendation to the rest of the committee. The �nal deci-
sions were made collectively by the program committee on the basis of the collected
reviews. The discussions among the committee members were conducted electroni-
cally and lasted for about a week.

Program Committee

Daniel P. Friedman Indiana University
John Hatcli� Kansas State University
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Local CPS conversion in a direct-style compiler

John Reppy
Bell Labs, Lucent Technologies

jhr@research.bell-labs.com

Abstract

Local CPS conversion is a compiler transformation for improv-
ing the code generated for nested loops by a direct-style compiler.
The transformation consists of a combination of CPS conversion
and light-weight closure conversion, which allows the compiler to
merge the environments of nested recursive functions. This merg-
ing, in turn, allows the backend to use a single machine-level proce-
dure to implement the nested loops. Preliminary experiments with
the Moby compiler show the potential for significant reductions in
loop overhead as a result of Local CPS conversion.

1 Introduction

Most compilers for functional languages use a�-calculus based in-
termediate representation (IR) for their optimization phases. The�-
calculus is a good match for this purpose because, on the one hand,
it models surface-language features like higher-order functions and
lexical scoping, while, on the other hand, it can be transformed into
a form that is quite close to the machine model.

To make analysis and optimization more tractable, compilers
typically restrict the IR to a subset of the�-calculus. One such
subset is the so-calleddirect style(DS) representation, where terms
are normalized so that function arguments are always atomic (i.e.,
variables and constants) and intermediate results are bound to vari-
ables.1 The DS representation makes the data-flow of the program
explicit by binding all intermediate values to variables. Another
common representation iscontinuation-passing style(CPS), where
function applications are further restricted to occur only in tail po-
sitions and function returns are represented explicitly as the tail-
application of continuation functions [Ste78, KKR+86, App92]. In
CPS, both the data-flow and control-flow of the program is made
explicit, which makes it well suited to optimizing the program’s
control structures.

While there has been some debate over the relative merits of
these two approaches [FSDF93, DD00], it is fair to say that both
have their advantages and we do not discuss their relative merits.
In the end, the choice of IR is an engineering decision that must
be made for each compiler. A discussion of this choice is beyond

1There are a number of different direct-style representations:e.g., Flanaganet al’s
A-form [FSDF93], the TIL compiler’sB-form [TMC+96], and the RML compiler’s
SIL [OT98].

the scope of this paper; instead, we focus on the idea of exploiting
CPS representation in a DS-based optimizer. This exploitation is
possible because the CPS terms are a subset of the DS terms (i.e.,
CPS� DS� �-calculus).

This paper describes a transformation and supporting analysis
that exemplifies the idea of exploiting CPS representation in a DS-
based optimizer. In the next section, we describe a motivating ex-
ample. We then describe our transformation and an analysis for
detecting when it is applicable in Section 3. This transformation
should be useful for any DS-based optimizer. We are implement-
ing this transformation in our compiler for the MOBY programming
language [FR99] and we present a preliminary indication of its use-
fulness in Section 4.2 We discuss related work in Section 5 and then
conclude.

2 The problem

It is well known that loops can be represented as tail-recursive func-
tions and many compilers for functional languages use tail recur-
sion to represent loops in their IR. By treating tail-recursive func-
tion calls as “gotos with arguments,” a compiler can generate code
for a loop that is comparable to that generated by a compiler for
an imperative language. But when loops are nested, generating
efficient code becomes more difficult. For example, consider the
following C-code:

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

f (i, j);

This kind of nested loop structure is found in many algorithms (e.g.,
matrix multiplication). Translating this code to a sugared DS rep-
resentation, with thefor -loops replaced by recursion, results in
the code given in Figure 1.3 While the two loop functions,lp_i
and lp_j , are tail-recursive, the call “lp_j 0 ” from the outer
loop (lp_i ) to the inner loop is not tail recursive. If the compiler
directly translates the DS representation to machine code, the two
loops will occupy separate procedures with separate stack frames.
This structure inhibits loop optimizations, register allocation, and
scheduling, as well as adding call/return overhead to the outer loop.
On the other hand, the CPS representation of this example, given
in Figure 2, makes explicit the connection between the return from
lp_j and the next iteration oflp_i . A simple control-flow anal-
ysis will show that the return continuation oflp_j is always the
known functionk5 , which enables compiling the nested loops into
a single machine procedure.

2MOBY is a higher-order typed language that combines support
for functional, object-oriented, and concurrent programming. See
www.cs.bell-labs.com/˜jhr/moby for more information.

3In this paper we use SML-like syntax as a sugared form of DS representation.
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fun applyf (f, n) = let
fun lp_i i = if (i < n)

then let
fun lp_j j = if (j < n)

then (f(i, j); lp_j(j+1))
else ()

in
lp_j 0; lp_i(i+1)

end
else ()

in
lp_i 0

end

Figure 1: A nested loop using tail-recursion

fun applyf (f, n, k1) = let
fun lp_i (i, k2) = if (i < n)

then let
fun lp_j (j, k3) = if (j < n)

then let
fun k4 () = lp_j(i+1, k3)
in

f(i, j, k4)
end

else k3()
fun k5 () = lp_i(i+1, k2)
in

lp_j (0, k5)
end

else k2()
in

lp_i (0, k1)
end

Figure 2: The CPS convertedapplyF example

This example suggests that by making the return continuation
of lp_j explicit, we can replace the call/return oflp_j with direct
jumps.

3 The solution

The MOBY compiler performs standard optimizations (e.g., con-
traction, useless-variable elimination, and CSE) using a DS rep-
resentation we call BOL. Loops are represented using tail recur-
sion in BOL. After optimization, the compiler performs theclosure
phase, which is responsible for converting the nested functions into
a collection of top-level functions with no free variables. Follow-
ing the closure phase is theframephase, which determines which
functions can share the same stack frame; a group of functions that
share the same frame is called acluster. Our goal is to have nested
loops, like the one in Figure 1, translate into a single cluster (as
they would in an imperative language like C). Doing so has many
performance advantages. It enables better loop optimizations, reg-
ister allocation, and scheduling. It also eliminates the overhead of
creating a closure for the inner loop, the call to the inner loop, and
the heap-limit check on return from the inner loop.

The technique we use to achieve this goal is us alocal CPS
(LCPS) conversion to convert the non-tail calls to the inner loop
into tail calls. Once the LCPS transformation has been applied, the
frame phase is able to group the functions that comprise the nested

e ::= l : t labeled term

t ::= x variable
j fun f (~x) = e1 in e2 function binding
j let x = e1 in e2 let binding
j if x then e1 else e2 conditional
j f (~x) application

Figure 3: A simple direct-style IR

loop into the same cluster.
To determine where it is useful to apply the transformation, we

need some form of control-flow analysis. The property that we are
interested in is when a known function has the same return contin-
uation at all of its call-sites. The MOBY compiler uses a simple
syntactic analysis to determine this property. For each function de-
fined in the module being compiled, we conservatively estimate the
set of return continuations for the function. If the estimated set is a
singleton set, then we apply the transformation.

3.1 Analysis

The analysis computes an approximation of return continuations of
each known function, so a standard control-flow analysis is applica-
ble [NNH99]. In this section, we describe a very simple linear-time
analysis. This analysis uses a simple notion ofescapingfunction
— if a function name is mentioned in a non-application rˆole, it is
regarded as escaping and we define its return continuation to be>.4

To describe the analysis, we use the simple DS IR given in Fig-
ure 3. As usual, we assume bound variables are unique so we do
not have to worry about unintended name capture when transform-
ing code. In this IR, expressions are uniquely labeled terms. We
use the labels to represent abstract continuations in the analysis.

Let LABEL be the set of term labels. Then we define an abstract
domain RCONT = LABEL[f?;>g. We use� to denote elements
of RCONT. Intuitively, one can think of RCONT as a squashed
powerset domain, with? for the empty set,l for the singleton set
flg, and> for everything else. We define the partial orderv on
RCONT, with ? v l v > for any l 2 LABEL, and we define
�1 t �2 to be the least upper bound of�1 and�2 underv.

Given an expression and its abstract continuation, the analysis
computes a map� from variables (i.e., function names) to abstract
continuations.

� 2 RENV = VAR
fin
! RCONT

We extend� to a total function when applying it to a variable by
defining�(x) = ? for x 62 dom(�). We define thejoin of �1 and
�2 by

�1 ] �2 = fx 7! �1(x) t �2(x) j x 2 dom(�1) [ dom(�2)g

The analysis itself has the following type:

R : EXP ! RCONT ! RENV

With these definitions, we can describe the analysis, which is pre-
sented in Figure 4. We map unknown and escaping functions to
>, as can be seen in Rules 1, 2, and 5. Rule 2 shows how we
analyse function definitions — first we analyse the uses off in
its scope and then we use the result of that analysis as the return

4This definition is the one used by Appel [App92] in his CPS-based framework.
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R[[l : x]]� = fx 7! >g (1)

R[[l : fun f (~x) = e1 in e2]]� = R[[e1]]�0 ] � ] f~x 7! >g
where� = R[[e2]]� and�0 = �(f).

(2)

R[[l : let x = e1 in l0 : t2 ]]� = R[[e1]]l
0 ]R[[l0 : t2]]� ] fx 7! >g (3)

R[[l : if x then e1 else e2]]� = R[[e1]]� ]R[[e2]]� (4)

R[[l : f (~x)]]� = ff 7! �g ] f~x 7! >g (5)

Figure 4: The analysis

continuation for the body off . For let bindings, the body of the
let is the continuation of the binding. The result of the analysis
is the join of the sub-analyses. When analysing a function appli-
cation (Rule 5), we map the applied function to the application’s
abstract continuation and treat the arguments as escaping. To anal-
yse a complete program, we use> as the return continuation and
define ANAL(e) = R[[e]]>.

This analysis can be extended to handle mutually recursive
functions by computing a fixed-point at function bindings. Since
such a brute-force approach may prove expensive in practice, a bet-
ter solution may be to first compute the approximate call-graph and
then use the call-graph to guide the analysis.

3.2 The LCPS transformation

If the analysis has determined that all call sites of a functionf have
the same return continuation (i.e., RENV(f ) = l), then we apply
the LCPS transformation tof . Transformingf has two parts: we
must reify the continuation off , creating anexplicit continuation
functionkf , and we must introduce calls tokf at the return sites of
f . For example, consider the following code fragment:

fun f () = ... in ...
fun g () = ... let y = f() in e

Assuming thatf is eligible for the LCPS transformation, this frag-
ment is converted to

fun f ( k) = (... k()) in ...
fun g () = ... fun kf (y) = e in f( kf )

Here we have made the return continuation off explicit by modify-
ing f to take its continuation as an argument (k), which it calls at its
return sites. We have also split the body ofg to create the explicit
representation off ’s return continuation (kf ) and have modified
the non-tail call site off to passkf to f .

To understand how the LCPS transformation works, it is in-
structive to examine the global CPS conversion. Figure 5 gives the
transformation for the simple direct-style IR of Figure 3 (ignoring
the labels). For the LCPS transformation, we only want to apply
the CPS conversion under certain conditions. Assuming that� is
the result of analysing the program, let the set of eligible function
be defined asE = ff j �(f) 2 LABELg. We then specialize the
rules of Figure 5 as follows:

Rule 6: When the expressionx is in the tail position of a function
f 2 E , then we apply the CPS conversion (i.e., we transform
the implicit return into an explicit application of the tail con-
tinuationk).

Rule 7: Whenf 2 E we apply the CPS conversion.

Rule 8: When the expressione1 contains an application of a func-
tion f 2 E , we apply the CPS transformation.

Rule 9: Since this rule does not transform the expression, there is
no modification. Note that we do not have to worry about
code duplication, sincek is a variable and not a�-term.

Rule 10: If the functionf 2 E , then we apply the CPS conversion.
In this situation,k will either be an explicit return continua-
tion (introduced by Rule 8) or a return continuation parameter
(introduced by Rule 7).

It is interesting to examine what happens when the call-site of
f is buried in the branch of a conditional. For example, consider
the following fragment:

let x = if y then ( let w = f() in e1) else e2
in e3

Applying LCPS tof results in the following code:

fun kif (x) = e3 in
if y

then fun kf (w) = C[[e1]]kif in f( kf )
else C[[e2]]kif

Here we have introduced two continuation functions:kif for the
join-point following theif andkf for the return continuation off .

Up to now, we have been passing the return continuationkf to
f as an additional argument (as is standard in CPS conversion), but
since our analysis has already told us thatf has exactly one return
continuation, we should specialize the return sites off to callkf di-
rectly. To do so requires lifting the definition ofkf up to the binding
site of f .5 The difficulty with this lifting is that the return contin-
uation and its functions have different free variables, so we need
to closethe function over those variables that will be out of scope
at the destination of the function. While a closure object would
be sufficient for this purpose, we chose to augment our transforma-
tion with a simple form oflight-weight closure conversion[SW97],
which turns the free variables into function parameters. Having
these variables as parameters in the final DS representation means
that they will get mapped to machine registers. To illustrate closure
conversion, consider the following fragment:

fun f () = ... z in
...

let y = ... in
...

let x = f() in
let w = x + y in

w

In this code, the return continuation of the call tof hasy as a free
variable, so we addy to the parameters off and the transformedf
passesy to its return continuation. The result of the transformation
is:

5We also need to extend the IR to support mutually recursive bindings.
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C[[x]]k = k (x) (6)

C[[fun f (~x) = e1 in e2]]k = fun f (k0; ~x) = C[[e1]]k
0 in C[[e2]]k wherek0 is fresh (7)

C[[let x = e1 in e2]]k = fun k0 (x) = C[[e2]]k in C[[e1]]k
0 wherek0 is fresh (8)

C[[if x then e1 else e2]]k = if x then C[[e1]]k else C[[e2]]k (9)

C[[f (~x)]]k = f (k; ~x) (10)

Figure 5: A global CPS conversion

fun applyf (f, n) = let
fun lp_i (i, f, n) = if (i < n)

then lp_j (0, i, f, n)
else ()

and lp_j (j, i, f, n) =
if (j < n)

then (
f(i, j);
lp_j(j+1, i, f, n))

else k (i, f, n)
and k (i, f, n) =

lp_i(i+1, f, n)
in

lp_i (0, f, n)
end

Figure 6: TheapplyF function after the LCPS transformation

fun f (y) = ... kf (z, y)
and kf (x, y) = let w = x + y in w
...

let y = ... in
...

f(y)

We definef andkf in the same binding because, in general, they
may be mutually recursive. In general, the LCPS transformation
migrates the converted functionf and its explicit continuation to
the binding site off ’s non-tail caller. By doing so, we guaran-
tee that all these functions will be compiled into a single machine
procedure.

Revisiting our original motivating example from Figure 1, the
result of the analysis will identifylp_j as a candidate for the
LCPS transformation (i.e., all of its call sites have the same return
continuation). The code resulting from applying the transforma-
tion to lp_j is given in Figure 6. Notice that light-weight closure
conversion has been applied to all of the functions in the body of
applyF . When translated to the target machine code, the functions
applyF , lp_i , lp_j , andk will all be in the same cluster and
share the same stack frame.

4 Experience

We have written a prototype implementation of the analysis and
LCPS transformation for the language of Figure 3. Our implemen-
tation is currently organized into the analysis plus four transforma-
tion passes. The first pass marks thoselet bindings for which
Rule 8 applies and the second pass performs the actual CPS trans-

formation guided by the marks.6 The second pass also determines
which functions should share the same binding site. The third pass
then computes the free variables of these functions and the fourth
pass migrates the function definitions and performs the light-weight
closure conversion.

We are in the process of implementing the LCPS transformation
in the MOBY compiler. For the most part, this is straightforward
adaptation of our prototype, although we need a more sophisticated
analysis to handle mutually recursive functions. We are also inte-
grating the third and fourth passes of the transformation with the
existing closure phase. This integration has the added benefit that
we can use light-weight closure conversion for functions that rep-
resent local control-flow (e.g., loops). By moving variables from
closures into parameters, we expose them to the register allocator
and reduce heap allocation,

To judge the effectiveness of the transformation, we applied
it as a source-language transformation to the MOBY version of
the applyF function (essentially, we compared the MOBY ver-
sions of Figure 1 and Figure 6). Running theapplyF program
on the null function withn set to 10000, the LCPS transforma-
tion results in a 25% reduction in execution time (2.34s vs. 3.11s
on a 733MHz PIII). While the performance improvements on real
workloads is yet to be determined, these preliminary measurements
strongly suggest that the LCPS transformation is a useful tool in a
DS optimizer.

5 Related work

Most of the literature about compiler optimizations for strict func-
tional languages uses CPS as a representation. Tarditi’s the-
sis [Tar96] is probably the most detailed description of a DS-
based optimizer for strict functional languages, but he does not col-
lapse nested loops. We are not aware of any direct-style compiler
that implements the LCPS transformation (the OCAML [Ler00],
TIL [TMC+96, Tar96], and RML [OT98] compilers do not). The
OCAML system providesfor -loops over integer intervals as a lan-
guage feature. These loops are preserved in the IR and result in
code that is similar to that produced by a C compiler [Ler97], but
the OCAML compiler (Version 3.00) does not flatten nested loops
when they are expressed using recursion.

Kelsey describes a technique for combining functions in a CPS-
based framework [Kel95]. In his framework, he annotates� ab-
stractions with eitherproc, cont, or jump, where jump is used to
mark control transfers that occur within the same machine proce-
dure. He describes an analysis and transformation for converting a
�proc into a�jump. The MOBY compiler’s frame phase (mentioned
in Section 3) performs a similar analysis and transformation when
grouping functions into clusters. Since the BOL IR is direct-style,

6We use two passes for this part of the transformation because it greatly simplifies
the bookkeeping.
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we rely on the LCPS transformation to enable the clustering of
nested loops in the frame phase.

The MLton compiler is a CPS-based compiler for Standard ML,
which uses a transformation calledcontificationto group functions
into the same machine procedure. This transformation very similar
to Kelsey’s approach, but it has not been described in the literature.

Kim, Yi, and Danvy have usedselective CPS transformation
as a technique for replacing SML’s exception raising and han-
dling mechanisms with continuation operations [KYD98]. Unlike
LCPS, their transformation does not move code or do closure con-
version. Selective CPS transformation is another example of using
the CPS representation in a direct-style compiler (although their
experiments were done using SML/NJ for their backend, which is
a CPS-based compiler).

6 Conclusion

We have presented a local CPS transformation that can be used
in a direct-style compiler to improve the performance of nested
loops. Preliminary measurements show a 25% reduction in loop
overhead for a simple nested loop. While we have only presented
fairly simple examples, the LCPS transformation can handle com-
plicated looping structures, such as multiple inner loops and loops
expressed as mutually recursive functions (e.g., as you would get
when encoding state machines). The LCPS transformation is one
example of exploiting the advantages of CPS in a direct-style com-
piler; we plan to explore other opportunities for exploiting CPS in
our compiler.
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Interconnecting Between CPS Terms and Non-CPS Terms �

Jung-taek Kim and Kwangkeun Yi y
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KAIST x

Abstract

We present a type-based partial CPS transformation (CPS-
transforming only a sub-part of a program) and its correct-
ness proof. A program's sub-parts which need to be CPS-
transformed are initially annotated as such. Partial CPS-
transformation scans the expressions and selectively apply
the transformation depending on the annotation. Wherever
an interface between CPS-transformed and direct-style ex-
pressions is needed, proper conversion code is padded based
on expression types. The correctness of the partial CPS
transformation is proven similarly to that of Plotkin's sim-
ulation theorem[Plo75].

1 This Work

Is it possible to CPS-transform only a sub-part of a pro-
gram, leaving others in direct-style? Such partial CPS-
transformation is needed, for example, to link CPS-transformed
modules with non-CPS modules or to minimize the perfor-
mance overhead by the transformation[KYD98].

In this article we present a type-based partial CPS trans-
formation. The partial CPS transformation transforms only
parts of a program and connects the results to the rest,
direct-style parts. A program's sub-parts which need to
be CPS-transformed is initially annotated as such. Par-
tial CPS-transformation scans the expressions and selec-
tively apply the transformation depending on the annota-
tion. Wherever an interface between CPS-transformed and
direct-style expressions is needed, proper conversion code is
padded based on expression types.

Let's consider an example code:

((�x:x) 1) + 1

Assume that we want to CPS-transform only the function
part - �x:x. A CPS transformed version of the function
part is: �K:K (�x:�K:K x). To use the CPS-transformed
function inside the non-CPS context ([] 1) + 1, we wrap the
CPS-function position with a conversion code as follows:

�y:([](�x:x) y (�x:x))

�This work is supported by Creative Research Initiatives of Korean
Ministry of Science and Technology.

yemail:fjudaigi,kwangg@ropas.kaist.ac.kr
zResearch On Program Analysis System
(http://ropas.kaist.ac.kr)

xKorea Advanced Institute of Science and Technology
(http://www.kaist.ac.kr)

where the �rst identity continuation is for the function ex-
pression itself and the second identity continuation is for
the function's result. By merging all components, we get a
partially CPS transformed code :

((�y:(�K:K (�x:�K:K x)) (�x:x) y (�x:x))1) + 1:

2 Source Language and CPS Transformation

We consider ML's core language with annotations. Its ab-
stract syntax reads as follows. (� denotes a data construc-
tor)

expressions e ::= ta

t ::= 1

j �x:e
j fix f �x:e
j x
j e1@e2
j con � e
j decon e
j case e1 � e2 e3

annotation a ::= N j C

Annotation C denotes that the expression needs CPS
transformation and N otherwise. Value ��v is constructed
by \con � e" where evaluating e yields v. Symmetrically,
value ��v denoted by e is deconstructed into v by evaluating
\decon e". Evaluating the case expression \case e1 � e2 e3"
yields the value of e2 if the value of e1 is ��v; otherwise, it
yields the value of e3.

We assume that the source programs are type-checked
before processing. Types range over � :

types � ::= �
j � ! �
j �
j � �:��1+��2

� denotes basic types, � ! � denotes function types and
��:��1+��2 denotes user-de�ned recursive types where data
constructor �1 has type ��1 ! (� �:��1+��2) and �2 has
type ��2 ! (� �:��1+��2). And we use the conventional
mono-morphic type system for the ML core language.

