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EDITORS’ INTRODUCTION

Change over time is, in many ways, the raw material of perception. In no modality
is this more obvious than in audition. Much if not most of the information that is
contained in auditory events like speech is a matter of the way that a signal changes
over time. Humans and other animals have remarkable abilities to extract this
information from the auditory signal in real time, abilities which far exceed anything
available in current technology. A key problem for cognitive scientists is to figure out
how natural cognitive systems do it.

In thinking about processes that unfold in time, we are accustomed to applying an
objective or absolute measure like the second. A clock marks the passing of seconds,
and for a process to happen in time is for the events that make it up to be laid out
against this independent yardstick. This way of conceptualizing processes in time
is so obvious that it is difficult to see what the alternative might be. Yet Port,
Cummins, and McAuley begin this chapter by arguing that this standard approach,
which they dub the “naive” view of time, is not particularly useful if our aim is to
understand how natural cognitive systems perceive auditory patterns. The use of
natural time as a standard in perceptual models typically requires positing a buffer
for a raw stimulus trace, in which unit intervals of time are transformed into units
of space. The authors argue strongly against the possibility of any such buffer in the
avditory system. Furthermore, absolute measurements would not be the most useful
basis for recognizing temporal events anyway. Somehow, our auditory systems man-
age to handle information contained in processes that unfold over time without
reliance on buffered sensory traces or on measurements in absolute (millisecond)
units.

Port, Cummins, and McAuley argue that temporal information comes in two
basic varieties: serial order and durational information. The first is a familiar feature
of language: one thing we want to do when hearing what another says is extract
from the auditory signal the words or phonemes in the order that they arrive. Most
standard computational models for automatic speech recognition, such as hidden
Markov models, attempt to obtain this serial order information by abstracting across
as much irrelevant durational and rate variation as possible. In the process, however,
they typically run into a severe problem of state proliferation in the model. This is

because each possible variant must, in effect, be spelled out explicitly in the model. In
this chapter the authors present a simple dynamical model for serial order extraction
which is able to avoid this difficulty.

For other purposes, nuances of duration are very important. How can a naturgl
cognitive system pick up on the rhythm or period of an auditory signal without prior
knowledge of either signal identity or signal rate? In the latter part of their chapter,
Port, Cummins, and McAuley present another novel dynamical model, an oscillator
which automatically latches onto the period of a stimulus signal, even if this period is
irregular or noisy. They propose that the period this oscillator extracts, which is g
pattern intrinsic fo the signal ifself, be used as the standard against which relative
duration measurements pertinent to recognizing an input pattern are made. This is
practical, since listeners need a standard from somewhere, and the auditory signal to
be recognized is always an available source, and it is desirable, because the signal's
own period is a more useful measure than the second for patterns like speech, animal
gaits, music, and so forth, which can occur at a range of rates.

12.1 INTRODUCTION

This chapter is about time and patterns in time. We are concerned with
patterns that can be defined only over time and may have temporal con-
straints as part of their definition. Although there is a widespread view that
time can be treated by nervous systems in the same way it is treated by
scientists and engineers, we argue that this approach is naive—that there is
no general method for representing time in the nervous system, i.e., no single
representational mechanism that is applicable to recognition of all temporal
patterns. Instead, different patterns are analyzed using different methods of
measuring temporal extent. We then present several dynamic mechanisms
developed in our laboratory for the recognition of various kinds of patterns
in time.

12.2 TIME AND TEMPORAL PATTERNS

Time is one of the slipperiest of concepts to talk about. Everything takes
place in time, from the history of the planet to the movements of our body;
even our various attempts to talk (or think) about time happen in time. It
is often said that the world has “things” and “events.” The things endure
through time without changing much. Events occupy some amount of it,
whether fleeting or glacial. Despite the inexorability and continuity of time,
we seem nevertheless to have a contrary intuition that there is a “now,” a
region in time surrounding the present where things are not changing—
where most events stand still for us. This is where the various sciences want
to live—where everything can be described now and yet we can have some
confidence that the description will hold for the future as well. Of course,
the notion of now, as a static description of events, is always understood as
assuming some particular time scale, from seconds to years. We know that

—y



anything static can be seen to involve change if it is looked at over a longer
time scale. Conversely, most static things also turn out to have a temporal
component when examined on a shorter-than-usual time scale. Thus, solid
material objects, color and words, for example, all have temporal structure if
looked at either on a very short or very long time scale.

Things that seem intuitively to happen in time are events that last longer
than a quarter of a second or so. We will call this time scale the “cognitive
time scale.” It is the time scale over which humans can act; the scale at which
events are slow enough that we might grab with our fingers or blink an eye.
The timing of events shorter than this often plays a major role in perception,
though we are typically not aware of the role of temporal detail in their
specification. Thus, if color recognition depends on the frequency of certain
waves of energy, color does not thereby become a temporal pattern at the
cognitive time scale. Typically, we can observe the temporal properties of very
short (subcognitive) events only with special technology. Time has certain
obvious similarities to physical distance, such as continuity. We talk of events
being “near” or “far” in the past or future just as naturally as we use such
terms for physical distance. Like physical distance, we can control our own
physical activity down to a certain duration: eye blinks and experimental
reaction times (around a quarter of a second) are about as fast as we can
move. Of course, unlike physical distance, completed events that are now far
away can never become near again. Science fiction fantasies like time travel
base their intriguing pseudoplausibility on the trick of taking time as if it
were really reversible—just like positions along a line drawn on the ground:
move forward and then move back.

Before discussing these issues any further, it will fix ideas if we specify a
few concrete examples of cognitive auditory patterns, the domain we address
in this paper. These patterns can be defined only over time and their temporal
extent is normally perceived as a time-extended event by humans. These are
the kind of auditory events for which we seek plausible recognition mecha-
nisms. Since we are concerned about recognition, it is also critical to clarify
what kind of variations in each pattern are irrelevant to pattern identity
and what kinds may cause reinterpretation.

1. Consider the sound of a large quadruped locomoting in some gait or
other. The trot of a horse sounds quite distinct from a walk or gallop. Since
each gait can occur over some range of rates, simply measuring the time
periods between footfalls in milliseconds will not by itself allow a representa-
tion of a gait that will be invariant across different rates. Clearly, the charac-
teristics of trot or gallop must be specified in terms that are relative to the
other events in the sound pattern itself.

2. The theme of The Merry Widow Waltz is a temporal pattern defined by
a particular melody (i.e., by a sequence of tones from the Western musical
scale) played with a particular rhythmic pattern that fits in the waltz meter of
three beats per measure. This pattern would be “the same tune” even if
played in a different key or if played somewhat faster or slower. On the other

hand, if we increased its rate