Figure 1 shows the conventional call-by-value CPS trans-
formation [Plo75] which transforms the whole program(we
ignore the annotations).
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[[1]] = �K:K@1

[[x]] = �K:K@x
[[con � e]] = �K:[[e]]@(�v:K@(con � v))
[[decon e]] = �K:[[e]]@(�v:K@(decon v))

[[�x:e]] = �K:K@(�x:[[e]])
[[fix f �x:e]] = �K:K@(fix f �x:[[e]])

[[e1@e2]] = �K:[[e1]]@(�f:[[e2]] (�v:f@v@K))
[[case e1 � e2 e3]] =

�K:[[e1]]@(�v:case v � ([[e2]]@K) ([[e3]]@K))

Figure 1: Base CPS transformation [[�]]

3 Conversion Functions and Partial CPS Transformation

Partial CPS transformation receives an annotated program
and outputs a partially CPS transformed version of it. C-
annotated expressions are targets for CPS transformation.

Not all annotations lead to correct translations. If a
variable occurs at multiple positions, they all should have
the same annotation. In case that a variable is bound, its
annotation should match with that of its binding expression.
Annotated programs satisfying these constraints are called
consistent:

De�nition 1 (Consistency of Annotations) Annotations
in an expression e is called consistent whenever the following
holds :

� If xa and xa
0

are free variables in e then a and a0 are
equal.

� If xa is bounded by a sub-expression (�x:e)a
0

, (fixf�x:e)a
0

,

or (fix x �y:e)a
0

in e then a and a0 are equal.

In partial CPS transformation, we need conversion codes
that interface CPS transformed expressions with non-CPS
contexts and vice versa. We have to consider three cases
according to the types of the expressions to be converted:

� For expressions of base type � :

No conversion is necessary. CPS version of a base-
typed expression just passes to the continuation the
value computed by the non-CPS version.

� For expressions of function type �1 ! �2 :

We eta-expand them to set up conversion codes around
their arguments and results. For example, let's assume
a CPS function is used in a non-CPS part. Then its
argument should be a non-CPS value. So, we convert
the argument to a CPS expression and apply it to the
function. Because function's result is a CPS expres-
sion, we convert the result to a non-CPS expression.

� For expressions of user-de�ned type � �:��1+��2 :

An expression of this user-de�ned type will be evalu-
ated to �1�v or �2�v. In order to convert the argument
value v, because the argument value v can also be �1�v

0

or �2 �v
0 (due to recursive type), we should make a re-

cursive conversion function. This conversion function
deconstructs the value, converts the argument value
recursively, and reconstructs.

The conversion codes are generated by two mutually re-
cursive functions c2n (CPS to non-CPS) and n2c (non-CPS
to CPS) which are inductively de�ned over the types as fol-
lows:

� The c2n function, given the type of a non-CPS ex-
pression, generates a conversion code that converts the
values of the type into their CPS versions, to be used
inside a CPS context:

c2n(�) = �v:v
c2n(�1 ! �2) = �v:�x:v@(n2c(�1)@x)@c2n(�2)
c2n(� �:��1+��2) =

(fix f �y: case y �1
(con �1 (c2n([�

f=�]��1 )@(decon y)))
(con �2 (c2n([�

f=�]��2 )@(decon y))))
c2n(�f ) = f

Note that the conversion code for a recursive type
� �:��1+��2 is a recursive function \fix f �x:�." The
code for a recursive call to f is generated when n2c is
called with the recursive type �f .

� The n2c receives the original type of CPS expression.
The output is a conversion code that will convert the
CPS values into their non-CPS versions, to be used
inside a non-CPS context.

n2c(�) = �v:v
n2c(�1 ! �2) =

�v:�x:�K:K@(n2c(�2)@(v@(c2n(�1)@x)))
n2c(� �:��1+��2) =

(fix f �y: case y �1
(con �1 (n2c([�

f=�]��1 )@(decon y)))
(con �2 (n2c([�

f=�]��2 )@(decon y))))
n2c(�f ) = f

The conversion codes can be generated at compile time
because sizes of types are �nite.

The partial CPS transformation [[�]]N and [[�]]C by using
the two conversion-code-generators (c2n and n2c) are de-
�ned in Figure 2. For a term t, we write �t for its type.

4 Correctness of Partial CPS transformation

To prove the correctness of our partial CPS transformation,
we extend our annotated language to have annotation se-
quences, not just a single annotation. These annotation se-
quences are used to trace the changes of annotations (hence
the conversions between CPS and non-CPS styles) during
the evaluation.
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[[1N ]]N = 1

[[(�x:e)N ]]N = �x:[[e]]N
[[(fix f �x:e)N ]]N = fix f �x:[[e]]N

[[xN ]]N = x
[[(e1@e2)

N ]]N = [[e1]]N@[[e2]]N
[[(con � e)N ]]N = con � [[e]]N
[[(decon e)N ]]N = decon [[e]]N

[[(case e1 � e2 e3)
N ]]N = case [[e1]]N � [[e2]]N [[e3]]N

[[tC ]]N = [[tC ]]C@c2n(�t)

[[1C ]]C = �K:K@1

[[(�x:e)C ]]C = �K:K@�x:[[e]]C
[[(fix f �x:e)C ]]C = �K:K@fix f �x:[[e]]C

[[xC ]]C = �K:K@x
[[(e1@e2)

C ]]C = �K:[[e1]]C@
(�f:[[e2]]C@(�v:f@v@K))

[[(con � e)C ]]C = �K:[[e]]C@(�v:K@(con � v))
[[(decon e)C ]]C = �K:[[e]]C@(�v:K@(decon v))

[[(case e1 � e2 e3)
C ]]C = �K:[[e1]]C@(�v:case v �

([[e2]]C@K) ([[e2]]C@K))
[[tN ]]C = �K:K@(n2c(�t)@[[t

N ]]N )

Figure 2: Partial CPS transformation

annotated expressions
e ::= ta j ea

t ::= 1

j �x:e
j fix f �x:e
j ��v
j x
j e1@e2
j con � e
j decon e
j case e1 � e2 e3

annotated values
v ::= wa j va

w ::= 1

j �x:e
j fix f �x:e
j ��v

annotation
a ::= N j C

For convenience, we use the following notation:

annotation sequence l ::= a j la
annotated expressions tla = (tl)a

reversal of annotations a = a

al = la

We now de�ne the semantics of annotated expressions.
This semantics is equivalent to that of ML core language
except that we book-keep the annotations during reduction.
The annotated evaluation context E is de�ned by the fol-

lowing grammar:

annotated contexts
E ::= Da

D ::= [ ]
j E@e
j v@E
j con � E
j decon E
j case E � e1 e2

This context de�nes a left-to-right, call-by-value reduction.
As usual, we write E[e] if the hole in context E is �lled
with e. We use this context to de�ne the reduction rules for
arbitrary expressions :

e 7! e0

E[e]! E[e0]

The single reduction step e 7! e0 for a redex e is de�ned as :

((�x:e)l@v)a 7! [val=x]ela

((fix f �x:e)l@v)a
0

7! [(fix f �x:e)a=f ][va
0l=x]ela

0

(head of l is a)
(con � v)a 7! (��v)a

(decon (��v)l)a 7! (v)la

(case (��v)l � e1 e2)
a 7! ea1

(case (��v)l �0 e1 e2)
a 7! ea2 (� 6= �0)

Notation [v=x]e denotes, as usual, the new expression that
results from substituting v for every free occurrence of x in
e.

De�nition 2 The semantics of a closed annotated expres-
sion e is de�ned to be the sequence of reduction steps

e! e1 ! e2 ! � � � :

If the sequence terminates with a value v after zero or more
reductions, we write

e
�

! v

Now we can de�ne a correctness theorem for our partial
CPS transformation similarly to the simulation theorem in
[Plo75].

Theorem 1 (Correctness of Partial CPS transforma-
tion) For any closed expression e with consistent annota-
tions,

e
�

! v () [[e]]N
�

! 	N(v)

where the auxiliary functions 	N and 	C coerces direct-style
values to partial CPS values:

	N(1
N ) = 1

	N((�x:e)
N) = �x:[[e]]N

	N ((fix f �x:e)N) = fix f �x:[[e]]N
	N((��v)

N ) = ��	N (v)
	N(v

N ) = 	N(v)

	N(w
C) = w0 (c2n(�w)@	C(w

C)
�

! w0)

	N(v
C) = v0 (c2n(�v)@	C(v

C)
�

! v0)

	C(1
C) = 1

	C((�x:e)
C) = �x:[[e]]C

	C((fix f �x:e)C) = fix f �x:[[e]]C
	C((��v)

C) = ��	C(v)
	C(v

C) = 	C(v)

	C(w
N ) = w0 (n2c(�w)@	N(w

N )
�

! w0)

	C(v
N ) = v0 (n2c(�v)@	N(v

N )
�

! v0)
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[[v]]N = 	N (v)
[[(�x:e)N ]]N = �x:[[e]]N

[[(fix f �x:e)N ]]N = fix f �x:[[e]]N
[[xN ]]N = x

[[(e1@e2)
N ]]N = [[e1]]N@[[e2]]N

[[(con � e)N ]]N = con � [[e]]N
[[(decon e)N ]]N = decon [[e]]N

[[(case e1 � e2 e3)
N ]]N = case [[e1]]N � [[e2]]N [[e3]]N

[[eN ]]N = [[e]]N
[[tC ]]N = [[tC ]]C@c2n(�t)
[[eC ]]N = [[eC ]]C@c2n(�e)

[[v]]C = �K:K@	C(v)
[[(�x:e)C ]]C = �K:K@�x:[[e]]C

[[(fix f �x:e)C ]]C = �K:K@fix f �x:[[e]]C
[[xC ]]C = �K:K@x

[[(e1@e2)
C ]]C = �K:[[e1]]C@

(�f:[[e2]]C@(�v:f@v@K))
[[(con � e)C ]]C = �K:[[e]]C@(�v:K@(con � v))
[[(decon e)C ]]C = �K:[[e]]C@(�v:K@(decon v))

[[(case e1 � e2 e3)
C ]]C = �K:[[e1]]C@(�v:case v �

([[e2]]C@K) ([[e2]]C@K))
[[eC ]]C = [[e]]C
[[tN ]]C = �K:K@(n2c(�t)@[[t

N ]]N )
[[eN ]]C = �K:K@(n2c(�e)@[[e

N ]]N )

Figure 3: Extended Partial CPS transformation

We use a similar approach to [Plo75] to prove the above
theorem.

At �rst, we extend the partial CPS transformation to be
de�ned also for the intermediate expressions during reduc-
tion. Then we de�ne two colon operators : and :K to rep-
resent the expressions after the administrative reduction.
Operator : is used for [[�]]N and :K for [[�]]C . In partially
CPS-transforming the intermediate expressions, computed
values (closed expressions without redices) are transformed
by a special transformers 	N and 	C . The extended partial
CPS transformation is de�ned in Figure 3.

Figure 4 de�nes the two colon operators (: and :K) which
represent the transformed terms (respectively from the [[�]]N
and [[�]]C) after the administrative reductions.

Value transformation preserves the structure of the val-
ues:
Lemma 1

	N ((��v)
l) = ��	N (v

l) and 	C((��v)
l) = ��	C (v

l)

Proof. Proof by induction on the length of l. The details
of the proof are in Appendix A. 2

Following three Lemmas correspond to the Plotkin's ones
[Plo75]. Substitution Lemma enables substitions to pene-
trate [[�]]N and [[�]]C :

Lemma 2 (Substitution) For any expression e with con-
sistent annotation and any value v, if free variable x is an-
notated as N then

[	N(v)=x][[e]]N = [[[v=x]e]]N
[	N(v)=x][[e]]C = [[[v=x]e]]C

v: = 	N (v)
(v1@v2)

N : = (	N (v1))@(	N(v2))
(v@e)N : = (	N (v))@(e:)

(e1@e2)
N : = (e1:)@[[e2]]N

(con � v)N : = con � (	N (v))
(con � e)N : = con � (e:)
(decon v)N : = decon (	N (v))
(decon e)N : = decon (e:)

(case v � e1 e2)
N : = case (	N (v)) � [[e1]]N [[e2]]N

(case e1 � e2 e3)
N : = case (e1:) � [[e2]]N [[e3]]N
eN : = e:
tC : = tC :c2n(�t)
eC : = eC :c2n(�e)

v:K = K@	C(v)
(v1@v2)

C :K = 	C(v1)@	C(v2)@K
(v@e)C :K = e:�v:	C(v)@v@K

(e1@e2)
C :K = e1:�f:[[e2]]C@(�v:f@v@K)

(con � v)C :K = K@(con � (	C(v)))
(con � e)C :K = e:�v:K@(con � v)
(decon v)C :K = K@(decon (	C(v)))
(decon e)C :K = e:�v:K@(decon v)

(case v � e1 e2)
C :K = case (	C(v)) �

([[e1]]C@K) ([[e2]]C@K)
(case e1 � e2 e3)

C :K = e1:(�v:case v �
([[e2]]C@K)([[e3]]C@K))

eC :K = e:K
tN :K = K@(n2c(�t)@(t

N :))
eN :K = K@(n2c(�e)@(e

N :))

Figure 4: The Colon Operators

and if free variable x is annotated as C then

[	C(v)=x][[e]]N = [[[v=x]e]]N
[	C(v)=x][[e]]C = [[[v=x]e]]C

Proof. Proof by mutual structural induction on e with a
case for type of expression. The details of the proof are in
Appendix B. 2

Static reduction Lemma establishes the relation between
partial CPS transformation and colon operator:

Lemma 3 (Static Reduction) For any closed expression
e with consistent annotation and any closed value K,

[[e]]N
�

! e:

[[e]]C@K
�

! e:K

Proof. Proof by mutual structural induction on e with a
case for type of expression. The details of the proof are in
Appendix C. 2

Single-Step Simulation Lemma shows that a reduction
from an original expression corresponds to reductions be-
tween partially CPS transformed expressions:
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Lemma 4 (Single-Step Simulation) For any closed ex-
pression e with consistent annotations and any closed value
K,

e! e0 =) e:
+
! e0: and e:K

+
! e0:K

Proof. Proof by mutual structural induction on the reduc-
tion e ! e0 with a case for type of reduction rules. The
details of the proof are in Appendix D. 2

Proof of Theorem 1. Using the lemmas, we can prove the
correctness theorem easily. If the original program evaluates

to a value, that is , e
�

! v then

[[e]]N
�

! e: (Lemma 3)
�

! v: (repeated use of Lemma 4)
= 	N (v) (def. of :)

Note that non-termination is also preserved by the single
step simulation.

2

5 Conclusion

We presented a type-based partial CPS transformation. The
partial CPS transformation transforms only parts of a pro-
gram and connects the results to the rest, direct-style parts.
A program's sub-parts which need to be CPS-transformed
is initially annotated as such. Partial CPS-transformation
scans the expressions and selectively apply the transfor-
mation depending on the annotation. Wherever an inter-
face between CPS-transformed and direct-style expressions
is needed, proper conversion code is padded based on ex-
pression types. The correctness of the partial CPS trans-
formation is proven similarly to that of Plotkin's simulation
theorem[Plo75].

There are analogous works in literature. Our n2c and
c2n functions can be seen as the retraction pairs in the set-
ting of Meyer and Wand[MW85]. Danvy, Dussart, and Hat-
cli� [DD95, DH93a, DH93b]'s works are analogous to ours.
They switch between call-by-value and call-by-name CPS
transformations interconnecting the two transformations by
\delay" and \force" operators. Another analogous one is
Leroy's \box" and \unbox" operators[Ler92] that are used
to handle mixed representations of values.
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A Proof of Lemma 1

Lemma 1

	N ((��v)
l) = ��	N (v

l) and 	C((��v)
l) = ��	C (v

l)

Proof.
Proof by induction on the length of l.
In proof, we abbreviate some expressions as \(� � �)" when

they are omittable.
For 	N cases,

� base case (��v)N

	N ((��v)
N )

= ��	N (v) (def. of 	N )
= ��	N (v

N ) (def. of 	N )

� base case (��v)C

c2n(� �:��+��0 )@	C((��v)
C)

= (fix f �y:case y �
(con � c2n([�f=�]��)@(decon y)) (� � �))

@(��	C (v)) (def. of n2c and 	N )
! case (��	C(v)) �

(con � (c2n([�f
0

=�]��)
@(decon (��	C(v))))) (� � �)

(where f 0 is fix f � � �)
+
! con � (c2n([�f

0

=�]��)@(	C(v)))

= con � (c2n([�f
0

=�]��)@(	C(v
C)))

(def. of 	N )
�

! con � (	N(v
C))

(Because [�f
0

=�]�� is indeed the type of v,

c2n([�f
0

=�]��)@	C(v
C)

�

! v0 = 	N (v
C)

by de�nition of 	N .)
! ��(	N (v

C))

By above and de�nition of 	N ,

	N ((��v)
C)

= ��	N (v
C)
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� induction step case (��v)lN

	N ((��v)
lN )

= 	N((��v)
l) (def. of 	N)

= ��	N ((v)
l) (I.H.)

= ��	N ((v)
lN) (def. of 	N)

� induction step case (��v)lC

c2n(� �:��+��0)@	C((��v)
lC)

= c2n(� �:��+��0)@	C((��v)
l) (def. of 	C)

= (fix f �y:case y �
(con � c2n([�f=�]��)@(decon y)) (� � �))

@(��	C(v
l)) (def. of n2c and I.H.)

! case (��	C(v
l)) �

(con � (c2n([�f
0

=�]��)
@(decon (��	C(v

l))))) (� � �)
(where f 0 is fix f � � �)

+
! con � (c2n([�f

0

=�]��)@(	C(v
l)))

= con � (c2n([�f
0

=�]��)@(	C(v
lC)))

(def. of 	C)
�

! con � (	N (v
lC))

(Because [�f
0

=�]�� is indeed the type of v,

c2n([�f
0

=�]��)@	C(v
lC)

�

! v0 = 	N(v
lC)

by de�nition of 	N .)
! ��(	N (v

lC))

By above and de�nition of 	N ,

	N ((��v)
lC)

= ��	N (v
lC) (def. of 	N)

Because 	T and 	N are duals, we can prove 	T cases
similarly to 	N cases. 2

B Proof of Substitution Lemma

Lemma 2 (Substitution) For any expression e with con-
sistent annotation and any value v, if free variable x is an-
notated as N then

[	N(v)=x][[e]]N = [[[v=x]e]]N
[	N(v)=x][[e]]C = [[[v=x]e]]C

and if free variable x is annotated as C then

[	C(v)=x][[e]]N = [[[v=x]e]]N
[	C(v)=x][[e]]C = [[[v=x]e]]C

Proof.
Proof by mutual structural induction on e, �rstly taking

the [[�]]N for the N annotated expressions and [[�]]C for the C
annotated expressions.

For [[�]]N cases,

� case v, (�x:e1)
N , (fix f �x:e1)

N , or (fix x �y:e1)
N

[	a(v)=x][[e]]N
= [[e]]N (x is not free)
= [[[v=x]e]]N (x is not free)

a is N or C according to the annotation of the free
variable x.

� case (�y:e)N (x 6= y)

[	a(v)=x][[(�y:e)
N ]]N

= [	a(v)=x]�y:[[e]]N (def. of [[�]]N )
= �y:[	a(v)=x][[e]]N (def. of [=])
= �y:[[[v=x]e]]N (I.H.)
= [[(�y:[v=x]e)N ]]N (def. of [[�]]N )
= [[[v=x](�y:e)N ]]N (def. of [=])

a is N or C according to the annotation of the free
variable x.

� case (fix f �y:e)N (x 6= y; x 6= f)

We can prove similarly to the above (�y:e)N case.

� case xN

Because the variable x is annotated as N , we need to
prove only for 	N .

[	N (v)=x][[x
N ]]N

= [	N (v)=x]x (def. of [[�]]N )
= 	N (v) (def. of [=])
= 	N (v

N) (def. of 	N )
= [[vN ]]N (def. of [[�]]N )
= [[[v=x]xN ]]N (def. of [=])

� case (e1@e2)
N

The annotations of the free variable x in both e1 and
e2 are equal.

[	a(v)=x][[(e1@e2)
N ]]N

= [	a(v)=x]([[e1]]N@[[e2]]N ) (def. of [[�]]N )
= ([	a(v)=x][[e1]]N )@([	a(v)=x][[e2]]N )

(def. of [=])
= [[[v=x]e1]]N@[[[v=x]e2]]N (I.H. twice)
= [[(([v=x]e1)@([v=x]e2))

N ]]N (def. of [[�]]N )
= [[[v=x](e1@e2)

N ]]N (def. of [=])

a is N or C according to the annotation of the free
variable x.

� case (con � e)N , (decon e)N , (case e1 � e2 e3)
N , or eN

We can prove similarly to the above (e1@e2)
N case.

� case eC

[	a(v)=x][[e
C ]]N

= [	a(v)=x]([[e
C ]]C@c2n(�e)) (def. of [[�]]N )

= ([	a(v)=x][[e
C ]]C)@c2n(�e) (def. of [=])

= [[[v=x]eC ]]C@c2n(�e) (I.H. about [[�]]C )
= [[[v=x]eC ]]N (def. of [[�]]N )

� case tC

We can prove similarly to the above eC case.

For [[�]]C cases,

� case v, (�x:e1)
C , (fix f �x:e1)

C , or (fix x �y:e1)
C

[	a(v)=x][[e]]C
= [[e]]C (x is not free)
= [[[v=x]e]]C (x is not free)

a is N or C according to the annotation of the free
variable x.

� case (�y:e)C (x 6= y)

12



[	a(v)=x][[(�y:e)
C ]]C

= [	a(v)=x]�K:K@�x:[[e]]C (def. of [[�]]C )
= �K:K@�x:[	a(v)=x][[e]]C (def. of [=])
= �K:K@�x:[[[v=x]e]]C (I.H.)
= [[(�y:[v=x]e)C ]]C (def. of [[�]]C )
= [[[v=x](�y:e)C ]]C (def. of [=])

a is N or C according to the annotation of the free
variable x.

� case (fix f �y:e)C (x 6= y; x 6= f)

We can prove similarly to the above (�y:e)C case.

� case xC

Because the variable x is annotated as C, we need to
prove only for 	C .

[	C(v)=x][[x
C ]]C

= [	C(v)=x]�K:K@x (def. of [[�]]C )
= �K:K@	C(v) (def. of [=])
= �K:K@	C(v

C) (def. of 	C)
= [[vC ]]C (def. of [[�]]C )
= [[[v=x]xC ]]C (def. of [=])

� case (e1@e2)
C

The annotations of the free variable x in both e1 and
e2 are equal.

[	a(v)=x][[(e1@e2)
C ]]C

= [	a(v)=x]�K:[[e1]]C@(�f:[[e2]]C@(�v:f@v@K))
(def. of [[�]]C )

= �K:([	a(v)=x][[e1]]C)@
(�f:([	a(v)=x][[e2]]C)@(�v:f@v@K))

(def. of [=])
= �K:[[[v=x]e1]]C@(�f:[[[v=x]e2]]C@(�v:f@v@K))

(I.H.)
= [[(([v=x]e1)@([v=x]e2))

C ]]C (def. of [[�]]C )
= [[[v=x](e1@e2)

C ]]C (def. of [=])

a is N or C according to the annotation of the free
variable x.

� case (con � e)C , (decon e)C , (case e1 � e2 e3)
C , or eC

We can prove similarly to the above (e1@e2)
C case.

� case eN

[	a(v)=x][[e
N ]]C

= [	a(v)=x](�K:K@(n2c(�e)@[[e
N ]]N ))

(def. of [[�]]C )
= �K:K@(n2c(�e)@([	a(v)=x][[e

N ]]N ))
(def. of [=])

= �K:K@(n2c(�e)@[[[v=x]e
N ]]N )

(I.H. about [[�]]N )
= [[[v=x]eN ]]C (def. of [[�]]C )

a is N or C according to the annotation of the free
variable x.

� case tN

We can prove similarly to the above eN case.

2

C Proof of Static Reduction Lemma

Lemma 3 (Static Reduction) For any closed expression
e with consistent annotation and any closed value K,

[[e]]N
�

! e:

[[e]]C@K
�

! e:K

Proof.
Proof by mutual structural induction on e, �rstly taking

the [[�]]N for the N annotated expressions and [[�]]C for the C
annotated expressions.

For [[�]]N cases,

� case v
[[v]]N
= 	N (v) (def. of [[�]]N )
= v: (def. of :)

� case (v1@v2)
N

[[(v1@v2)
N ]]N

= [[v1]]N@[[v2]]N (def. of [[�]]N )
= 	N (v1)@	N(v2) (def. of [[�]]N )
= (v1@v2)

N : (def. of :)

� case (v@e)N

[[(v@e)N ]]N
= [[v]]N@[[e]]N (def. of [[�]]N )
= (	N (v))@[[e]]N (def. of [[�]]N )
�

! (	N (v))@(e:) (I.H.)
= (v@e)N : (def. of :)

� case (e1@e2)
N , (con � v)N , (con � e)N , (decon v)N ,

(decon e)N , (case v � e1 e2)
N , (case e1 �e2 e3)

N , or eN

We can prove similarly to one of the above two cases
- (v1@v2)

N , (v@e)N .

� case eC

[[eC ]]N
= [[eC ]]C@c2n(�e) (def. of [[�]]N )
�

! [[eC ]]C :c2n(�e) (I.H. about [[�]]C )
= eC : (def. of :)

� case tC

We can prove similarly to the above eC case.

For C-annotated expressions and [[�]]C cases,

� case v
[[v]]C@K
! K@	C(v) (def. of [[�]]C )
= v:K (def. of :K)

� case (v1@v2)
C

[[(v1@v2)
C ]]C@K

! [[v1]]C@(�f:[[v2]]C@(�v:f@v@K))
(def. of [[�]]C )

= (�K:K@	C(v1))@(�f:[[v2]]C@(�v:f@v@K))
(def. of [[�]]C )

+
! [[v2]]C@(�v:	C(v1)@v@K)
= (�K:K@	C(v2))@(�v:	C(v1)@v@K)

(def. of [[�]]C )
+
! 	C(v1)@	C(v2)@K
= (v1@v2)

C :K (def. of :K)
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� case (v@e)C

[[(v@e)C ]]C@K
! [[v]]C@(�f:[[e]]C@(�v:f@v@K)) (def. of [[�]]C )
= (�K:K@	C(v))@(�f:[[e]]C@(�v:f@v@K))

(def. of [[�]]C )
+
! [[e]]C@(�v:	C(v)@v@K)
�

! e:�v:	C(v)@v@K (I.H.)
= (v@e)C:K (def. of :K)

� case (e1@e2)
C , (con � v)C , (con � e)C , (decon v)C ,

(decon e)C , (case v � e1 e2)
C , (case e1 � e2 e3)

C , oreC

We can prove similarly to one of the above two cases
- (v1@v2)

C , (v@e)C .

� case eN

[[eN ]]C@K
! K@(n2c(�e)@[[e

N ]]N ) (def. of [[�]]C )
�

! K@(n2c(�e)@(e
N :)) (I.H. about [[�]]N )

= eN :K (def. of :K)

� case tN

We can prove similarly to the above eN case.

2

D Proof of Single Step Simulation Lemma

Lemma 4 (Single Step Simulation) For any closed ex-
pression e with consistent annotations and any closed value
K,

e! e0 =) e:
+
! e0: and e:K

+
! e0:K

Proof.
Proof by mutual structural induction on e, �rstly taking :

for the N annotated expressions and :K for the C annotated
expressions.

For : cases,

� ((�x:e)l@v)N ! [vNl=x]elN

Prove this case by induction on the length of l.

{ ((�x:e)N@v)N ! [vNN=x]eNN

By the consistency, free variable x in e should be
annotated as N .

((�x:e)N@v)N :
= 	N ((�x:e)

N)@(	N (v)) (def. of :)
= (�x:[[e]]N )@(	N(v)) (def. of 	N)
! [	N (v)=x][[e]]N
= [	N (v

NN )=x][[eNN ]]N
(def. of 	N and [[�]]N )

= [[[vNN =x]eNN ]]N (Lemma 2)
�

! [vNN=x]eNN : (Lemma 3)

{ ((�x:e)C@v)N ! [vNT =x]eCN

By the consistency, free variable x in e should
be annotated as C. And �x:e's type should be
�1 ! �2.

((�x:e)C@v)N :
= 	N((�x:e)

C)@	N(v) (def. of :)
= (�x:	C((�x:e)

C)@(n2c(�1)@x)@
c2n(�2))@	N(v

N) (def. of 	N )

! 	C((�x:e)
C)@(n2c(�1)@	N(v

N ))@c2n(�2)
�

! 	C((�x:e)
C)@	C(v

N)@c2n(�2)
(def. of 	C)

= (�x:[[e]]C)@	C(v
N )@c2n(�2) (def. of 	C)

! ([	C(v
N )=x][[e]]C)@c2n(�2)

= ([	C(v
NC)=x][[eC ]]C)@c2n(�2)

(def. of 	C and [[�]]C )
= [[[vNC=x]eC ]]C@c2n(�2) (Lemma 2)
= [[[vNC=x]eC ]]N (def. of [[�]]N )
�

! [vNC=x]eC : (Lemma 3)
= [vNC=x]eCN : (def. of :)

{ ((�x:e)lN@v)N ! [vNNl=x]elNN

((�x:e)lN@v)N :
= 	N((�x:e)

lN)@(	N (v)) (def. of :)
= 	N((�x:e)

l)@(	N(v
N )) (def. of 	N )

= ((�x:e)l@vN)N : (def. of :)
+
! [vNNl=x]elN :

(I.H. about the length of l)

= [vNNl=x]elNN : (def. of :)

{ ((�x:e)lT@v)N ! [vNTl=x]elTN

�x:e's type should be �1 ! �2.

((�x:e)lT@v)N :
= 	N((�x:e)

lT )@(	N(v)) (def. of :)
= (�x:	C((�x:e)

lT )@(n2c(�1)@x)@c2n(�2))
@(	N(v

N )) (def. of 	N )
! 	C((�x:e)

lT )
@(n2c(�1)@	N(v

N ))@c2n(�2)
�

! 	C((�x:e)
l)@	C(v

N )@c2n(�2)
(def. of 	C)

= ((�x:e)l@vN)C :c2n(�2) (def. of :K)
+
! ([vNTl=x]elT ):c2n(�2)

(I.H. about the length of l)

= ([vNTl=x]elT ):

= ([vNTl=x]elTN ): (def. of :)

By induction, (((�x:e)l@v)N :)
+
! ([vNl=x]elN :)

� ((fix f �x:e)al@v)N ! [(fix f �x:e)a=f ][vNla=x]ealN

(head of l is a)

We can prove similarly to the above case except that
f should annotated as the head of l.

� (con � v)N ! (��v)N

(con � v)N :
= con � (	N(v)) (def. of :)
! ��(	N (v))
= 	N (��v) (def. of 	N )
= (��v): (def. of :)
= (��v)N : (def. of :)

� (decon (��v)l)N ! vlN
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(decon (��v)l)N :
= decon (	N((��v)

l)) (def. of :)
= decon (��	N (v

l)) (Property 1)
! 	N (v

l)
= vl: (def. of :)
= vlN : (def. of :)

� (case (��v)l � e1 e2)
N ! eN1

(case (��v)l � e1 e2)
N :

= case (	N((��v)
l)) � [[e1]]N [[e2]]N (def. of :)

= case (��	N (v
l)) � [[e1]]N [[e2]]N (Property 1)

! [[e1]]N
= [[eN1 ]]N (def. of [[�]]N )
�

! eN1 : (Lemma 3)

� (case (��v)l �0 e1 e2)
N ! eN2 (� 6= �0)

We can prove similarly to the above case.

� (e1@e2)
N ! (e01@e2)

N (e1 ! e01)

(e1@e2)
N :

= (e1:)@[[e2]]N (def. of :)
+
! (e01:)@[[e2]]N (I.H.)
= (e01@e2)

N : (def. of :)

� (v@e)N ! (v@e0)N , (con � e)N ! (con � e0)N ,
(decon e)N ! (decon e0)N ,
(case e1 � e2 e3)

N ! (case e01 � e2 e3)
N ,

We can prove similarly to the above case.

� eN ! e0N

Then e! e0.

eN :
= e: (def. of :)
+
! e0: (I.H.)
= e0N : (def. of :)

� eC ! e0C

eC :
= eC :c2n(�e) (def. of :)
+
! e0C :c2n(�e) (I.H. about :K)
= e0C : (def. of :)

� tC ! t0C

We can prove similarly to the above eC case.

For :K cases,

� ((�x:e)l@v)C ! [vCl=x]elC

Prove this case by induction on the length of l.

{ ((�x:e)C@v)C ! [vCC=x]eCC

By the consistency, free variable x in e should be
annotated as C.
((�x:e)C@v)C :K
= 	C((�x:e)

C)@	C(v)@K (def. of :K)
= (�x:[[e]]C)@	C(v)@K (def. of 	C)
! ([	C(v)=x][[e]]C)@K
= ([	C(v

CC)=x][[eCC ]]C)@K
(def. of 	C and [[�]]C )

= ([[[vCC=x]eCC ]]C)@K (Lemma 2)
�

! [vCC=x]eCC :K (Lemma 3)

{ ((�x:e)N@v)C ! [vCN=x]eNC

By the consistency, free variable x in e should
be annotated as N . And �x:e's type should be
�1 ! �2.

((�x:e)N@v)C :K
= 	C((�x:e)

N)@	C(v)@K (def. of :K)
= (�x:�K:K@(n2c(�2)@(	N((�x:e)

N)
@(c2n(�1)@x))))@	C(v

C)@K
(def. of 	C)

+
! K@(n2c(�2)@(	N((�x:e)

N)
@(c2n(�1)@	C(v

C))))
�

! K@(n2c(�2)@(	N((�x:e)
N)@	N(v

C)))
(def. of 	N)

= K@(n2c(�2)@((�x:[[e]]N )@	N(v
C)))

(def. of 	N)
! K@(n2c(�2)@([	N(v

C)=x][[e]]N ))
= K@(n2c(�2)@([	N(v

CN )=x][[eN ]]N ))
(def. of 	N and [[�]]N )

= K@(n2c(�2)@([[[v
CN=x]eN ]]N ))(Lemma 2)

�

! K@(n2c(�2)@([v
CN=x]eN :)) (Lemma 3)

= [vCN=x]eN :K (def. of :K)
= [vCN=x]eNC :K (def. of :K)

{ ((�x:e)lC@v)C ! [vCCl=x]elCC

((�x:e)lC@v)C :K
= 	C((�x:e)

lC)@	C(v)@K (def. of :K)
= 	C((�x:e)

l)@	C(v
C)@K (def. of 	C)

= ((�x:e)l@vC)C :K (def. of :K)
+
! [vCCl=x]elC :K

(I.H. about the length of l)

= [vCCl=x]elCC :K (def. of :K)

{ ((�x:e)lN@v)C ! [vCNl=x]elNC

�x:e's type should be �1 ! �2.

((�x:e)lN@v)C :K
= 	C((�x:e)

lN)@	C(v)@K (def. of :K)
= (�x:�K:K@(n2c(�2)@(	N((�x:e)

lN)
@(c2n(�1)@x))))@	C(v)@K

(def. of n2c())
+
! K@(n2c(�2)@(	N((�x:e)

lN)
@(c2n(�1)@	C(v))))

�

! K@(n2c(�2)@(	N((�x:e)
l)@	N(v

C)))
(def. of 	N )

= K@(n2c(�2)@(((�x:e)
l@vC)N :))(def. of :)

= ((�x:e)l@vC)N :K (def. of :K)
+
! [vCNl=x]elN :K(I.H. about the length of l)

= [vCNl=x]elNC :K (def. of :K)

By induction, ((�x:e)l@v)C :K
+
! [vCl=x]elC :K

� ((fix f �x:e)l@v)C ! [(fix f �x:e)a=f ][vCl=x]elC

(head of l is a)

We can prove similarly to the above case except that
f should annotated as the head of l.

� (con � v)C ! (��v)C
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(con � v)C :K
= K@(con � 	C(v)) (def. of :K)
! K@(��	C(v))
= K@(	C((��v)

C)) (def. of 	C)
= (��v)C :K (def. of :K)

� (decon (��v)l)C ! vlC

(decon (��v)l)C :K
= K@(decon 	C((��v)

l)) (def. of :K)
= K@(decon (��	C(v

l))) (Property 1)
! K@	C(v

l)
= vl:K (def. of :K)
= vlC :K (def. of :K)

� (case (��v)l � e1 e2)
C ! eC1

(case (��v)l � e1 e2)
C :K

= case (	C((��v)
l)) � ([[e1]]C@K) ([[e2]]C@K)

(def. of :)
= case (��	C(v

l)) � ([[e1]]C@K) ([[e2]]C@K)
(Property 1)

! [[e1]]C@K
= [[eC1 ]]C@K (def. of [[�]]C )
�

! eC1 :K (Lemma 3)

� (case (��v)l �0 e1 e2)
C ! eC1 (� 6= �0)

We can prove similarly to the above case.

� (e1@e2)
C ! (e01@e2)

C (e1 ! e01)

(e1@e2)
C :K

= e1:�f:[[e2]]C@(�v:f@v@K) (def. of :)
+
! e01:�f:[[e2]]C@(�v:f@v@K) (I.H.)
= (e01@e2)

C :K (def. of :)

� (v@e)C ! (v@e0)C , (con � e)C ! (con � e0)C ,
(decon e)C ! (decon e0)C ,
(case e1 � e2 e3)

C ! (case e01 � e2 e3)
C ,

We can prove similarly to the above case.

� eC ! e0C

Then e! e0.

eC :K
= e:K (def. of :K)
+
! e0:K (I.H.)
= e0C :K (def. of :K)

� eN ! e0N

eN :K
= K@(n2c(�e)@(e

N :)) (def. of :K)
+
! K@(n2c(�e)@(e

0N :)) (I.H.)
= e0N :K (def. of :K)

� tN ! t0N

We can prove similarly to the above eN case.

2
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ABSTRACT
We investigate continuation-passing style transforms that
pass two continuations. Altering a single variable in the
translation of �-abstraction gives rise to di�erent control op-
erators: �rst-class continuations; dynamic control; and (de-
pending on a further choice of a variable) either the return
statement of C; or Landin's J-operator. In each case there
is an associated simple typing. For those constructs that
allow upward continuations, the typing is classical, for the
others it remains intuitionistic, giving a clean distinction
independent of syntactic details.

1. INTRODUCTION
Control operators come in bewildering variety. Sometimes

the same term is used for distinct constructs, as with catch

in early Scheme or throw in Standard ML of New Jersey,
which are very unlike the catch and throw in Lisp whose
names they borrow. On the other hand, this Lisp catch is
fundamentally similar to exceptions despite their dissimilar
and much more ornate appearance.
Fortunately it is sometimes possible to glean some high-

level \logical" view of a programming language construct by
looking only at its type. Speci�cally for control operations,
GriÆn's discovery [3] that call/cc and related operators
can be ascribed classical types gives us the fundamental dis-
tinction between languages that have such classical types
and those that do not, even though they may still enjoy
some form of control. This approach complements compar-
isons based on contextual equivalences [10, 14].
Such a comparison would be diÆcult unless we blot out

complication. In particular, exceptions are typically tied
in with other, fairly complicated features of the language
which are not relevant to control as such: in ml with the
datatype mechanism, in Java with object-orientation. In
order to simplify, we �rst strip down control operators to

�Partially supported by the EPSRC

To appear inThe Third ACM SIGPLAN Workshop on Contin-
uations (CW ’01), 16 January 2001, London, United Kingdom.

the bare essentials of labelling and jumping, so that there
are no longer any distracting syntactic di�erences between
them. The grammar of our toy language is uniformly this:

M ::= x j �x:M jMM j hereM j goM:

The intended meaning of here is that it labels a \program
point" or expression without actually naming any particular
label|just uttering the demonstrative \here", as it were.
Correspondingly, go jumps to a place speci�ed by a here,
without naming the \to" of a goto.
Despite the simplicity of the language, there is still scope

for variation: not by adding bells and whistles to here and
go, but by varying the meaning of �-abstraction. Its impact
can be seen quite clearly in the distinction between excep-
tions and �rst-class continuations. The di�erence between
them is as much due to the meaning of �-abstraction as
due to the control operators themselves, since �-abstraction
determines what is statically put into a closure and what
is passed dynamically. Readers familiar with, say, Scheme
implementations will perhaps not be surprised about the im-
pact of what becomes part of a closure. But the point of this
paper is twofold:

� small variations in the meaning of � completely change
the meaning of our control operators;

� we can see these di�erences at an abstract, logical level,
without delving into the innards of interpreters.

We give meaning to the �-calculus enriched with here
and go by means of continuations in Section 2, examining
in Sections 3{5 how variations on �-abstraction determine
what kind of control operations here and go represent. For
each of these variations we present a simple typing, which
agrees with the transform (Section 6). We conclude by ex-
plaining the signi�cance of these typings in terms of classical
and intuitionistic logic (Section 7).

2. DOUBLE-BARRELLED CPS
Our starting point is a continuation-passing style (cps)

transform. This transform is double-barrelled in the sense
that it always passes two continuations. Hence the clauses
start with �kq: : : : instead of �k: : : : . Other than that, this
cps transform is in fact a very mild variation on the usual

call-by-value one [8]. As indicated by the ? , we leave one
variable, the extra continuation passed to the body of a �-
abstraction, unspeci�ed.
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[[x]] = �kq:kx

[[�?x:M ]] = �ks:k(�xrd:[[M ]]r ? )

[[MN ]] = �kq:[[M ]](�m:[[N ]](�n:mnkq)q)q

[[hereM ]] = �kq:[[M ]]kk

[[goM ]] = �kq:[[M ]]qq

The extra continuation may be seen as a jump contin-
uation, in that its manipulation accounts for the labelling
and jumping. This is done symmetrically: here makes the
jump continuation the same as the current one k, whereas
go sets the current continuation of its argument to the jump
continuation q. The clauses for variables and applications
do not interact with the additional jump continuation: the
former ignores it, while the latter merely distributes it into
the operator, the operand and the function call.
Only in the clause for �-abstraction do we face a design de-

cision. Depending on which continuation (static s, dynamic
d, or the return continuation r) we �ll in for \?" in the clause
for �, there are three di�erent avours of �-abstraction.

[[�sx:M ]] = �ks:k(�xrd:[[M ]]r s )

[[�dx:M ]] = �ks:k(�xrd:[[M ]]r d )

[[�rx:M ]] = �ks:k(�xrd:[[M ]]r r )

The lambdas are subscripted to distinguish them, and the
box around the last variable is meant to highlight that this
is the crucial di�erence between the transforms. Formally
there is also a fourth possibility, the outer continuation k,
but this seems less meaningful and would not �t into simple
typing.
For all choices of �, the operation go is always a jump to

a place speci�ed by a here. For example, for any M , the
term here ((�x:M)(goN)) should be equivalent to N , as
the go jumps past the M . But in more involved examples
than this, there may be di�erent choices where go can go
to among several occurrences of here. In particular, if s
is passed as the second continuation argument to M in the
transform of �x:M , then a go in M will refer to the here
that was in scope at the point of de�nition (unless there is
an intervening here, just as one binding of a variable x can
shadow another). By contrast, if d is passed to M in �x:M ,
then the here that is in scope at the point of de�nition is
forgotten; instead go in M will refer to the here that is
in scope at the point of call when �x:M is applied to an
argument. In fact, depending upon the choice of variable in
the clause for � as above, here and go give rise to di�erent
control operations:

� �rst-class continuations like those given by call/cc in
Scheme [4];

� dynamic control in the sense of Lisp, and typeable in
a way reminiscent of checked exceptions;

� a return-operation, which can be re�ned into the J-
operator invented by Landin in 1965 and ancestral to
call/cc [4, 6, 7, 13].

We examine these constructs in turn, giving a simple type
system in each case. An unusual feature of these type judge-
ments is that, because we have two continuations, there are

two types in the succedent on the right of the turnstile, as
in

� `M : A;B:

The �rst type on the right accounts for the case that the
term returns a value; it corresponds to the current continu-
ation. The second type accounts for the jump continuation.
In logical terms. the comma on the right may be read as a
disjunction. It makes a big di�erence whether this disjunc-
tion is classical or intuitionistic. That is our main criterion
of comparing and contrasting the control constructs.

3. FIRST-CLASS CONTINUATIONS
The �rst choice of which continuation to pass to the body

of a function is arguably the cleanest. Passing the static
continuation s gives control the same static binding as ordi-
nary �-calculus variables. In the static case, the transform
is this:

[[x]] = �kq:kx

[[�sx:M ]] = �ks:k(�xrd:[[M ]]r s )

[[MN ]] = �kq:[[M ]](�m:[[N ]](�n:mnkq)q)q

[[hereM ]] = �kq:[[M ]]kk

[[goM ]] = �kq:[[M ]]qq

We type our source language with here and go as in Figure 1.
In logical terms, both here and go are a combined right

weakening and contraction. By themselves, weakening and
contraction do not amount to much; but it is the combina-
tion with the rule for !-introduction that makes the cal-
culus \classical", in the sense that there are terms whose
types are propositions of classical, but not of intuitionistic,
minimal logic.
To see how !-introduction gives classical types, consider

�-abstracting over go.

x : A `s go x : A;B

`s �sx:gox : A! B;A

If we read the comma as \or", and A ! B for arbitrary
B as \not A", then this judgement asserts the classical ex-
cluded middle, \not A or A". We build on the classical
type of �sx:gox for another canonical example: Scheme's
call-with-current-continuation (call/cc for short) op-
erator [4]. It is syntactic sugar in terms of static here and
go:

call/cc = �sf:(here (f (�sx:gox))):

As one would expect [3], the type of call/cc is Peirce's law
\if not A implies A, then A". We derive the judgement

`s �sf:(here (f (�sx:go x))) : ((A!B)!A)!A;C

in Figure 2.
As a further example, we show that right exchange is ad-

missible. Let � be any context, and assume we have

� `s M : A;B:

Then, by the derivation in Figure 3, we also have

� `s M : B;A:

In the typing of call/cc, a go is (at least potentially, de-
pending on f) exported from its enclosing here. Conversely,
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Figure 1: Typing for static here and go

�; x : A;�0 `s x : A;C

� `s M : B;B

� `s hereM : B;C

� `s M : B;B

� `s goM : C;B

�; x : A `s M : B;C

� `s �sx:M : A! B;C

� `s M : A! B;C � `s N : A;C

� `s MN : B;C

Figure 2: Derivation of call/cc in the static case

f : (A!B)!A `s f : (A!B)!A;A

f : (A!B)!A; x : A `s x : A;A

f : (A!B)!A; x : A `s gox : B;A

f : (A!B)!A `s �sx:gox : A!B;A

f : (A!B)!A `s (f (�sx:gox)) : A;A

f : (A!B)!A `s here (f (�sx:go x)) : A;C

`s �sf:(here (f (�sx:go x))) : ((A!B)!A)!A;C

Figure 3: Derivation of right exchange in the static case

�; f : A!B `s f : A! B;B �; f : A!B `s M : A;B

�; f : A!B `s (f M) : B;B

�; f : A!B `s here (f M) : B;A

� `s �sf:here (f M) : (A!B)!B;A

�; x : A `s x : A;A

�; x : A `s gox : B;A

� `s �sx:gox : A!B;A

� `s (�sf:here (f M)) (�sx:gox) : B;A

19



in the derivation of right exchange, a go is imported into a
here from without. What makes everything work is static
binding.

4. DYNAMIC CONTROL
Next we consider the dynamic version of here and go.

The word \dynamic" is used here in the sense of dynamic
binding and dynamic control in Lisp. In the dynamic case,
the transform is this:

[[x]] = �kq:kx

[[�dx:M ]] = �ks:k(�xrd:[[M ]]r d )

[[MN ]] = �kq:[[M ]](�m:[[N ]](�n:mnkq)q)q

[[hereM ]] = �kq:[[M ]]kk

[[goM ]] = �kq:[[M ]]qq

In this transform, the jump continuation acts as a handler
continuation; since it is passed as an extra argument on each
call, the dynamically enclosing handler is chosen. Hence un-
der the dynamic semantics, here and go become a stripped-
down version of Lisp's catch and throw with only a single
catch tag. These catch and throw operation are themselves
a no-frills version of exceptions with only identity handlers.
We can think of here and go as a special case of these more
elaborate constructs:

hereM � (catch 'e M)
goM � (throw 'e M)

Because the additional continuation is administered dy-
namically, we cannot �t it into our simple typing without
annotating the function type. So for dynamic control, we
write the function type as A!B _C, which should be read
as a single operator with the three arguments in mix�x; it
is not quite the same as A! (B _C), and neither ! nor _
exist on their own. This annotated arrow can be seen as an
idealization of the Java throws clause in method de�nitions,
in that A!B _ C could be written as B(A) throws C in
a more Java-like syntax. A function of type A!B_C may
throw things of type C, so it may only be called inside a
here with the same type. Our typing for the language with
dynamic here and go is presented in Figure 4.
We do not attempt to idealize the ML way of typing excep-

tions because ML uses a universal type exn for exceptions,
in e�ect allowing a carefully delimited area of untypedness
into the language. The typing of ML exceptions is therefore
much less informative than that of checked exceptions.
Note that here and go are still the same weakening and

contraction hybrid as in the static setting. But here their
signi�cance is a completely di�erent one because the !-
introduction is coupled with a sort of _-introduction. To see
the di�erence, recall that in the static setting �-abstracting
over a go rei�es the jump continuation and thereby, at the
type level, gives rise to classical disjunction. This is not
possible with the version of � that gives go the dynamic
semantics. Consider the following inference:

x : A `d go x : B;A

`d �dx:go x : A!B _A;C

The C-accepting continuation at the point of de�nition is
not accessible to the go inside the �d. Instead, the go refers
only to the A-accepting continuation that will be available

at the point of call. Far from the excluded middle, the type
of �dx:gox is thus \A implies A or B; or anything".
In the same vein, as a further illustration how fundamen-

tally di�erent the dynamic here and go are from the static
variety, we revisit the term that, in the static setting, gave
rise to call/cc with its classical type:

�f:here (f (�x:gox)):

Now in the dynamic case, we can only derive an intuitionistic
formula as the type of this term:

((A!B _A)!A _ A)!A _ C;D:

See Figure 5 for the derivation.

5. RETURN CONTINUATION
Our last choice is passing the return continuation as the

extra continuation to the body of a �-abstraction. So the
cps transform is this:

[[x]] = �kq:qx

[[�rx:M ]] = �ks:k(�xrd:[[M ]]r r )

[[MN ]] = �kq:[[M ]](�m:[[N ]](�n:mnkq)q)q

[[hereM ]] = �kq:[[M ]]kk

[[goM ]] = �kq:[[M ]]qq

This transform grants �r the additional role of a continu-
ation binder. The original operator for this purpose, here,
is rendered redundant, since hereM is now equivalent to
(�rx:M)(�ry:y) where x is not free in M . At �rst sight,
binding continuations seems an unusual job for a �; but it
becomes less so if we think of go as the return statement
of C or Java.

5.1 Non-first class return
Because the enclosing � determines which continuation go

jumps to with its argument, the go-operator has the same
e�ect as a return statement. The type of extra continuation
assumed by go needs to agree with the return type of the
nearest enclosing �:

�; x : A `r M : B;B

� r̀ �rx:M : A! B;C

The whole type system for the calculus with �r is in Figure 6.
The agreement between go and the enclosing �r is compa-

rable with the typing in C, where the expression featuring
in a return statement must have the return type declared
by the enclosing function. For instance, M needs to have
type int in the de�nition:

int f(){ : : : return M; : : : }

With �r, the special form go cannot be made into a �rst-
class function. If we try to �-abstract over gox by writing
�rx:gox then go will refer to that �r.
The failure of �r to give �rst-class returning can be seen

logically as follows. In order for �r to be introduced, both
types on the right have to be the same:

x : A r̀ gox : A;A

r̀ �rx:gox : A! A;C

Rather than the classical \not A or A" this asserts merely
the intuitionistic \A implies A; or anything".
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Figure 4: Typing for dynamic here and go

�; x : A;�0 `d x : A;C

� `d M : B;B

� `d hereM : B;C

� `d M : B;B

� `d goM : C;B

�; x : A `d M : B;C

� `d �dx:M : A!B _ C;D

� `d M : A!B _ C;C � `d N : A;C

� `d MN : B;C

Figure 5: A derivation in the dynamic case

Let � � f : (A!B _A)!A _A.

� `d f : (A!B _A)!A _ A;A

�; x : A `d x : A;A

�; x : A `d gox : B;A

� `d �dx:gox : A!B _A;A

� `d (f (�dx:gox)) : A;A

� `d here (f (�dx:gox)) : A;C

`d �df:here (f (�dx:go x)) : ((A!B _A)!A _A)!A _ C;D

Figure 6: Typing for go as a return-operation

�; x : A;�0

r̀ x : A;C

� `r M : B;B

� `r goM : C;B

�; x : A `r M : B;B

� r̀ �rx:M : A! B;C

� `r M : A! B;C � r̀ N : A;C

� `r MN : B;C
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One has a similar situation in Gnu C, which has both the
return statement and nested functions, without the ability
to refer to the return address of another function. If we
admit go as a �rst-class function, it becomes a much more
powerful form of control, Landin's JI-operator.

5.2 The JI-operator
Keeping the meaning of �r as a continuation binder, we

now consider a control operator JI that always refers to the
statically enclosing �r, but which, unlike the special form
go, is a �rst-class expression, so that we can pass the return
continuation to some other function f by writing f(JI). The
cps of this operator is this:

[[JI]] = �ks:k(�xrd: s x)

That is almost, but not quite, the same as if we tried to
de�ne JI as �rx:gox:

[[JI]] = [[�rx:gox]]

= �ks:k(�xrd: r x)

We can, however, de�ne JI in terms of go if we use the static
�s, that is JI = �sx:gox, as this does not inadvertently
shadow the continuation s that we want JI to refer to.
The whole transform for the calculus with JI is this:

[[x]] = �kq:qx

[[�rx:M ]] = �ks:k(�xrd:[[M ]]r r )

[[MN ]] = �kq:[[M ]](�m:[[N ]](�n:mnkq)q)q

[[JI]] = �ks:k(�xrd: s x)

Recall that the role of here has been usurped by �r, and we
replaced go by its �rst-class cousin JI.
In the transform for JI, the jump continuation is the cur-

rent \dump" in the sense of the secd-machine. The dump
in the secd-machine is a sort of call stack, which holds the
return continuation for the procedure whose body is cur-
rently being evaluated. Making the dump into a �rst-class
object was precisely how Landin invented �rst-class control,
embodied by the J-operator.
The typing for the language with JI is given in Figure 7.

In particular, the type of JI is the classical disjunction

� j̀ JI : B ! C;B

As an example of the type system for the calculus with the
JI-operator, we see that Reynolds's [9] de�nition of call/cc
in terms of JI typechecks. (Strictly speaking, Reynolds used
escape, the binding-form cousin of call/cc, but call/cc
and escape are syntactic sugar for each other.) In Figure 8,
we infer the type of call/cc � �rf:((�rk:f k)(JI)) to be:

j̀ �rf:((�rk:f k)(JI)) : ((A!B)!A)!A); C:

Because JI has such evident logical meaning as classical
disjunction, we have considered it as basic. Landin [6] took
another operator, called J, as primitive, while JI was derived
as the special case of J applied to the identity combinator:

J I = J (�x:x)

This explains the name \JI", as \J" stands for \jump" and
I for \identity". We were able to start with JI, since (as
noted by Landin) the J-operator is syntactic sugar for JI by
virtue of:

J = (�rr:�rf:�rx:r(fx)) (JI):

To accommodate J in our typing, we use this de�nition in
terms of JI to derive the following type for J:

j̀ J : (A! B)! (A! C); B

See Figure 9. This type reects the behaviour of the J-
operator in the secd machine. When J is evaluated, it
captures the B-accepting current dump continuation; it can
then be applied to a function of type A ! B. This func-
tion is composed with the captured dump, yielding a non-
returning function of type A! C, for arbitrary C. By anal-
ogy with call-with-current-continuation, we may read
theJ-operator as \compose-with-current-dump" [13].
The logical signi�cance, if any, of the extra function types

in the general J seems unclear. There is a curious, though
vague, resemblance to exception handlers in dynamic con-
trol, since they too are functions only to be applied on jump-
ing. This feature of J may be historical, as it arose in a con-
text where greater emphasis was given to attaching dumps
to functions than to dumps as �rst-class continuations in
their own right.

6. TYPE PRESERVATION
The typings agree with the transforms in that they are

preserved in the usual way for cps transforms. The only
complication is that we need (at least ml-style) polymor-
phism in the target �-calculus to type the dynamic con-
tinuation in those transforms that ignore it. Let � be the
answer type (which could, but need not, be a free type vari-
able). The annotated and the ordinary function type are
transformed as follows:

[[A!B _ C]] = [[A]] ! ([[B]] ! �)! ([[C]] ! �)! �

[[A! B]] = 8�:[[A]] ! ([[B]] ! �)! � ! �

For all the transforms we have preservation of the respective
typing: if � `? M : A;B, then

[[�]] ` [[M ]] : ([[A]] ! �)! ([[B]] ! �)! �:

7. CONCLUSIONS
As a summary of the four control constructs we have con-

sidered, we present their typings in Figure 10, omitting the
terms for conciseness. As logical systems, these toy log-
ics may seem a little eccentric, with two succedents that can
only be manipulated in a slightly roundabout way. But they
are suÆcient for our purposes here, which is to illustrate
the correspondence of �rst-class continuations with classical
logic and weaker control operation with intuitionistic logic,
and the central role of the arrow type in this dichotomy.
Recall the following fact from proof theory (see for exam-

ple [15]). Suppose one starts from a presentation of intu-
itionistic logic with sequents of the form � ` �. If a rule
like the following is added that allows !-introduction even
if there are multiple succedents, the logic becomes classical.

�; A ` B;�

� ` A! B;�

In continuation terms, the signi�cance of this rule is that
the function closure of type A ! B may contain any of
the continuations that appear in �; to use the jargon, these
continuations become \rei�ed". The fact that the logic be-
comes classical means that once we can have continuations
in function closures, we gain �rst-class continuations and
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Figure 7: Typing for JI

�; x : A;�0

j̀ x : A;C � j̀ JI : B ! C;B

�; x : A j̀ M : B;B

� j̀ �rx:M : A! B;C

� j̀ M : A! B;C � j̀ N : A;C

� j̀ MN : B;C

Figure 8: Derivation of call/cc from JI

Let � � f : (A!B)!A; k : (A!B).

� j̀ f : (A!B)!A;A � j̀ k : (A!B); A

� j̀ f k : A;A

f : (A!B)!A j̀ �rk:fk : (A!B)!A;A f : (A!B)!A j̀ JI : A!B;A

f : (A!B)!A j̀ (�rk:f k)(JI) : A;A

j̀ �rf:((�rk:f k)(JI)) : ((A!B)!A)!A); C

Figure 9: Derivation of J from JI

Let � � x : A; r : B ! C; f : A! B.

� j̀ r : B ! C;C

� j̀ f : A! B;C � j̀ x : A;C

� j̀ fx : B;C

� j̀ r(fx) : C;C

r : B ! C; f : A! B j̀ �rx:r(fx) : A! C;A! C

r : B ! C j̀ �rf:�rx:r(fx) : (A! B)! (A! C); (A! B)! (A! C)

j̀ �rr:�rf:�rx:r(fx) : (B ! C)! (A! B)! (A! C); B j̀ JI : B ! C;B

j̀ (�rr:�rf:�rx:r(fx)) (JI) : (A! B)! (A! C); B
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Figure 10: Comparison of the type systems as logics

Static here and go, implies call/cc

� `s B;B

� `s B;C

� `s B;B

� `s C;B
�; A;�0 `s A;C

�; A `s B;C

� `s A! B;C

� `s A! B;C � `s A;C

� `s B;C

Dynamic here and go, like checked exceptions

� `d B;B

� `d B;C

� `d B;B

� `d C;B
�; A;�0 `d A;C

�; A `d B;C

� `d A!B _ C;D

� `d A!B _ C;C � `d A;C

� `d B;C

Non-�rst class return-operation

� r̀ B;B

� r̀ C;B
�; A;�0

r̀ A;C

�; A r̀ B;B

� r̀ A! B;C

� `r A! B;C � `r A;C

� `r B;C

Landin's JI-operator

� j̀ B ! C;B �; A;�0

j̀ A;C

�; A j̀ B;B

� j̀ A! B;C

� j̀ A! B;C � j̀ A;C

� j̀ B;C
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thereby the same power as call/cc. We have this form of
rule for static here and go; though not for JI, since JI as
the excluded middle is already blatantly classical by itself.
But the logic remains intuitionistic if the !-introduction

is restricted. The rule for this case typically admits only a
single formula on the right:

�; A ` B

� ` A! B;�

Considered as a restriction on control operators, this rule
prohibits �-abstraction for terms that contain free contin-
uation variables. There are clearly other possibilities how
we can prevent assumptions from � to become hidden (in
that they can be used in the derivation of A ! B without
showing up in this type itself). We could require these as-
sumptions to remain explicit in the arrow type, by making
� a singleton that either coincides with the B on the right
of the arrow, or is added to it:

�; A r̀ B;B

� r̀ A! B;C

�; A `d B;C

� `d A!B _ C;D

These are the rules for !-introduction in connection with
the return-operation, and dynamic here and go, respec-
tively. Neither of which gives rise to �rst-class continua-
tions, corresponding to the fact that with these restrictions
on !-introduction the logics remain intuitionistic.
The distinction between static and dynamic control in log-

ical terms appears to be new, as is the logical explanation
of Landin's JI-operator.

7.1 Related work
Following GriÆn [3], there has been a great deal of work

on classical types for control operators, mainly on call/cc
or minor variants thereof. A similar cps transforms for dy-
namic control (exceptions) has appeared in [5], albeit for a
very di�erent purpose. Felleisen describes the J-operator by
way of cps, but since his transform is not double-barrelled, J
means something di�erent in each � [2]. Variants of the here
and go operators are even older than the notion of continu-
ation itself: the operations valof and resultis from bcpl

appeared in Strachey and Wadsworth's report on continua-
tions [11, 12]. These operators led to the modern return in
C. As we have shown here, they lead to much else besides if
combined with di�erent avours of �.

7.2 Further work
In this paper, control constructs were compared by cps

transforms and typing of the source. A di�erent, but re-
lated approach compares them by typing in the target of
the cps [1] . On the source, we have the dichotomy between
intuitionistic and classical typing, whereas on the target, the
distinction is between linear and intuitionistic. We hope to
relate these in further work.
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ABSTRACT

The aim of this paper is to give a logical understanding of
control operators for delimited (partial) continuations, in
particular, Danvy and Filinski's shift/reset. Starting with
a simple type system for a static analogue of the shift/reset
operators, we analyze the type structure in a logical way,
which gives rise to control operators for delimited continua-
tions. The resulting control operators nicely behave in the
sense that it satis�es strong normalization and other nice
properties, and we can use them with a higher order types.
We �nally compare our control operators with the original
shift/reset operators.

KEYWORDS
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1 Introduction

Delimited continuation (often called partial continuation)
is a notion representing a partial rest of the computation.
There have been many proposals of control operators for de-
limited continuations, but our understanding for them does
not seem to reach at a satisfactory level as in the case of the
call/cc operator.
This paper tries to give a better understanding of delim-

ited continuations. To do so, we use types and their logical
meaning as our guide, namely the Curry-Howard isomor-
phism is our guiding principle. We start with a simple type
system for control operators of delimited continuations, then
study its type structure and logical meaning, obtain suitable

c2001, Yukiyoshi Kameyama

representation (encoding) of control operators, and �nally
obtain reduction rules which are induced from the types of
the encoded terms.
Our result is that, the naturally arising control operators

are not exactly the same as any of existing ones, but they
have the same operational meaning if there is only one invo-
cation of delimited continuations.1 Since our study is done
in the framework of well understood logical machinery with
nice properties, the resulting operator is ensured to have a
number of desirable properties, such as subject reduction
and strong normalizability, and also a type-preserving CPS-
translation is obtained without restricting the type of the
reset operator to atomic.
This paper is organized as follows: Section 2 gives the cal-

culus for the catch/throw mechanism which will be used in
later sections. In Sections 3, we give a simple type-theoretic
formulation of Danvy and Filinski's shift/reset operators,
and in Section 4, we analyze the logical structure of their
static analogue to obtain two views for them. In Section 5,
we obtain two computational interpretations corresponding
to the two views, and show one interpretation is a control
operator for delimited continuations. In Section 6, we study
the properties of the obtained control operator. Section 7
gives concluding remarks.

2 Preliminary: the Catch/Throw Cal-
culus

This section briey introduces the static catch/throw calculi
developed by Nakano, Sato, and the author [10, 12, 8]. The
catch/throw calculus is used to interpret the calculus for
delimited continuations in later sections.
Remark 1. The use of the word \static" in this paper

may be di�erent from [2].
In this paper, \static" means that the corresponding

catch-construct for a throw-construct is determined in a
static way, that is, at the time when they are written. On
the contrary, the actual catch/throw mechanism in Common
Lisp (and the exception mechanism in Standard ML) is \dy-
namic" in the sense that the corresponding catch-construct
is determined when throw is evaluated. The di�erence is
illustrated by the following example:

1Of course, the invoked continuation objects can be used
arbitrary times.
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(Static)

catch�((�x:1 + catch�(x0))(�y:throw�y))

! catch�(1 + catch�((�y:throw�y)0))

! catch�(1 + catch�(throw�0))

! catch�(throw�0)

! 0

Note that, in the static calculus the tag variable � was re-
named to � to avoid the unwanted capture of the free tag
variable. The corresponding catch-construct for throw is
the outer one.
(Dynamic)

catch�((�x:1 + catch�(x0))(�y:throw�y))

! catch�(1 + catch�((�y:throw�y)0))

! catch�(1 + catch�(throw�0))

! catch�(1 + 0)
�
! 1

In this case, the throw-expression is captured by the inner
catch-construct.
Although our terminology di�er from Danvy and Fil-

inski's, ours coincides with the terminology of the dy-
namic/static binding of variables. Later we shall see the
shift/reset operators of Danvy and Filinski are dynamic in
our sense. (End of Remark 1.)

2.1 Type System of LKc=t and LKCBV

c=t

Among several variants of static catch/throw calculi, we
take here LKc=t in [8] and its call-by-value subcalculus

LKCBV

c=t . The formulation of LKc=t is essentially due to
Nakano [10], but since he wanted to con�ne himself to intu-
itionistic logic, he put a restriction on the formation rule of �
(the implication-introduction rule). In our earlier works, we
showed that the calculus without the restriction is more nat-
ural and has more applications in higher-order programming
and program extraction from classical proofs.
The type system of LKc=t and that of LKCBV

c=t are the
same, which we will be given below.
Types are given by the grammar:

A;B ::= K j A! B

where K ranges over atomic types. Raw terms are

M;N ::= x j �x:M j MN j catch�M j throw�M

where x ranges over individual (normal) variables, and �

ranges over tag variables.2 The individual variable x is
bound in �x:M and the tag variable � is bound in catch�M .
The bound/free occurrences of individual/tag variables are
determined from these notions in a usual way. We iden-
tify two raw terms which are the same modulo the re-
naming of bound individual/tag variables. For instance,
�x:catch�(throw�x) and �y:catch�(throw�y) are identi�ed.
FV(M) and FTV(M) denote the set of free individual/tag

2We assume that the set of individual variables and the
set of tag variables are disjoint.

variables in M , respectively. Mfx := Ng and Mf� := �g
denote the usual capture-avoiding substitutions.

A judgement is in the form � ` M : A ; � where M is a
raw term, A is a type, � is a �nite set of declarations of the
form x : A, and � is a set of declarations of the form � : A.
Note that � denotes the set of free individual variables, and
� denotes that of free tag variables. We write � in the
righthand side of the judgement because, when we consider
the Curry-Howard correspondence, this form is more natural
than the form � ; � `M : A.

We now give type inference rules in the natural-deduction
style which are used to infer judgements.

� ` x : A ; �
(if x : A 2 �)

� `M : B ; �

�� fx : Ag ` �x:M : A! B ; �

� `M : A! B ; � � ` N : A ; �

� `MN : B ; �

� `M : A ; �

� ` throw�M : B ; � [ f� : Ag

� `M : A ; �

� ` catch�M : A ; �� f� : Ag

If � ` M : A ; � is inferred using the above inference
rules, we say M is a term of type A under � and �.

2.2 The Curry-Howard Isomorphism

The Curry-Howard isomorphism relates the simply typed
lambda calculus with the intuitionistic propositional logic.3

This isomorphism can be extended to the above type system
and the classical propositional logic.

To see this, let us rewrite the type inference rules for catch
and throw where (i) terms are omitted, (ii) A; � is written
as A;B1; � � � ; Bn if � = fB1; � � � ; Bng.

� ` A;�

� ` B;A;�
(throw)

� ` A; � � �A;�

� ` A;�
(catch)

The �rst (throw) rule is the weakening rule, and the sec-
ond (catch) rule is (n-times application of) the contraction
rule. Namely, the essence of the catch/throw mechanism
can be captured as the well known logical inference rules;
weakening and contraction. Parigot's ��-calculus [11] has
essentially the same inference rules as above.

2.3 Operational Semantics of LKc=t

The operational semantics of LKCBV

c=t is given in the
evaluation-context semantics style as follows.

First, values are de�ned as usual:

3Strictly speaking, the corresponding logic is minimal
logic, since we do not have the bottom-elimination rule.
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V ::= x j �x:M

An evaluation context (in the call-by-value semantics) is
de�ned as follows:

E ::= [ ] j EM j V E j throw�E j catch�E

E[M ] denotes the term obtained by replacing the hole [ ] in
E by M .
The 1-step reduction in LKCBV

c=t is de�ned as the union of
the following relations:

E[(�x:M)V ] ! E[Mfx := V g]

E[catch�V ] ! E[V ] if � 62 FTV(V )

E[catch�(throw�V )] ! E[catch�V ]

E[(throw�V )M ] ! E[throw�V ]

E[V1(throw�V2)] ! E[throw�V2]

E[throw�(throw�V )] ! E[throw�V ]

E[catch�(throw�V )] ! E[throw�V ] if � 62 FTV(V )

where in the last two rules we assumed � 6� �.
The calculus LKCBV

c=t gives a simple formulation of the
static catch/throw calculus. It is a very weak calculus in
the sense that the actual (dynamic) catch/throw mechanism
cannot be simulated, but we can recover the lost expressive-
ness to some extent by introducing the abstraction mecha-
nism of tag variables [8]. Also, the calculus cannot reduce
non-value terms such as (catch��x:M)V if M contains free
occurrences of �, but this defect can be compromised by in-
troducing the structural reduction in the ��-calculus. In the
scope of this paper, the weakness of the reduction rules do
not have problems (in particular, we can give encoding of
control operators in this weak calculus).
LKCBV

c=t can be considered as a subcalculus of (the call-by-
value variant of) Parigot's ��-calculus [11], so our interpre-
tation in later sections can be done within the ��-calculus.
We do not do so in this paper, since there are several vari-
ants of the call-by-value ��-calculus, and few studies on the
non-deterministic version of ��-calculus have been studied
(which contains the call-by-name and the call-by-value frag-
ments), while the catch/throw calculus is suÆciently simple
and its properties have been already studied intensively.

2.4 Operational Semantics of LKc=t

The operational semantics of LKc=t is given by changing the

reduction rules of LKCBV

c=t as follows:

� All the occurrences of V; V1; V2 are replaced by arbitrary
terms M;M1;M2.

� The following rule is added:

E[�x:throw�M ] ! E[throw�M ] if x 62 FV(M)

Apparently the computation of LKc=t is non-
deterministic. Nevertheless it is strongly normalizing
[8].

3 Shift/Reset Operators and Their
Static Analogue

3.1 Shift/Reset Operators

Danvy and Filinski's shift/reset operators [1, 2] are the most
well known (and probably the most widely used) control
operators for delimited continuations. The reset operator
(the delimiter) is denoted as #M (or hMi in their original
notation), and the shift operator is �k:M where the variable
k is bound by this �. Although the operational semantics
of shift/reset is de�ned via the CPS-transformation, we can
consider the following reduction rule for shift/reset:

E[#(E0[�k:M ])] ! E[#Mfk := �u:#(E0[u])g]

The continuation up to the closest delimiter # is captured as
a functional object �u:#(E[u]) and can be used in later com-
putation. Note that, unlike the standard (full) continuation
generated by call/cc in Scheme and SML/NJ, the created
continuation is a partial rest of computation (it is not the
whole rest of computation like �u:E[E0[u]]). Another impor-
tant di�erence between delimited/full continuations is that
the full continuation is abortive (not composable) while the
delimited continuation can be composed. It is illustrated by
the following example:

#(1 + (�k:k(k(0)))) ! #(k(k(0)))fk := �u:#1 + ug
�
! 1 + 1 + 0
�
! 2

On the contrary, the term 1+call/cc�k:k(k(k(0))) evaluates
to 1, since the current continuation is aborted when k is
applied to 0, and k(k(k(0))) and k(0) result in the same
answer.
Note that, the shift/reset operators are dynamic in our

sense, since (�x:#(xy))(�z:�k:M) reduces to #((�z:�k:M)y),
and #((#�x:�k:M)y) reduces to #((�x:�k:M)y). In both
cases, the reset operator corresponding to the shift opera-
tor is di�erent from the lexically determined one.
Remark 2. In [1], the shift/reset operators are said to

be static in comparison with Felleisen's dynamic operators.
The functional object generated by an invocation of the shift
operator is �u:#E[u], while Felleisen's operator generates a
functional object like �u:E[u]. Suppose E contains another
occurrence of shift. Then it is delimited by a �xed delimiter
in the former case, and by an unknown outer delimiter in the
latter case. This di�erence is the reason why Danvy and Fil-
inski's operator enjoy a simple, elegant CPS-transformation.
(End of Remark 2)

3.2 Type System

We then try to give types to the shift/reset operators. One
may think that the following typing rules are appropriate for
the shift/reset operators:

�; k : A! B `M : B ; �

� ` � k:M : A ; � [ fBg
(shift)

� `M : B ; �

� ` #M : B ; �� fBg
(reset)
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However, this type system does not work since the shift/reset
operators are dynamic in our sense. In other words, this type
system does not enjoy the subject reduction property, which
we think is the minimum requirement for a type system being
sound.
In order to overcome this problem, Murthy [9] intro-

duced a rather elaborated type system for the hierarchy
of shift/reset's. He changed the function type A ! B to
((A ! B) ! Ti) ! Ti where Ti is the type of i-th delim-
iter, that is, he annotates every function type by Ti, which
complicates the type structures a bit, and his type system
is not a (simple) extension of the simply typed lambda cal-
culus. Thielecke [13] also considers a type system to cope
with dynamic features of control operators where he uses
the notation A ! B _ C, which is essentially the same as
((A! B)! C)! C.
Since our aim is to �nd an essential logical structure of

delimited continuation operators, we do not want to treat
such a complicated system. Instead, we stick to a simple
type system, and by analyzing it in a purely logical way, we
are interested in seeing what control operators arise from the
type system.
In summary, we address the problem to �nd a computa-

tional interpretation of the following typing rules.

�; A! B ` B ; �

� ` A ; � [ fBg
(shift)

� ` B ; �

� ` B ; �� fBg
(reset)

Remark 3. Since we take the Curry-Howard isomor-
phism as the guide of our study, the corresponding calculus
always becomes static (in our sense). Hieb et al [6] proposed
control operators for subcontinuations, which is another vari-
ant of delimited continuation operators, but are static in our
sense. Hence, our study is closer to subcontinuations than
shift/reset.

4 Logical Analysis

We �rst note that the �rst (shift) type inference rule plays
two roles at the same time; (i) it discharges the type A !
B and (ii) it introduces the type A in the righthand side,
that is, it works as the weakening rule. Reecting these two
roles, we split the shift rule into the two rules and obtain
the following set of rules:

�; A! B ` A ; � [ fBg

� ` A ; � [ fBg
(*)

� ` B ; �

� ` A ; � [ fBg
(throw)

� ` B ; �

� ` B ; �� fBg
(catch)

In this formulation the shift rule splits into the �rst and the
second rules by which the shift rule is derivable.
Now it is easy to see that the second (throw) and the

third (catch) rules are the same as the catch and the throw
rules given in the last section, namely, the weakening and the
contraction rules. These rules are well known inference rules
in formulating classical propositional logic, so, we can say
that the logical meaning of these rules are well understood.

Our remaining task is to understand the �rst rule (marked
with *). Since we use the Curry-Howard isomorphism as the
guiding principle, we should have a consistent logical system.
If A is proved by the above set of inference rules, namely,
fg ` A ; fg is derived, then A must be valid in some suitable
logic, say, classical logic. By considering how to ensure this
property, we can think of the following two views:
(First View) The (*) rule is a stand-alone valid rule in

classical logic. Namely, we can regard it as a natural exten-
sion of Peirce's inference rule below:

�; A! B ` A

� ` A

This rule is admissible in classical logic, that is, derivable
from the catch/throw rules. We give a proof of the (*) rule
using the catch/throw rules as follows (where we suppress to
write � and � for readability):

A ` A;

A ` B;A

` A! B;A

....
A! B ` A;

` (A! B)! A;

` A;A

` A;

(Second View) The (*) rule is not valid as a stand-alone
rule, but with the combination of the catch rule it is valid.
The situation is similar to the throw rule, which is not valid
as a stand-alone rule, but is valid with the combination of
the catch rule. In order to have a proof of fg ` A ; fg,
if there is an application of the (*) rule with B introduced
in the righthand side, then some application of the catch
rule must exist under it which discharges the same B. So,
each occurrence of the (*) rule must be accompanied with
an occurrence of the catch rule:

....
�; A! B ` A ; fBg [�

� ` A ; fBg [�
....

�0 ` B ; fBg [�0

�0 ` B ; �0

In [7], we showed that this combination is provable in intu-
itionistic logic. There could be many ways to give its proof,
but the presumably simplest way is given as follows (where
we again suppress to write �;� and so on):

....
A! B ` A;B

` (A! B)! A;B

A ` A;B
....

A ` B;B

` A! B;B

` A;B
....

` B;B

` B;

Note that, the right-upper subproof of this proof is taken
from the lower subproof of the same proof, so that part is
duplicated. Note also that this proof is written by intuition-
istic inference rules only, so it is valid in intuitionistic logic.
Corresponding to these two views, we obtain two di�erent

computational interpretations of the (*) rule, which we will
exploit in the next section.

30



5 Computational Interpretations

So far we have been concentrating on the types of (the static
analogue of) the delimited continuation operators. In this
section we consider the term assignment which arises from
the interpretation of typing rules, and see what would be
their natural reduction rules.

As in the case of the catch/throw calculi, we attach an
individual variable (denoted as x; y; � � �) to each element of
�, and a tag variable (denoted as �; �; � � �) to each element
of �. For brevity, we use the same symbols � and # to the
control operators obtained in this analysis, but here these
operators are annotated by tag variables, hence we will have
terms like ��k:M and #�M .

5.1 The First View

From the �rst view, we obtain the following de�nitions:

��k:M
4

= catch�0((�k:M)(�x:throw�0x))

#�M
4

= catch�M

where �0 is a new tag.

This interpretation is not interesting; there are no throw's
with the tag � in the representation of the term ��k:M , so
this operator becomes the simple call/cc-operator, and the
reset operator becomes identity.

A slightly more interesting interpretation is the following:

��k:M
4

= catch�0(throw�((�k:M)(�x:throw�0x)))

#�M
4

= catch�M

At a �rst sight, this may look interesting, since
#�(E[��k:M ]) reduces to #�Mfk := �x:throw�E[x]g, which
captures the delimited continuation E. However, it turns
out another representation of the call/cc mechanism, since
the rei�ed continuation-like object �x:throw�E[x] contains
the throw operator in it, and it discards the current contin-
uation (recall that an important property of the delimited
continuation is that it is composable like normal functions
on the contrary to the abortive object generated by call/cc.

In either case, the �rst view does not lead to a proper
computational interpretation for delimited continuations.

5.2 The Second View

Our second view implies the following de�nition:

��k:M
4

= �(�k:throw�0M)

#�M
4

= catch�0(�v:v(�m:m�u:v(�y:u)))(��:M)

where �0 is a new tag.

Let E be an evaluation context which contains exactly
one instance of a hole, namely the term E[��k:M ] contains
exactly one occurrence of �. Let R be �v:v(�m:m�u:v(�y:u)).
Then we have the following reduction sequence:

#�E[��k:M ]

� catch�0R(��:E[�(�k:throw�0M)])
�
! catch�0 (��:E[�(�k:throw�0M)])(�m:m�u:E[u])

! catch�0E[(�m:m�u:E[u])(�k:throw�0M)]
�
! catch�0E[throw�0Mfk := �u:E[u]g]

Let N be the �nal term of the above reduction sequence.
Suppose Mfk := �u:E[u]g reduces to a value V , then N

reduces to catch�0E[throw�0V ], and then reduces to V .
Suppose Mfk := �u:E[u]g reduces to throw�V . Then N

also reduces to throw�V . Consequently, two terms N and
Mfk := �u:E[u]g are observationally equivalent. In sum-
mary, the behavior of the term #�E[��k:M ] is the same as
that of Mfk := �u:E[u]g.
This result shows that the computational behavior of our

new control operators are the same as that of the original
shift/reset operators. In particular, the result of the above
computation contains a functional object �u:E[u], which
represents the intended delimited continuation object, thus
our encoding of # and � can be thought as another represen-
tation of control operators for delimited continuations.
If E contains more than one hole, the result may not be

the same as that of the original shift/reset. That is, our
encoding generated a similar, but di�erent control operator
than the existing one.
Yet, we can argue that a large number of examples con-

tains only one occurrence of the shift operator; Danvy's ip-
op, Danvy-Filinski's CPS-translation [2], and Thiemann's
partial evaluator [14]; for these examples, our encoding can
be thought as providing a sound logical foundations, by
which we can reason about properties of controlful programs.
In this analysis, we used the static catch/throw calculus,

but the encoding can be done by the call-by-value version of
Parigot's ��-calculus.

6 Implications of Our Encoding

Since our encoding of control operators uses only logically
established machinery which enjoys a number of good prop-
erties, the following are obtained straightforwardly:
1. Higher-orderness; types of the delimiters were lim-

ited to atomic types for shift/reset in order to obtain a
type-preserving CPS-translation, while arbitrary types are
allowed in our case without loss of the type-preserving CPS-
translation and the strong normalization.
2. Properties such as subject reduction, conuence, and

strong normalization are obtained automatically from those
for the static catch/throw calculus.
3. A simple type-preserving CPS-translation is obtained

by the type-preserving CPS-translation of the call-by-value
version of ��-calculus.
Since most of these results are apparent, we only mention

a few properties and the CPS-translation in what follows.

6.1 Subject Reduction and Strong Nor-
malization

Our encoding of control operators is within the scope of
LKCBV

c=t , they inherit nice properties from the calculus. In [8],
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we proved the subject reduction and the strong normaliza-
tion of the non-deterministic version of the catch/throw cal-
culi. This version contains the call-by-value version and the
call-by-name version of catch/throw calculi, so these prop-
erties for LKCBV

c=t is guaranteed.

Theorem 1 The calculus for the control operators (encoded
using the catch/throw operators) enjoys the subject reduction
property.

Theorem 2 The calculus for the control operators (encoded
using the catch/throw operators) are strongly normalizing.

The latter result implies that our operators di�er from
the original shift/reset control operators, since we can write
non-terminating reduction sequence using the shift/reset op-
erators [3].

6.2 CPS-translation

A CPS-translation of LKCBV

c=t is given in a standar way. First,
we give translation of a value V (denoted as V �).

x
� � x

(�x:M)� � �x:[[M ]]

Then the CPS-transform of a term M (denoted as [[M ]])
is given by:

[[V ]] � V �

[[MN ]] � �k:[[M ]]�m:[[N ]]�n:mnk

[[catch�M ]] � ��:[[M ]]�

[[throw�M ]] � �k:[[M ]]�

Considering these de�nitions and by simple calculation,
we can easily obtain the CPS-transform of obtained control
operators.

[[��c:M ]]
�
! �k:�(�c:�k0:[[M ]]�0)k

[[#�M ]]
�
! ��

0
:[[M ]]f� := (�m:m�u:(��:[[M ]])(�yL:Lu))g�0

Compared to the simple CPS-translation given to the
shift/reset operators, the result of ours is very complex, but
we can obtain the following information:
(i) Our reset operator (#) creates a functional object

�u:(��:[[M ]])(�yL:Lu) which is roughly an interpretation
of �u:Mf� := ug.
(ii) �yL:Lu will be substituted for the � in the second

occurrence of [[M ]], which means that the second call of our
shift operator (�) does not really invoke the rei�ed delimited
continuation. Rather, it simply ignores it. (Recall that our
encoding coincides with the real shift/reset operators only
when there is only one occurrence of the shift operator.)

7 Conclusion: What did We Obtain ?

Our conclusion of this expository work is that, a static aspect
of delimited continuation operators can be grasped using the
sound logical system plus some encoding. We used the static
catch/throw calculus as the base system in this paper, but
the call-by-value variant of ��-calculus can be also used (and
can be better, since it has stronger reductions).
Apparently, our result does not give full understanding

for shift/reset operators; our result applies only to the static
variants (such as Hieb et al's subcontinuations), and also
is limited to side-e�ect free calculi (since we duplicated the
context). On the other hand, the static nature can be com-
promised by using the abstraction mechanism of the tag �,
and we believe that this work gives a �rst step towards logi-
cal understanding of control operators for delimited contin-
uations.
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CPS Transformation of Beta-Redexes
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Abstract

The extra compaction of Sabry and Felleisen's transforma-
tion is due to making continuations occur �rst in CPS terms
and classifying more redexes as administrative. We show
that the extra compaction is actually independent of the rel-
ative positions of values and continuations and furthermore
that it is solely due to a context-sensitive transformation
of beta-redexes. We stage the more compact CPS transfor-
mation into a �rst-order uncurrying phase and a context-
insensitive CPS transformation. We also de�ne a context-
insensitive CPS transformation that is just as compact. This
CPS transformation operates in one pass and is dependently
typed.

Keywords

Continuation-passing style (CPS), Plotkin, Fischer, one-pass
CPS transformation, two-level �-calculus, generalized reduc-
tion.

1 Introduction

1.1 Continuation-passing style (CPS)

The meaning of a �-term, in general, depends on its eval-
uation order. Evaluation-order independence was one of
the motivations for continuations [14, 21], and continuation-
passing style was developed as an evaluation-order indepen-
dent �-encoding of �-terms [4, 13]. In this �-encoding, each
evaluation context is represented by a �-abstraction, called
a continuation, and each �-abstraction is passed a contin-
uation in addition to its usual argument. All intermediate
results are sent to a continuation and thus all calls are tail-
calls. This �-encoding gives rise to a variety of continuation-
passing styles, whose structure is a subject of study in it-
self [8, 15, 20].

�Basic Research in Computer Science (http://www.brics.dk/),
Centre of the Danish National Research Foundation.

yNy Munkegade, Building 540, DK-8000 Aarhus C, Denmark.
E-mail: fdanvy,lrng@brics.dk

1.2 The CPS transformation

The format of CPS �-terms was soon noticed to be of in-
terest for the compiler writer [18], which in turn fostered
interest in automating the transformation of �-terms into
CPS. Over the last twenty years, a wide body of CPS trans-
formations has thus been developed for various purposes,
e.g., to compile and to analyze programs, and to generate
compilers [1, 6, 10, 17, 18, 22].

The na��ve �-encoding into CPS, however, generates a
quite impressive ination of lambdas, most of which form
administrative redexes that can be safely reduced. Admin-
istrative reductions yield CPS terms corresponding to what
one could write by hand. It has therefore become a challenge
to eliminate as many administrative redexes as possible, at
CPS-transformation time.

1.3 Sabry and Felleisen's optimization

In their article \Reasoning about Programs in Continuation-
Passing Style" [16], Sabry and Felleisen present a CPS trans-
formation that yields more compact terms than existing
CPS transformations. For example [16, Footnote 6], CPS-
transforming

((�x:�y:x)a) b

where a and b are variables, yields the term

�k:((�x:((�y:k x) b))a)

whereas earlier transformations, such as Steele's [18] or Danvy
and Filinski's [3], yield the more voluminous term

�k:((�x:�k1:(k1 (�y:�k2:k2 x))) a (�m:mbk)):

Sabry and Felleisen's optimization relies on using Fis-
cher's CPS (where continuations occur �rst, as in �k:�x:e),
whereas earlier transformations use Plotkin's CPS (where
values occur �rst, as in �x:�k:e).

1.4 This article

Section 2 reviews administrative reductions in the CPS trans-
formation and characterizes Sabry and Felleisen's optimiza-
tion, independent of the relative positions of values and
continuations in CPS terms (i.e., both for Fischer's and
Plotkin's CPS). Section 3 constructs a similarly compact
CPS transformation by composing an uncurrying phase and
an ordinary CPS transformation. Section 4 integrates the
optimization in a context-insensitive, one-pass CPS trans-
formation. Section 5 concludes.
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2 Administrative reductions in the CPS transformation

2.1 Context-insensitive administrative reductions

Appel, Danvy and Filinski, and Wand each independently
developed a \one-pass" CPS transformation for call by value
[1, 3, 22]. This CPS transformation relies on a context-free
characterization of administrative reductions, i.e., a char-
acterization that is independent of any source term. This
one-pass transformation, shown below for Plotkin's CPS, is
formulated with a static, context-free distinction between
(translation-time) administrative reductions and (run-time)
reductions, using a two-level �-calculus [3, 12].

[[�]]p : �! (�! �)! �

[[x]]p = ��:�@x

[[�x:e]]p = ��:�@(�x:�k:[[e]]p@(�t:k@ t))

[[e0 e1]]p = ��:[[e0]]p@(�t0:[[e1]]p@(�t1:(t0@ t1)@ (�v:�@ v)))

\�" and \@" denote hygienic abstract-syntax constructors
and \�" and \@" denote translation-time abstractions and
(in�x) applications, respectively. A �-term e : � is CPS-
transformed with

�k:[[e]]p@(�t:k@ t):

The corresponding one-pass transformation for Fischer's
CPS is as follows.

[[�]]f : �! (�! �)! �

[[x]]f = ��:�@x

[[�x:e]]f = ��:�@(�k:�x:[[e]]f @(�t:k@ t))

[[e0 e1]]f = ��:[[e0]]f @(�t0:[[e1]]f @(�t1:(t0@(�v:�@ v))@ t1))

A �-term e : � is CPS-transformed with

�k:[[e]]f @(�t:k@ t):

2.2 Context-sensitive administrative reductions

Sabry and Felleisen (1) tag all the \new" lambdas intro-
duced by the CPS transformation, (2) reduce systematically
the �-redexes with a tagged lambda, and (3) untag the re-
maining tagged lambdas:

[[x]] = �k:k x

[[�x:e]] = �k:k (�k:�x:[[e]] k)

[[e0 e1]] = �k:[[e0]] (�t0:[[e1]] (�t1:t0 k t1))

A �-term e is CPS-transformed with

[[e]]:

An administrative reduction amounts to reducing a �-redex
where the �-abstraction is tagged.

This three-pass CPS transformation resembles much the
Fischer-style one-pass CPS transformation of Section 2.1,
with three exceptions:

Form: it does not use @ for applications, is more implicit
by not underlining abstract-syntax constructors, and
�-reduces continuations.

Content: it is a �rst-order rewriting system whereas the
one-pass transformation is a higher-order one.

Plus: it contains one more overlined �-abstraction, namely
the one declaring the continuation of a �-abstraction.

The extra overline makes administrative reductions context-
sensitive, as illustrated below:

[[�x:((�y:y)x)]] =

�k:k (�k:�x:(�k:k (�k:�y:(�k:k y)k))�t0:(�k:k x)�t1:t0 k t1)
�!

�
+ �k:k (�k:�x:(�k:�y:k y) k x)

�!
�
�k:k (�k:�x:(�y:k y)x)

The term �k:�x:::: arises from the transformation of �x::::
and cannot be administratively reduced. The term �k:�y::::
arises from the transformation of �y:::: and can be adminis-
tratively reduced.

In contrast, in a context-insensitive one-pass CPS trans-
formation, all overlined �-abstractions are guaranteed to oc-
cur in an overlined application (and thus there is no need for
post-erasure). A context-sensitive CPS transformation thus
can perform more administrative reductions than a context-
insensitive one.

Furthermore, we can precisely locate the extra gain: for
source �-redexes. Given a source �-redex, one can actually
substitute the continuation of the application for the con-
tinuation of the abstraction:

(�x:e[c=k]) t1

thereby enabling further administrative reductions inside e.
This reduction is not accounted for in a (say, Plotkin-

style) one-pass CPS transformation, since in the particular
case where t0 denotes �x:�k:e, one does not simplify

(t0@ t1)@ c

into
(�x:e[c=k])@ t1:

The reduction thus yields more compact CPS counter-
parts of source �-redexes, in that the translated �-abstr-
actions are not explicitly passed any continuation when they
occur in a �-redex.1

On the other hand, a similar phenomenon occurs for let
expressions, as reviewed next.

2.3 CPS transformation of let expressions

The CPS transformation of let expressions reads as follows:

[[let x = e0 in e]] = ��:[[e0]]�t0:let x = t0 in [[e]]�

In words, e is in tail-position in the let expression, and is
CPS-transformed with respect to the same � as the let ex-
pression. This technique is instrumental in continuation-
based partial evaluation [11].

Seeing let expressions as syntactic sugar for �-redexes,
it appears clearly that the context-sensitive administrative
reduction includes the standard let optimization, indepen-
dently of whether continuations are put �rst or last. This
administrative reduction, however, yields more.

1As Shivers puts it [17] and can be read o� their type, the trans-
lated �-abstractions are promoted to continuations.
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2.4 CPS transformation of embedded �-redexes

Extra mileage is obtained for fully applied (curried) �-abstr-
actions. CPS-transforming the curried application of a \n-
ary" �-abstraction to n arguments relocates the continua-
tion of the application to the body of the �-abstraction.

[[(�x1::::�xn:e) e1::: en]] =
��:[[e1]] @ (�t1::::[[en]] @ (�tn:(�xn::::(�x1:[[e]] @�)@ t1:::)@ tn):::)

This extra mileage is independent of whether continuations
are put �rst or last.

As a net e�ect, a term such as

(�f:�g:�x:f x (g x)) (a b) c (d e)

where a, b, c, d, and e are variables, is CPS transformed into
(letting continuations occur last)

�k:a b (�f:(�g:d e (�x:f x (�v1:g x (�v2:v1 v2 k)))) c):

Observe how the �-abstractions �f:::: and �x:::: end up as
the continuations of the applications (a b) and (d e), and how
the application of �g:::: to c survives in the CPS term.

Letting continuations occur �rst would yield a similar
term:

�k:a (�f:(�g:d (�x:f (�v1:g (�v2:v1 k v2)x)x) e) c) b:

2.5 Summary and conclusion

A CPS transformation with context-sensitive administrative
reductions yields more compact CPS terms because it ex-
poses more administrative redexes. The extra administra-
tive reductions a�ect nested �-redexes corresponding to fully
applied curried �-abstractions, and reduce continuation-pass-
ing by promoting the inner �-abstractions to continuations.
These extra administrative reductions can be carried out in-
dependently of whether continuations occur �rst or last in
CPS terms.

3 Staging the more compact CPS transformation

Sabry and Felleisen [16, De�nition 7, page 306] identify a
reduction �lift moving the context of a �-redex into the body
of the corresponding �-abstraction:2

E[(�x:M)N ] �! (�x:E[M ])N
where E 6= [ ] and x 62 FV (E)

(�lift )

They also pointed out that CPS-transforming a term e and
mapping the result back to direct style yields a term in �lift -
normal form.

But a term in �lift -normal form does not give rise to
the extra context-sensitive administrative reduction of Sec-
tion 2. Therefore, the extra power of the context-sensitive
CPS transformation is solely due to �lift .

The more compact CPS transformation can thus be staged
as follows:

1. a phase uncurrying (and appropriately renaming, if
need be) all �-redexes (�x1::::�xn:e) e1::: en
into embedded let expressions let x1 = e1

in let x2 = e2
in ::: let xn = en

in e

2The transitive closure of �lift is a generalized reduction in the
sense of Bloo, Kamareddine, and Nederpelt [2].

2. an ordinary, context-insensitive CPS transformation
(either �a la Plotkin or �a la Fischer) handling let ex-
pressions.

The bene�t of this staging, we believe, is three-fold: (1)
it clari�es the extra compaction; (2) it extends a context-
insensitive, one-pass CPS transformation; and (3) it suggests
how to obtain even more compact terms. Indeed, in the
same fashion as control-ow analysis can be used to locate
the application sites of curried �-abstractions in order to
uncurry them [1, 7], the CPS transformation can bene�t
from control-ow information to promote more functions to
continuations.

4 More compact CPS transformations in one pass

Promoting functions into continuations compromises con-
text independence in the CPS transformation, since how to
CPS-transform a �-abstraction depends on whether it oc-
curs in a �-redex or not. Fortunately, it does so in a very
regular way, which makes it possible to derive a family of
one-pass CPS transformations indexed by positions in the
current context.

@0
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@1

rrr
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L

rrr
r

@n

rrr LLL
L

�n�1

�n�2

Indexing the transformation functions with the lexical
position of their argument yields the one-pass CPS trans-
formation �a la Plotkin of Figure 1. A �-term e : � is CPS-
transformed with

�k:[[e]]0 @(�t:k@ t):

Similarly, a one-pass CPS transformation �a la Fischer is
displayed in Figure 2.

[[�]]0 is applied to the root of a term (i.e., to the body of a
�-abstraction or to the expression in position of argument in
an application). For n > 0, [[�]]n is applied to an expression
in position of function in an application. n is the depth of
the expression since the closest root, as in the picture above.
	 (resp. �) coerces a syntactic object into a translation-time
one.

The transformation based on these families of functions
can be proven correct by a simulation theorem similar to
Plotkin's [13]. The correctness criterion is a relation between
the transformation of the result of an expression and the
result of the transformation of it, i.e., (noting contextual
equivalence with �)

e �!� v implies [[e]]0 �a:a �!� v0 and v0 � [[v]]0 �a:a

as well as preservation of non-termination and of getting
stuck.
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	0 v = v : �0
where �0 = �.

	n+1 v = �t:��:(t@ v)@ (�v0:�@(	n v0)) : �n+1
where �n+1 = �! (�n ! �)! �.

[[�]]n : �! (�n ! �)! �

[[x]]n = ��:�@(	n x)

[[�x:e]]0 = ��:�@(�x:�k:[[e]]0 @(�t:k@ t))

[[�x:e]]n+1 = ��:�@(�t:��0:(�x:[[e]]n @�0)@ t)

[[e0 e1]]
n = ��:[[e0]]

n+1@(�t0:[[e1]]
0@(�t1:(t0@ t1)@�))

Figure 1: A family of one-pass, call-by-value CPS transformations �a la Plotkin

�0 v = v : �0
where �0 = �.

�n+1 v = ��:v@(�v0:�@(�n v0)) : �n+1
where �n+1 = (�n ! �)! �.

[[�]]n : �! (�n ! �)! �

[[x]]n = ��:�@(�n x)

[[�x:e]]0 = ��:�@(�k:�x:[[e]]0@(�t:k@ t))

[[�x:e]]n+1 = ��:�@(��0:�x:[[e]]n @�0)

[[e0 e1]]
n = ��:[[e0]]

n+1 @(�t0:[[e1]]
0@(�t1:(t0@�)@ t1))

Figure 2: A family of one-pass, call-by-value CPS transformations �a la Fischer

Reecting the context dependence of both CPS transfor-
mations, the two-level speci�cations in Figures 1 and 2 are
not themselves simply typed. Instead, they are dependently
typed and de�ne two families of simply typed two-level spec-
i�cations. Each of these families produces simply-typed two-
level �-terms, that can be statically (i.e., administratively)
reduced in one pass.

Figures 1 and 2 can be programmed in a dependently
typed language and also in Scheme, if one treats the indices
as arguments.

5 Conclusion and issues

In their study of CPS programs [16], Sabry and Felleisen
needed a CPS transformation that would perform more ad-
ministrative reductions than the ones already available [1, 3,
6, 22]. We have identi�ed the extra power of this CPS trans-
formation: a context-sensitive administrative reduction en-
abling a more e�ective treatment of �-redexes which cor-
responds to Bloo, Kamareddine, and Nederpelt's notion of
generalized reduction. This treatment turns out to be inde-
pendent of the relative positions of values and continuations.
The resulting CPS transformation can be factored into (1) a
�rst-order uncurrying phase and (2) a CPS transformation
with context-insensitive administrative reductions. We have
also presented two one-pass CPS transformations embody-
ing the extra compaction and generalizing the corresponding
one-pass CPS transformations �a la Plotkin and �a la Fischer.
They can be adaptedmutatis mutandis for encoding �-terms
into monadic normal form [9], A-normal form [5, Figure 9],
nqCPS, etc., including �lift .
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Abstract

We show that, in a language with general continuation-
e�ects, the syntactic, or intensional, CPS transform is mir-
rored by a semantic, or extensional, functional term. In
other words, from only the observable behavior any direct-
style term (possibly containing the usual �rst-class contin-
uation primitives), we can uniformly extract the observable
behavior of its CPS counterpart. As a consequence of this
result, we show that the computational lambda-calculus is
complete for observational equivalence of pure, simply typed
lambda-terms in Scheme-like contexts.

1 Introduction

CPS transformations are usually de�ned on the syntax of
terms. For example, Plotkin's CBV transform [Plo75] de-

�nes, for any direct-style term E, the CPS term E by struc-
tural induction on E. Variations are possible, such as one-
pass optimizing transforms [DF92], but all have in common
that they are intensional: they act on representations of the
program texts, rather than on the meanings of the programs
themselves.
The continuation-passing form of a term seems to con-

tain strictly more semantic information than its direct-style
counterpart: Meyer and Wand showed that, in the typed
case, there exists for any type � , a term D� such that for
all closed E : � , D� E =�� E [MW85]. In fact, we can even

obtain D� E =�c E [Kuc98], where �c is the computational
lambda-calculus [Mog89]. On the other hand, functionally
extracting the CPS meaning of a term from its direct mean-
ing seems impossible. Indeed, Meyer and Riecke showed
that there can be no lambda-term C� such that C� E =�� E
[MR88]. Adding recursion and similar operations does not
help in de�ning C. The primary reason is that { assum-
ing the usual left-to-right evaluation order { terms such as
f x(gx) and (�y:f xy)(gx) are indistinguishable (because
they have the same denotation in set- and domain-theoretic
models), yet their CPS counterparts can be easily distin-
guished.
With additional e�ects in the language, such as �rst-class

continuations, we can distinguish the above terms. How-
ever, even the call/cc operator apparently cannot distin-
guish f x and (�y:f x) (f x). On the other hand, Sitaram
and Felleisen showed that, after adding the further control
operators \abort" and \prompt", all terms with di�erent
continuation-passing denotations actually become observa-
tionally distinguishable [SF90]. This opens { at least in prin-

�Basic Research in Computer Science (www.brics.dk),
Centre of the Danish National Research Foundation.

ciple { the possibility of de�ning a suitable C� in terms of
suÆciently powerful control primitives. In this note we will
de�ne such a term and outline some of its properties and
applications.

2 Extensional CPS transformation by

monadic reection

In the following we �rst present a uni�ed, e�ect-typed lan-
guage expressive enough to embed both the source and tar-
get languages of the CPS transform, and then de�ne the
extensional CPS transform and show its correctness with re-
spect to an equational theory for the uni�ed language.

2.1 A uni�ed language

We consider a simply typed language Lp of pure, direct-style
lambda-terms. Based on this, we de�ne a language Lc with
SML/NJ-style �rst-class continuations. The type structure
of Lc is thus:

� ::= a j �1 ! �2 j :�

(a ranges over atomic types and :� is the type of � -accepting
continuations, � cont.) The term syntax of Lc consists of the
usual constructs for function abstraction and application, as
well as two constant families callcc� : (:� ! �) ! � and
throw�;� : :�! � ! � (we will usually omit the explicit
type tags):

V ::= x j �x:E j callcc j throw

E ::= V j E1E2

The typed CBV CPS-transform wrt. an atomic answer
type o is based on the following transformation of Lc-types
to Lp-types:

a = a

�1 ! �2 = �1 ! (�2 ! o)! o

:� = � ! o

The term transform is most conveniently expressed with
separate translations for values and for general expressions:

x = x

�x:E = �x:E

callcc = �f:�k:f kk

throw = �c:�k:k (�a:�k0: ca)

V = �k:kV

E1E2 = �k:E1 (�f:E2 (�a:f ak))
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�(x) = �

� ` x : � !n

�; x: �1 ` E : �2 ! e

� ` �x:E : (�1
e! �2) !n

� ` E0 : (�1
e! �2) ! e � ` E1 : �1 ! e

� ` E0E1 : �2 ! e

� ` E1 : �1 ! e �; x: �1 ` E2 : �2 ! e

� ` let x=E1 in E2 : �2 ! e

� ` E : � !k

� ` [E] : (� p! o) p! o !n

� ` E : (� p! o) p! o !n

� ` �(E) : � !k

� ` E : � ! e � ! e � � 0 ! e
0

� ` E : � 0 ! e
0

� � � 0 e � e0

� ! e � � 0 ! e
0 b � b

� 01 � �1 �2 ! e � � 02 ! e
0

�1
e! �2 � � 01

e0! � 02
e � e

e � e0 e0 � e00

e � e0 n � p p � k

Figure 1: E�ect-typing and subtyping rules for Lk.

It is easy to check that the transformation is type-preserving,

in the sense that if � `Lc E : � then � `Lp E : (� ! o)! o,

where � is the pointwise type-transformation of the typing

context �. Note also that both V and E are Lp-values.
To express the transform extensionally, we embed both

Lp and Lc into a uni�ed language Lk, with both \pure" and
\impure" function spaces. Applying the extensional trans-
formation to a value V from the Lc-fragment will then give
the Lk-term C� V , which can be shown equivalent to the
term V from the Lp-fragment.

The typing rules of Lk are given in Figure 1; they are es-
sentially a specialization of the multi-e�ect monadic meta-
language of [Fil99a] to continuation-e�ects. To accommo-
date both notions of function space in a single language,
we introduce a simple e�ect-typing discipline, with a typ-
ing judgment � ` E : � ! e, where e is either k (signifying
potential control e�ects), p (absence of control e�ects), or
n (absence of any e�ects). Likewise, we annotate arrows as
e!, according to the potential e�ects of the function body.
We also allow a simple notion of e�ect-subtyping, where any
n-computation can be seen as a p-computation, and any p-
computation as a k-computation. This subtyping extends in
the usual covariant-contravariant way to function types.
There is a one-to-one correspondence between general Lk-

terms of type � !k and Lk-values of type (� p! o) p! o.
This correspondence is made explicit by two special Lk-
constructs, monadic rei�cation [E] and reection �(E), ex-
pressing the isomorphism.
The embedding of Lc into Lk is now straightforward: val-

ues are treated as n-e�ect terms, non-values as terms with
k-e�ects. Also, the single function type of Lc is annotated

as k!. The additional type constructor and terms of Lc are
desugared as follows:

:� = � p! o

callcc = �f:�(�k:[f k]k)

throw = �c:�a:�(�k0: ca)

(We do not actually need to assume that :� and � p! o
are exactly the same type; it suÆces that there exist Lk-
isomorphisms between them.) Similarly, Lp is embedded
into Lk by assigning all non-value terms the e�ect p, and
annotating all function spaces as p!.
We can extend the CPS-transform to all of Lk by tak-

ing the translation of terms with p- and n-e�ects to be the
identity, while k-e�ects are CPS-translated away as de�ned
above; the details can be found in [Fil99a]. Note that this
translation is de�ned by induction on e�ect-typing deriva-
tions, not on the raw Lk-terms themselves; however, it is
still observationally coherent, as remarked below.

The extended translation assigns an Lp-meaning to all
Lk-programs, and can thus be taken as the de�nition of the
semantics of Lk. We will not actually need the de�nition of
the translation for all of Lk to establish correctness of the ex-
tensional transform, however; instead, a sound axiomatiza-
tion of the equational theory induced by the full translation
will suÆce.

Note that the rei�cation and reection operators of Lk

also allow us to de�ne the operations reset (also known as
prompt) and abort, with typing rules:

� ` E : o !k

� ` #E : o !p � ` abort � : (o
k! �) !n

The de�nitions are very simple:

#E = [E](�r:r)

abort = �r:�(�k:r)

That is, #E evaluates E with the identity continuation,
while abort r discards the current continuation and returns
r as the answer. As shown by Sitaram and Felleisen
[SF90], adding these operators, together with callcc/throw
and parallel-if, to CBV PCF makes the usual domain-
theoretic continuation semantics fully abstract. Even with-
out parallel-if, however, the control operators have the same
expressive power as rei�cation and reection, because it is
easy to show that, in the equational theory of Lk,

[E] = �k:#(kE)

�(E) = callcc (�c:abort (E (�v:#(throw cv))))

These equations are in fact exploited directly in the ML
implementation of reection and rei�cation below.

Finally, let us note that the e�ect-separated language Lk

can actually be implemented by a direct embedding into a
single-e�ect language Lcs with �rst-class continuations and
state, such as Scheme or SML/NJ. In other words, the exact
choice of a typing derivation for an Lk-program does not
a�ect its observable result.
More precisely, we can de�ne an operation j�j : Lk !

Lcs that erases all e�ect-annotations from types and terms,
and replaces �(E) and [E] with reect E and reify (�(): E),
respectively, where

reect� : ((�! o)! o)! �

reify� : (1! �)! (�! o)! o

are �xed Lcs term families. Then for any closed term `Lk
E : a !p, Evalcs(jEj) = Evalk(E) def= Evalp(E), where the
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� ` E1 : �1 !n �; x: �1 ` E2 : �2 ! e

� ` (�x:E2)E1 = E2fE1=xg : �2 ! e

� ` E : �1
e! �2 !n

� ` �x:Ex = E : �1
e! �2 !n

� ` E1 : �1 !n �; x: �1 ` E2 : �2 ! e

� ` let x=E1 in E2 = E2fE1=xg : �2 ! e

� ` E : � ! e

� ` let x=E in x = E : � ! e

� ` E1 : �1 ! e �; x1: �1 ` E2 : �2 ! e �; x2: �2 ` E3 : �3 ! e

� ` let x2 = (let x1 =E1 in E2) in E3 = let x1 =E1 in let x2 =E2 in E3 : �3 ! e

� ` E0 : �1
e! �2 ! e � ` E1 : �1 ! e

� ` E0E1 = let f =E0 in f E1 : �2 ! e

� ` E0 : �1
e! �2 !n � ` E1 : �1 ! e

� ` E0E1 = let a=E1 in E0a : �2 ! e

� ` E : � !p

� ` [E]= �k:kE : (� p! o) p! o !n

� ` E1 : �1 !k �; x: �1 ` E2 : �2 !k

� ` [let x=E1 in E2]= �k:[E1](�x:[E2]k) : (�2
p! o) p! o !n

� ` E : (� p! o) p! o !n

� ` [�(E)]= E : (� p! o) p! o !n

� ` E : � !k

� ` �([E]) = E : � !k

Figure 2: The equational theory of Lk.

Evals are partial functions denoting evaluation of complete
programs to base-type results. (Note that even though E
may not contain top-level control e�ects, it may still use
control operators internally.)
In fact, this embedding result also holds for extensions of

Lk with recursion and arithmetic [Fil99a]. Moreover, wrt.
all Lcs-contexts, jcallccj �= callcc and jthrow j �= throw . That

is, the de�ned versions of callcc and throw in Lk are obser-
vationally equivalent to the native versions already in Lcs.
The SML/NJ de�nitions of reection and rei�cation can

be written as follows:

functorfunctorfunctor Control (typetypetype ans) =
structstructstruct

locallocallocal
openopenopen SMLofNJ.Cont
valvalval mc : ans cont ref =

callcc (fnfnfn q => (callcc (fnfnfn c => throw q (ref c));
raiseraiseraise Fail "missing reset"))

funfunfun abort x = throw (!mc) x
funfunfun reset t =

letletlet valvalval m = !mc
valvalval r = callcc (fnfnfn c => (mc := c; abort (t ())))

ininin mc := m; r endendend
ininin
typetypetype ans = ans
funfunfun reify t = fnfnfn k => reset (fnfnfn () => k (t ()))
funfunfun reflect h =

callcc (fnfnfn c =>
abort (h (fnfnfn v => reset (fnfnfn () => throw c v))))

endendend
endendend;

(This is a slightly streamlined variant of the code from
[Fil99a].)

2.2 The extensional CPS transform

Rei�cation and reection establish a \local" correspondence
between direct-style and continuation-passing views of a
term. We can extend these isomorphisms to arbitrary Lc-
types � , by de�ning the following term families:

C� : � n! �

Ca = �x:x

C�1!�2 = �f:�a:�k:[C�2 (f (D�1 a))]k

C:� = �c:�a:[throw c (D� a)](�r:r)

D� : � n! �

Da = �x:x

D�1!�2 = �f:�a:D�2 (�(�k:f (C�1 a)k))

D:� = �k:mkcont (�a:�(�k0:k (C� a)))

where mkcont(q) = callcc (�c:q (callcc (throw c)))

(The cases for :� appear somewhat messy due to the asym-
metry of introduction and elimination constructs at that
type; explicit �rst-class continuation abstractions would sim-
plify things.).
To show that these functions correctly mirror the inten-

sional CPS transform, we extend the equational theory of
the computational lambda-calculus �c with a few axioms for
monadic reection and rei�cation from [Fil99a]. The com-
plete set of axioms is given in Figure 2. This calculus is
easily checked to be sound in the sense that if `Lk E = E0

then E =�c E0, and hence, in particular, E and E0 are ob-
servationally congruent wrt. all Lk-program contexts. Let
us now establish that the extensional CPS transform of an
Lc-term is Lk-equivalent to the original transform.
First, we note that the fairly elaborate Lc-based construc-

tions of C:� and D:� are equivalent to much simpler Lk

constructions:

Lemma 1 The transformation functions at continuation
types satisfy the following equations:

`Lk C:� = �c: �a: c (D� a) : :�
n! � p! o !n

`Lk D:� = �k: �a:k (C� a) : (�
p! o) n!:� !n

Proof: by simple equational reasoning.

Then, we show that the extensional CPS transform is in-
deed an isomorphism:

Lemma 2 C� and D� are inverses for any Lc-type � :

a: � `Lk D� (C� a) = a : � !n

a: � `Lk C� (D� a) = a : � !n

Proof: by straightforward induction on � , using Lemma 1
for :� -types.

And �nally, we can state the main result:
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Theorem 1 Let � `Lc V : � and � `Lc E : � . Then

� `Lk C� V = V fC�g : � !n

� `Lk [C� E] = EfC�g : (�
p! o) p! o !n

where C� is the pointwise substitution C�ixi=xi, for each

xi: �i in �. In particular, for closed V and E, C� V = V

and [C� V ] = E

Proof: by structural induction on V and E, using Lemmas 1
and 2.

We can also express the extensional transforms in ML by
de�ning the pair (C� ;D� ) simultaneously for each type � :
(See [Yan98] for a general discussion of this technique.)

functorfunctorfunctor Iso (typetypetype ans) =
structstructstruct

locallocallocal
structurestructurestructure C = Control (typetypetype ans = ans)
openopenopen SMLofNJ.Cont C
funfunfun mkcont q = callcc (fnfnfn c => q (callcc (throw c)))

ininin
datatypedatatypedatatype ('a,'ac) cd = CD ofofof ('a -> 'ac) * ('ac -> 'a)

valvalval base = CD (fnfnfn x => x, fnfnfn x => x)
funfunfun func (CD (c1,d1), CD (c2,d2)) =

CD (fnfnfn f => fnfnfn a =>
fnfnfn k => reify (fnfnfn () => c2 (f (d1 a))) k,

fnfnfn f => fnfnfn a =>
d2 (reflect (fnfnfn k => f (c1 a) k)))

funfunfun cont (CD (ca,da)) =
CD (fnfnfn c => fnfnfn a =>

reify (fnfnfn () => throw c (da a)) (fnfnfn r => r),
fnfnfn k =>

mkcont (fnfnfn a => reflect (fnfnfn _ => k (ca a))))
funfunfun ctrans (CD (ca,da)) = ca
funfunfun dtrans (CD (ca,da)) = da

endendend
endendend;

The extensional transformations C� and D� thus allow us
to link together direct-style and CPS functions in the same
program { even if either body of code makes use of non-local
control transfers. In fact, they also allow us to \decompile"
some direct-style lambda-terms into their CPS source code,
as we will see next.

3 Visualizing the transform through

normalization by evaluation

In a functional language with a base type � of syntactic
lambda-terms, we can de�ne, for any simple type � built out
of � and function spaces, a term N� : � ! �, such that for
any closed, pure lambda-term E : � , Evalp(N� E) =�� E
[BS91]. (In fact, the result of Evalp(N� E) is exactly the
��-long normal form of E, hence the label \normalization
by evaluation".)
This type-indexed family of terms can be coded in ML

using same idea as before:

structurestructurestructure NBE =
structstructstruct

locallocallocal
valvalval g = ref 0
funfunfun gensym s = (g := !g + 1; s ^ Int.toString (!g))

ininin
datatypedatatypedatatype exp =

VAR ofofof string | LAM ofofof string * exp | APP ofofof exp * exp
datatypedatatypedatatype 'a nw =

NW ofofof ('a -> exp) * (exp -> 'a) * string

funfunfun base s = NW (fnfnfn x => x, fnfnfn x => x, s)
funfunfun func (NW (n1, w1, s1), NW (n2, w2, s2)) =

NW (fnfnfn f => letletlet valvalval v = gensym s1
ininin LAM (v, n2 (f (w1 (VAR v)))) endendend,

fnfnfn e => fnfnfn a => w2 (APP (e, n1 a)),
"f")

funfunfun name s (NW (na,wa,_)) = NW (na,wa,s)
funfunfun nbe (NW (na,_,_)) a = (g := 0; na a)

endendend
endendend;

(We use a gensym-based variable-name generator for con-
ciseness only; a purely functional de�nition of nbe is also
possible [BS91, Fil99b].) Note that, in ML, we can also ap-
ply N� to polymorphic lambda-terms: their type variables
will be automatically instantiated to � by the typing rule
for function application. The extra string component of nw
is used to supply \preferred" names for gensym'd variables
of that type, as in [Dan96]. This is for improving readability
only { since names are generated uniquely anyway, we could
just use "x" in all cases. For example, we get:

infixrinfixrinfixr 5 -->
valvalval opopop --> = NBE.func
valvalval bt = NBE.base;

valvalval test0 =
NBE.nbe ((bt "a" --> bt "b") --> bt "a" --> bt "a")

(fnfnfn f => fnfnfn x => (fnfnfn y => x) (f x));
(*
val test0 = LAM ("f1",LAM ("a2",VAR "a2")) : NBE.exp
*)

Note that the source application f x does not appear in
the output, since its result is discarded; the decompilation
works only up to ��-conversion. But we can now also com-
bine NBE and the extensional CPS transform to decompile
the CPS counterpart of a term:

structurestructurestructure NBECPS =
structstructstruct

locallocallocal
structurestructurestructure N = NBE
structurestructurestructure I = Iso (typetypetype ans = N.exp)

ininin
datatypedatatypedatatype ('a,'ca) cn = CN ofofof ('a,'ca) I.cd * 'ca N.nw

funfunfun base s = CN (I.base, N.base s)
funfunfun func (CN (ca, ra), CN (cb,rb)) =

CN (I.func (ca,cb),
N.func (ra,

N.func (N.name "k" (N.func (rb,
N.base "o")),

N.base "o")))
funfunfun cont (CN (ca,ra)) =

CN (I.cont ca,
N.name "c" (N.func (ra, N.base "o")))

funfunfun dcps (CN (cd, nw)) x = N.nbe nw (I.ctrans cd x)
endendend

endendend;

For example:

valvalval opopop --> = NBECPS.func
valvalval bt = NBECPS.base
valvalval ct = NBECPS.cont;

valvalval test1 =
NBECPS.dcps ((bt "a" --> bt "b") --> bt "a" --> bt "a")

(fnfnfn f => fnfnfn x => (fnfnfn y => x) (f x))
valvalval test2 =
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NBECPS.dcps ((ct (bt "a") --> bt "a") --> bt "a")
SMLofNJ.Cont.callcc

valvalval test3 =
NBECPS.dcps (ct (bt "a") --> bt "a" --> bt "b")

SMLofNJ.Cont.throw;
(*
val test1 =
LAM
("f1",
LAM

("k2",
APP

(VAR "k2",
LAM
("a3",
LAM

("k4",
APP
(APP (VAR "f1",VAR "a3"),
LAM ("b5",APP (VAR "k4",VAR "a3"))))))))

: NBE.exp
val test2 =
LAM
("f1",
LAM

("k2",
APP

(APP (VAR "f1",LAM ("a3",APP (VAR "k2",VAR "a3"))),
LAM ("a4",APP (VAR "k2",VAR "a4"))))) : NBE.exp

val test3 =
LAM
("c1",
LAM

("k2",
APP

(VAR "k2",
LAM ("a3",LAM ("k4",APP (VAR "c1",VAR "a3"))))))

: NBE.exp
*)

(Note the similarity between the decompiled SML/NJ con-
tinuation primitives and the de�nitions of their CPS trans-
forms in Section 2.)
A related way of regenerating CPS code from meanings

is to adapt the output of a CBV version of NBE [Dan96,
Section 6]. However, the combined correctness argument for
e�ect-free NBE and the extensional CPS transformation is
signi�cantly simpler than for CBV NBE directly.

4 A completeness result

In a minimally realistic functional programming language
(including, at least, recursion and integer arithmetic), ob-
servational equivalence of terms is not decidable, or even re-
cursively enumerable. One can show, however, that for PCF-
like languages [Plo77], pure (i.e., constant-free) lambda-
terms are observationally equivalent in any PCF context i�
they are ��-convertible. A simple proof of this result based
on NBE is given in [BS91]. (Note that both the result and
its proof rely heavily on the terms being simply typed.)
For CBV languages, ��-conversion is of course not sound

for observational equivalence. Convertibility in the compu-
tational lambda-calculus is sound, but may not be complete,
even for equivalence between pure terms. This is again be-
cause there are �c-unequal pure CBV-PCF terms (such as
the ones from Section 1) that cannot be distinguished by any
CBV-PCF context. But with suÆciently powerful e�ects, we
can in fact distinguish all such terms:

Theorem 2 In Lcs (CBV PCF with Scheme-style e�ects,
i.e., call/cc and mutable state), two pure lambda-terms are

observationally indistinguishable i� they are provably equal
in the computational lambda-calculus.

Proof. The \if" direction (soundness) is standard. For \only
if", let V; V 0 : � be two Lcs-observationally indistinguish-
able, closed Lc-values. (We will reduce the general case
to this one, below.) That is, for all Lcs-program contexts
C[�] with � -typed holes (i.e., such that C[V ] and C[V 0] are
closed terms of base type), Evalcs(C[V ]) = Evalcs(C[V 0]).
(As usual, it actually suÆces to only require coincidence of
termination.)

By Theorem 1, we know that `Lk C� V = V : � , and

hence (by soundness of Lk's equational theory) C� V �= V

wrt. Lk-contexts; likewise, C� V
0 �= V 0. Now consider the

Lcs-program context C[�] def= jN� j (jC� j �): for any closed
Lcs-term E : � , C[E] is a closed Lcs-term of base type �.
(We can take � to be the type of integers, with a suitable
G�odel-coding; we still identify a syntactic lambda-term with
its representation as a �-value.) Since V is a pure lambda-
term, we now get

V =�� Evalp(N� V ) = Evalk(N� V )

= Evalk(N� (C� V )) = Evalcs(jN� (C� V )j)
= Evalcs(C[jV j]) = Evalcs(C[V ]) = Evalcs(C[V 0])

= � � � =�� V 0

And thus, from Sabry and Felleisen's equational corre-
spondence between ��-conversion on CPS terms and �c-
conversion on their direct-style counterparts [SF93], we get
V =�c V 0.
Finally, let E �= E0 be arbitrary, contextually equivalent

Lc-terms { not necessarily values, and not necessarily closed.
Let ~x = (x1; : : : ; xn) be a �nite list including at least all the
variables occurring free in E or E0; wlog. we can assume
that n � 1. We write �~x: E for �x1: � � � : �xn: E, and E~x for
Ex1 � � � xn.
Since �= is a congruence, we must have �~x:E �= �~x: E0.

By the result for closed values above, we obtain �~x:E =�c

�~x:E0, and then, since =�c is also a congruence and includes
�v-conversion,

E =�c (�~x:E) ~x =�c (�~x: E
0) ~x =�c E0

which is the desired result.

5 Conclusions

Although CPS transforms are usually viewed as syntax-to-
syntax transformations, the meanings of direct-style terms
in Scheme-like languages (i.e., with �rst-class continuations
and mutable state) actually contain enough information to
de�ne the transform as semantics-to-semantics. Practically,
this means that we can write fragments of code in either
direct style or in CPS as most convenient, and use the ex-
tensional CPS- and DS-transforms to glue these fragments
together without recompilation.
Moreover, combining the extensional CPS-transform re-

sult with the normalization-by-evaluation principle, we
obtain a new observational-completeness result for �c-
convertibility of pure, simply typed lambda-terms in
Scheme-like contexts.
The account of the extensional CPS transform reported

in this note should be considered preliminary: although not
covered here, the transformation result actually generalizes
directly to the full language Lk, and further to arbitrary
monadic e�ects, as long as their reection and rei�cation
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operations can be expressed within the language. Also, a
formal treatment of constants and constant families (such
as �xed-point combinators), especially with recursive types,
requires further investigation. It is expected, however, that
the results presented here will in fact scale up gracefully to
such extensions.
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1. INTRODUCTION
Continuations are the raw material of control. They can

be used to explain a wide variety of control behaviours,
including calling/returning (procedures), raising/handling
(exceptions), labelled jumping (goto statements), process
switching (coroutines), and backtracking. In the most pow-
erful form, represented by callcc and its cousins, the pro-
grammer can manipulate continuations as �rst-class values.
It can be argued, however, that unrestricted use of contin-
uations, especially when combined with state, can give rise
to intractable higher-order spaghetti code. Hence, few lan-
guages give the user direct, rei�ed, access to continuations;
rather, they are \behind the scenes", implementing other
control behaviours, and their use is highly stylised.
But just what is this stylised usage? Remarkably, as we

will argue, in many forms of control, continuations are used
linearly [6]. This is true for a wide range of e�ects, including
procedure call and return, exceptions, goto statements, and
coroutines.
Formally, for a number of control behaviours, we present

continuation-passing-style (cps) transformations into a lan-
guage with both intuitionistic and linear function types. We
also remark on combinations of features which break linear-
ity. Interestingly, the presence of named labels, by itself,
does not. And neither does backward jumping, which is dif-
ferent in character from backtracking.
This is essentially an attempt to formalise ideas about

continuation usage, some of which have been hinted at in
the literature. Indeed, part of what we say is known or
suspected amongst continuation insiders; however, we have
not found any of the linear typings we give stated anywhere.
The basic idea can be seen in the type used to interpret

untyped call-by-value (cbv) �-calculus. Just as Scott gave
a typed explanation of untyped �-calculus using a domain
equation

D �= D ! D

we can understand linear use of continuations in terms of

the domain equation

D �= (D ! R)( (D ! R);

where R is a type of results. If we were to change the prin-
cipal ( to an !, then this type could accept callcc; but,
as we later discuss, callcc duplicates the current continu-
ation, and is ruled out by this typing. Thus, even though
one might claim that the linear usage of continuations has
nothing to do with typing in the source language, we can
nonetheless use types in the target language to analyse con-
trol behaviour.
An essential point is that it is continuation transformers,

rather than continuations, which are linear. This is the rea-
son we say that continuations are used linearly. All of the
interpretations we present are variations on this idea.
Our chief concern in this paper is to describe the main

conceptual aspects of linearly used continuations in a way
that keeps the technical discussion as simple as possible. So
we concentrate on soundness only. A comprehensive analysis
of completeness properties of our transforms, or variants,
represents a challenge for future work, and in stating the
transforms for a variety of features we hope to make clear
what some of the challenges are. Several of these problems
are discussed at the end of the paper.

2. THE TARGET LANGUAGE
We need a formulation of linear type theory built from

the connectives (, ! and &, and use one based on DILL

[3], which is a presentation of linear typing that allows a
pleasantly direct description of ! (which does not rely on
decomposition through !).

P ::= R j P ( P j A! P j P&P j X j �X:P

A ::= � j P

Here, X ranges over type variables, � builds recursive types,
and � ranges over primitive types. Types P are pointed
while types A are not necessarily. Pointed types are those
for which recursion is allowed. In particular, primitive types
used to treat atomic data (such as a type for integers) should
not be pointed in a cps language. It would be possible to
add type constructors for sums, !, and so on, but we will not
need them.
The distinction between pointed and non-pointed types is

especially vivid in the standard predomain model of the sys-
tem, where a pointed type denotes a pointed cpo (one with
bottom) and a type denotes a possibly bottomless cpo. The
type R of results denotes the two-point lattice, & is cartesian
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product, ( is strict function space, and ! is lifting. � is
interpreted using the inverse limit construction. This is not
an especially accurate model of the language, because the
interpretation of ( validates Contraction and because the
abstractness of the result type is not accounted for. But the
model is certainly adequate for any reasonable operational
semantics, and so serves as a useful reference point.
There is also a predomain variant of the original coherence

space model of linear logic. In this model a type denotes
a family of coherence spaces and a pointed type denotes
a singleton such family [2]. Then ( is the usual linear
function type, and fAigi2I ! P is a product

Q
i2I

Ai ) P
where ) is stable function space and

Q
i2I is the direct

product of coherence spaces; this gives us a singleton family
(that is, a pointed type).
The system uses typing judgements of the form

�;� ` M : A

where the context consists of an intuitionistic zone � and
a linear zone �. Intuitionistic and linear zones are sets of
associations x : A pairing variables with types. Since we use
sets, the Exchange rules are built in.

�; x : A; ` x : A �;x : P ` x : P

�;�; x : P ` M : Q

�;� ` Æx:M : P ( Q

�;�1 ` M : P ( Q
�;�2 ` N : P

�;�1;�2 ` M N : Q

�; x : A; � `M : P

�;� ` �x:M : A! P

�;� `M : A! P
�; ` N : A

�;� ` M N : P

�;� `M : P �;� ` N : Q

�;� ` hM;Ni : P&Q

�;� `M : P1&P2

�;� ` �i M : Pi

We will frequently consider situations where some number
of continuations are held in a single &-tuple in the linear
zone. We introduce the following syntactic sugar for them,
using the evident n-ary form of &-product, rather than the
binary form.

� �;�; hx1; : : : ; xni : P1& � � �&Pn ` M : P stands for
�;�; y : P1& � � �&Pn `M [�1 y=x1; : : : ; �n y=xn] : P .

� Æhx1;:::; xni:M stands for Æy:M [�1 y=x1;:::; �n y=xn].

For simplicity in presenting the transforms, we handle re-
cursive types using the \equality approach", where �X:P
and its unfolding P [�X: P=X] are equal, yielding the typing
rule

�;� ` M : P
P = Q

�;� `M : Q

We omit the details and instead refer to [1] for a compre-
hensive treatment.

3. CALL/RETURN
A prominent historic explanation of procedure call/return

in terms of continuations is the Fischer (continuation-�rst)
cps transform. Here we transform untyped cbv (operator-

�rst) �-calculus into the linear target language.

x = Æk: k x

�x:M = Æk: k (Æk0:�x:M k0)

M N = Æk:M (�m:N (�n: (m k)n))

Here we see that, as mentioned in the introduction, source
language procedures are interpreted by continuation trans-
formers: terms which accept a continuation and yield an-
other continuation based upon the argument continuation,
and thus have type

�X: (X ! R)( (X ! R);

abbreviated D. (Henceforth, we do not explicitly de�ne the
types and type abbreviations corresponding to domains.)
So a continuation transformer is e�ectively the di�erence,
or delta, between two continuations, and Æ is used to form
such abstractions.

Proposition 1. If x1; : : : ; xn contains the free variables
of M , then

x1 : D; : : : ; xn : D; `M : (D ! R)( R:

Here, notice that source variables always get sent to the in-
tuitionistic zone, where they can be duplicated or discarded
freely. Continuation arguments, on the other hand, always
show up in the linear zone in the course of typing a target
term.
A common area of confusion is the relationship between

linearity and recursion. Since recursion can be de�ned via
self application in the source language, will we not have to
use a continuation many times, or not at all, in the target?
The short answer is no: continuations do not need to be
used more than once since we use recursive continuation
transformers to construct non-recursive continuations, and
these continuation transformers can be used many times.
We explain this by concentrating on the transform of the

most basic self-application:

f f = Æk: f k f:

This makes clear that, in the target language, recursion is
e�ected by a sort of self-application in which a continua-
tion transformer f is passed to a continuation f k which is
obtained from f itself. If we were to uncurry the type of
continuation transformers, a call to f would directly pass
itself as one of the arguments. The important point here
is that self application in the source only breaks linearity
of continuations in the target, not continuation transform-
ers; that is, it is entirely possible for the continuation f k
to be non-linear, without violating linearity of f . The typ-
ing derivation of self-application in the target language (see
Figure 1) shows how the recursive type must be \unwound"
once to type the operand occurrence of f .
Finally, it is essential to note that linearity does not arise

because of any linear �s in the source, but because contin-
uations are not rei�ed and hence cannot be wrapped into
closures. This is similar to O'Hearn and Reynolds's work
[9], where linearity and polymorphism arise in the target of
a translation from Algol; this prevents the state from being
treated, semantically, as if it were �rst-class.

4. EXCEPTIONS
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f : D; ` f : D
D = (D ! R)( (D ! R)

f : D; ` f : (D ! R)( (D ! R) f : D; k : D ! R ` k : D ! R

f : D; k : D ! R ` f k : D ! R f : D; ` f : D

f : D; k : D ! R ` f k f : R

f : D; ` Æk: f k f : (D ! R)( R

Figure 1: Typing derivation of self-application in the target language

Exceptions are a powerful, and useful, jumping construct.
But their typing properties are rather complex, and vary
somewhat from language to language. To study the jumping
aspect of exceptions we focus on an untyped source language
with raise and handle primitives.
We proceed as before, but now using a domain equation

D �= (D ! R)&(D ! R)( (D ! R):

A typed version of this can even be derived from a direct
semantics, following Moggi. That is, we start with

(A! B)� = A� ! B� +E;

followed by a standard cps semantics which gives us

A� ! B� +E = ((B� +E)! R)( (A� ! R);

and �nally a manipulation using the isomorphism

(B� +E)! R �= (B� ! R)&(E ! R):

In this double-barrelled cps two continuations are manip-
ulated: current and handler [17].

x = Æhk; hi: k x

�x:M = Æhk; hi: k (Æhk0; h0i: �x:M hk0; h0i)

M N = Æhk; hi:M h(�m:N hm hk; hi; hi); hi

raiseM = Æhk; hi:M hh; hi

handleM �e:H = Æhk; hi:M hk; (�e:H hk; hi)i

Proposition 2. If x1; : : : ; xn contains the free variables
of M , then

x1 : D; : : : ; xn : D; `M : (D ! R)&(D ! R)( R:

Note that the �rst three cases do not manipulate the
handler continuation, just pass it along. The transform
of raiseM indicates that M is evaluated and the result-
ing value is thrown to the handler continuation, and if the
evaluation of M results in an exception being raised, the
current handler continuation is used. Correspondingly, the
transform of handleM �e:H evaluatesM with the same re-
turn continuation but installs a new handler continuation
which given e, evaluates H with (handleM �e:H)'s contin-
uations.
At �rst sight, this treatment of handling looks like dupli-

cation of the current continuation. But it is not: the use of
& to the left of ( indicates that a program uses either the
current continuation or the handler continuation, but not
both. Thus, linear typing succinctly summarises an impor-
tant aspect of the jumping behaviour of exceptions, which
draws a sharp distinction with callcc and its non-linear
usage of continuations.

5. DUPLICATING CONTINUATIONS
A crucial reason Propositions 1 and 2 hold is that in the

application of an intuitionistic function, the argument can-
not have any free linear variables. This has the e�ect of
precluding upward continuations, where a continuation is
wrapped in a closure and returned, or passed as the argu-
ment to another function. Concretely, this is demonstrated
by the term (which does not typecheck)

Æk: k (Æh:�x: k (Æl:�y: l x))

in which k is an upward continuation, that is, wrapped in
a closure which is thrown to another continuation; in this
case, k itself. This term, which corresponds to

callcc �k:�x: throw k �y: x

in the source language, exhibits the backtracking behaviour
leading to the higher-order spaghetti code associated with
callcc. We use the typed variant, callcc, rather than the
untyped, call/cc, since the latter would require modi�ca-
tion of the interpretation of procedures. The cps transform
of callcc shows how continuations are duplicated, breaking
linearity.

callcc = Æk: k (Æh:�f: (f h)h)

This fails to typecheck since h, which is Æ-bound and hence
linear, is passed to f as both its return continuation and
argument.
Similar backtracking behaviour can be seen in snobol

and Prolog, and their continuation semantics do not obey a
discipline of linearly used continuations [14, 7].

6. REIFIED CONTINUATIONS, AND UP-
WARD VERSUS DOWNWARD

It might be expected that the reason continuations are
used linearly in the call/return and exceptions cases is that
they are not rei�ed, which is to say directly named by pro-
gram variables, as callcc achieves. After all, source lan-
guage variables may appear any number of times in a term.
This reasoning is only partially valid. To explain this, we
consider a language where continuations are rei�ed, but still
used linearly.
We consider a language of arithmetic expressions, with a

means of labelling a subexpression.

E ::= x j n j E +E j l : E j goto l E

A goto statement sends a value to the position where the
indicated label resides. As an example,

2 + (l : (3 + (goto l 7)))

evaluates to 9, as evaluation jumps past 3 + [], e�ectively
sending 7 to the hole in 2 + []. Labelling an expression and

49



sending to it with goto is e�ectively a �rst-order version of
naming a continuation with callcc and throwing to it.
Following this analogy, labelling an expression associates

the current continuation of the expression with the label
name, and goto l e�ects a throw to the continuation associ-
ated with l. The crucial point is that although continuations
are rei�ed, they cannot escape the context in which they are
originally de�ned. That is, in

l : E

l cannot escape out of E. On the other hand, in the analo-
gous term in the language with �rst-class continuations

callcc �k:M

k can indeed escape out of M , as the example in the pre-
vious section demonstrated. This means that continuations
are not upward in the language of forward jumps, only down-
ward.
Unlike the previous cases, this language is not higher-

order; so we interpret expressions with the (non-recursive)
types

(N! R)& � � �&(N! R)( R;

where N is a primitive type of natural numbers. The �rst
continuation in the &-tuple is the current continuation, and
the others represent the labels free in the source expression.

x~l = Æhk;~li: k x

n~l = Æhk;~li: k n

E + F~l
= Æhk;~li: E~l

 h(�e: F~l
 h(�f: k (e+ f));~li);~li

ln+1 : E~l = Æhk;~li: E~l;ln+1
 hk;~l; ki

goto liE~l = Æhk;~li: E~l hli;
~li

~l is a list of labels l1; : : : ; ln. For precision, the transform of

E is parameterised by ~l containing the labels free in E.
In the l : E clause, since the two occurrences of k are

within a &-tuple, linearity is not violated.

Proposition 3. If x1; : : : ; xm contains the free variables

of E, and ~l (= l1; : : : ; ln) contains the free labels of E, then

x1 :N; : : : ; xm :N; ` E~l : (N!R)&� � �&(N!R)
| {z }

n

( R:

The moral of this story is that we cannot attribute the
failure of linearity in the treatment of callcc only to the
ability to name continuations (in the presence of Contrac-
tion and Weakening of source language variables). However,
these features together with upward continuations, which
arise from higher-order procedures, suÆce to break linear-
ity.

7. BACKWARD JUMPS
Next, one might think that the linear use of continuations

in the previous section is due to the absence of backward
jumps. That is, if one has backward jumps, cannot one
jump to the same continuation multiple times, thus violating
linearity?
The answer is no, backward jumping does not require du-

plication of continuations. In fact, this point has already
been made in the treatment of untyped �-calculus, which

involves self application, but it is helpful to look at it in a
setting where jumping is e�ected by explicit manipulation
of rei�ed continuations rather than by the call/return mech-
anism's implicit manipulation of non-rei�ed continuations.
In order to bring the central issues out with a minimum of

distraction, we begin with an informal discussion of how to
de�ne a single recursive label, before giving a precise treat-
ment of a full language.
Suppose we have a simple language of commands, with

command continuations

K = S! R

where S is the type of stores. (When performing backward
jumps it is necessary to communicate information, if one is
not to always loop inde�nitely. So it is reasonable here to
consider state; alternatively, we could consider labels that
accept a number of arguments.) We suppose that we have
a command C of type

K&K ( K:

The �rst argument is the current continuation, which repre-
sents the e�ect of executing the rest of the program, and the
second is the denotation of the (single) label l. We will show
how to interpret a construct l : C where jumps to l within C
go back to the beginning of l : C. This construct e�ectively
binds l, and will result in a continuation transformer of type

K ( K

which accepts a toplevel (current) continuation. We use a
standard �xed-point combinator

Y : (P ! P )! P:

At �rst sight the desired transform appears to be incom-
patible with linearity. Indeed, were we not restricting the
use of continuations, we could interpret l : C with the type

K ! K

and de�ne the transform as

l :C = �k: Y�h:C hk; hi

This approach, in which a recursive continuation is de�ned
directly using Y : (K ! K) ! K, is the one typically taken
in the continuation semantics of goto.
However, by moving up a level in the types we can tie the

label l up in a recursion.

l :C = Y�t: Æk: C hk; t ki

Note that the term we take a �xed-point of has type (K (
K) ! (K ( K), so the de�nition of a program makes use
a recursive continuation transformer, but continuations are
not themselves recursive. The upshot is that di�erent back-
ward jumps to l correspond to di�erent continuations, which
may be viewed as being generated in �xed-point unwinding.
(This is very similar to the handling of recursion in untyped
�-calculus where continuation transformers are self-applied
to unwind to a �xed-point, but continuations are not recur-
sive. The only di�erence here is that we explicitly take a
�xed-point, rather than rely on self-application.)
It is curious how linearity forces �xed-points to be taken

at higher types here.
With this as background we move on to a full lan-

guage, the \small continuation language" of Strachey and
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Wadsworth [13]. We emphasise that our treatment of
recursive labels is not identical to that of Strachey and
Wadsworth, as we must go up a level in the types to ac-
commodate linearity (it is again curious, however, that the
entirety of [13] is compatible with linear continuation usage).
The source language consists of expressions, E, and com-

mands, C.

C::= p j dummy j C0;C1 j E!C0; C1 j gotoE

j xC0; l1 :C1; : : : ; ln :Cn xj j resultisE

E::= x j l j true j false j E0!E1; E2 j valofC

Here p is a primitive statement, x is a variable, l is a label.
Note that we do not include explicit loops since they are
redundant, though they could be easily added.
We extend the target language with a primitive type of

booleans, B.

�; ` tt : B �; ` ff : B

�;� `M : B �;�0 ` N : A �;�0 ` O : A

�;�;�0 ` ifM thenN elseO : A

Primitive commands are mapped to their interpretations
in the target language by

[[p]] : K ( K:

Commands are interpreted with the types

K&(B! K)&K&K& � � �&K ( K

The �rst argument in the &-tuple is the current command
continuation. Next, the current return continuation is the
expression continuation to which a resultis command will
deliver a value. After that, the failure continuation is a con-
stant command continuation invoked when a valof com-
mand \falls o� the end" without performing a resultis
command. Finally, the remaining command continuations
are the denotations of the labels in scope.
Similarly, expressions are interpreted with the types

(B! K)&K&K& � � �&K ( K:

Here the �rst argument in the &-tuple, the current expres-
sion continuation, is the expression continuation to which
the value of the expression will be delivered. The remaining
arguments: the failure continuation and command continu-
ations, are handled as above.
The transforms, given in Figure 2, make use of a divergent

term

diverge = Y�x: x : P

and are parameterised by a sequence of labels, l1; : : : ; ln,
which contains the labels free in the term being transformed.
In de�ning the transforms, we use the notation ;

n
i=1

M as a
shorthand for M [1=i]; M [2=i]; : : : ;M [n=i].
Strachey and Wadsworth's semantics of gotoE uses a cur-

rent continuation which \projects" its argument, performing
a sort of dynamic type-checking. But they do not specify
what happens if the check fails. Here we specify that exe-
cution diverges, but other choices are possible: the failure
continuation which is being carried around could be used,
for instance.

The interpretation of a valof expression

valofC~l = Æhk; f;~li: C~l hf; k; f;
~li

installs the failure continuation as the current continuation,
and installs the current expression continuation as the re-
turn continuation, and executes C. The interpretation of a
resultis command

resultisE~l = Æhk; r; f;~li: E~l hr; f;
~li

evaluates expression E with the current return continuation
as the expression continuation, ignoring the current contin-
uation.

Proposition 4. 1. If x1; : : : ; xm contains the free

variables of C, and ~l (= l1; : : : ; ln) contains the free
labels of C, then

x1 : A1; : : : ; xm : Am; ` C~l

: K&(B! K)&K&K& � � �&K| {z }
n

( K

2. If x1; : : : ; xm contains the free variables of E, and ~l
(= l1; : : : ; ln) contains the free labels of E, then

x1 : A1; : : : ; xm : Am; ` E~l

: (B! K)&K&K& � � �&K| {z }
n

( K

8. COROUTINES
One view of a continuation is as the state of a process,

and it has been known for some time that the combination
of state and labels can be used to implement coroutines [11].
To design a continuation semantics of coroutines we do

not, however, need the full power of the features used in
these encodings; namely, �rst-class control and higher-order
store. But we need to do more than simply have several
continuations, one for each coroutine, and swap them. The
extra ingredient that is needed is the ability to pass the saved
state of one coroutine to another, so the other coroutine can
then swap back; this is implemented using a recursive type.
For simplicity, we concentrate on the case of having two
coroutines, and we work with the language of arithmetic
expressions.
The language consists of arithmetic expressions, E, en-

riched with a construct for swapping to the other coroutine,
and programs, P , which set up two global coroutines.

E ::= x j n j E +E j swapE

P ::= E k (x)E

Execution begins with the left E. On the �rst swap, the
value sent is bound to x, and the right coroutine is executed.
A subsequent swap from one coroutine sends a value into the
place of the last swap executed by the other. swapping then
continues until the left coroutine terminates. For example,

2 + swap 99 k (x)(x+ swap (x+ 2)) + 33

returns 103. The x + 2 part of the right coroutine gets
executed, (x+[])+33 does not. (We later discuss two options
for coroutine termination.)
The transform uses two continuations: current and saved.

The current continuation is where a result is delivered on
normal termination, and the saved continuation records the
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x~l = Æhk; f;~li: k x

l~l = Æhk; f;~li: l

true~l = Æhk; f;~li: k tt

false~l = Æhk; f;~li: k ff

E0!E1; E2~l = Æhk; f;~li:E0~l h�x: (ifx thenE1~l elseE2~l) hk; f;
~li; f;~li

valofC~l = Æhk; f;~li:C~l hf; k; f;
~li

p~l = Æhk; r; f;~li: [[p]] k

dummy~l = Æhk; r; f;~li: k

C0;C1~l = Æhk; r; f;~li: C0~l hC1~l hk; r; f;
~li; r; f;~li

E!C0; C1~l = Æhk; r; f;~li: E~l h�x: (ifx thenC0~l elseC1~l) hk; r; f;
~li; f;~li

gotoE~l = Æhk; r; f;~li: E~l hdiverge k; f;
~li

xC0; l1 :C1; : : : ; ln :Cn xj~l = Æhk; r; f;~li: (�h;n
i=1

tii:C0~l ht1 hk; r; f;
~li; r; f;~l; ;n

i=1
ti hk; r; f;~lii)

(Y�h;n
i=1

tii: h;
n�1

i=1
Æhk; r; f;~li: Ci~l;;n

i=1
li
 hti+1 hk; r; f;~li; r; f;~l; ;

n

i=1
ti hk; r; f;~lii

; Æhk; r; f;~li: Cn~l;;n
i=1

li
 hk; r; f;~l; ;n

i=1
ti hk; r; f;~liii)

resultisE~l = Æhk; r; f;~li: E~l hr; f;
~li

Figure 2: Transforms of expressions and commands

suspended state of the other coroutine. The domain of con-
tinuations is

C �= N! C ( R;

and the type of expressions (coroutines) is

C ( C ( R:

The transform of expressions is de�ned as follows.

x = Æk:Æs: k x s

n = Æk:Æs: k n s

E + F = Æk:Æs:E (�e:Æt: F (�f:Ær: k (e+ f) r) t) s

swapE = Æk:Æs:E (�e:Æt: t e k) s

The idea behind the transform for the swap construct is that
E is evaluated, and then the saved continuation is invoked.
In this invocation, t is used instead of s in case the other
coroutine changed state (by swapping and swapping back)
during evaluation of E. The current continuation k is saved
as the suspended state of the current coroutine.

Proposition 5. If x1; : : : ; xn contains the free variables
of E, then

x1 : N; : : : ; xn : N; ` E : C ( C ( R:

When it comes to interpreting toplevel programs there are
a number of alternatives, which revolve around the choice
of what to do when one or the other coroutine terminates.
The �rst, purest, possibility is to simply have two toplevel

continuations, and to \terminate" by passing an answer to
one of the continuations, along with the state of the other

coroutine. A program is also given type C ( C ( R, and
the transform is

E k (x)F = Æp:Æq:E p (�x:Æs:F q s):

In this alternative, when one of the coroutines �nishes the
other might still proceed further, if it is jumped back into
from a toplevel continuation (p or q).

Proposition 6. If x1; : : : ; xn contains the free variables
of E k (x)F , then

x1 : N; : : : ; xn : N; ` E k (x)F : C ( C ( R:

In a second alternative, one coroutine's termination makes
it impossible to jump back into the other, and the toplevel
continuation will just have type N! R. The two coroutines
\race" until one of them �nishes.

E k (x)F = �p:E (�e:Æs: p e) (�x:Æt: F (�e:Æs: p e) t)

With this semantics, if either coroutine �nishes it delivers
its result to p.
There are two subtle points in this interpretation. First,

if either coroutine terminates then it will discard the saved
continuation of the other coroutine. This is necessary if the
toplevel continuation is to have type N! R. Thus, at this
point we must consider an aÆne system. This is achieved
by replacing the two typing rules for variables with

�; x : A; � ` x : A �;�; x : P ` x : P

The extra � components here are tantamount to Weakening.
Technically, the need for Weakening can be seen in the fact
that the continuation (�e:Æs: p e) ignores s.
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The second subtle point is that, since p is used in both
arguments to E, we must type toplevel programs using (N!
R)! R rather than (N! R)( R.

Proposition 7. If x1; : : : ; xn contains the free variables
of E k (x)F , then

x1 : N; : : : ; xn : N; ` E k (x)F : (N! R)! R

in the aÆne variant.

At this point we have come up against the limitations
of linear (or aÆne) typing. Intuitively, we should be able
to type programs using (N ! R) ( R because only one
of the two coroutines will �nish �rst, and so the toplevel
continuation will only be used once. Put another way, we
have a harmless use of Contraction in the interpretation of k.
This limitation is perhaps not completely unexpected, since
linear typing is only an approximation to linear behaviour.
But it also illustrates that the problem of joining coroutines
raises type-theoretic subtleties, apart from the treatment of
the coroutines themselves.

9. CONCLUSIONS AND RELATED WORK
There are (at least) two main reasons why restricted type

systems for cps are of interest. The �rst is pragmatic, and
current: when cps is used in a compiler, we can leverage
types to communicate information from the source through
to intermediate and even back-end languages. A more con-
strained type system naturally captures more properties ex-
pected of source programs than less restricted type systems.
The second reason is conceptual. If control constructs use

continuations in a stylised way, then we may hope to better
understand these constructs by studying the typing prop-
erties of their semantics. An example of this is contained
in the observation that callcc breaks linear typing, while
exceptions do not.
For the case of pure simply-typed �-calculus, the sound-

ness result we have given|the fact that the cps target ad-
heres to an linear typing discipline|is well known amongst
continuation experts. Surprisingly, we have not been able to
�nd the transform stated in the literature. But, as we have
emphasised, it is much more than call/return that obeys lin-
earity. There have certainly been hints of this in the litera-
ture, especially in the treatment of coroutines using one-shot
continuations [4]. Our focus on linearity grew out of a study
of expressiveness, where the distinguishing power of control
constructs was found to be intimately related to the number
of times a continuation could be used [15, 16].
It is important to note that our approach is very di�erent

from Filinski's linear continuations [5]. In our transforms
is is continuation transformers, rather than continuations
themselves, that are linear. Also, since Filinski used a linear
target language, he certainly could have accounted for lin-
early used continuations as we have; but his cbv transform
has an additional !, which essentially turns the principal (
we use into !.
In a di�erent line [10], Polakow and Pfenning have also

investigated substructural properties of the range of cps,
and obtained excellent results. Their approach is quite dif-
ferent than that here in both aims and techniques; generally
speaking, one might say that we take a somewhat semantic
tack (focusing on use), where their approach is more exact
and implementation-oriented. Compared to the approach

here, an important point is their use of ordered contexts
to account for \stackability". It is diÆcult to see how we
would do the same without further analysis, because in our
approach (except for coroutines) there is only ever one con-
tinuation, or a &-tuple of continuations, in the linear zone.
On the other hand, the typing rules in [10] treat di�erent
occurrences of continuations di�erently, some linearly and
some not. As a result, it is not obvious to us how the type
system there might be reconstructed or explained, starting
from a domain equation.
We have obtained some preliminary completeness results

for linearly used continuations, but currently our analysis
there is incomplete. For example, we have identi�ed sublan-
guages for the procedure call and exception cases, together
with syntactic completeness results, to the e�ect that each
term in the target is ��-equal to terms that come from trans-
form. But, presently, we use di�erent \carved out" sublan-
guages (similar to [12]) for each source language, obtained
by restricting the types in the target; these languages obvi-
ously embed into the larger one here, but there is a ques-
tion as to whether these embeddings preserve completeness,
and whether the transforms themselves preserve contextual
equivalence relations (reection, or soundness, is not prob-
lematic).
Besides these syntactic questions, there are a number of

challenges for denotational models. For example, given a
model of (cbv) �-calculus, one might conjecture that there
is a linear cps model that is equivalent to it; here, by \equiv-
alent" we would ask for isomorphism, or a full and faithful
embedding, and not just an adequacy correspondence. For
lower-order source languages we have been able to obtain
completeness results based on the coherence space model,
but this analysis does not extend to higher order. A good
place to try to proceed further might be game models, which
have been used by Laird to give very exact models of control
[8], and where the linear usage of continuations is to some
extend visible.
Of course, one can ask similar questions for classes of mod-

els described categorically, as well as for speci�c, concrete
models.
In conclusion, we have displayed that many of the simple

control constructs use continuations linearly. The most im-
portant remaining conceptual question is why linearity keeps
turning up. A partial answer might be contained in the ob-
servation that each of these control constructs has a simple
direct semantics. For example, procedures as functions or
coroutines as resumptions. But this answer is incomplete.
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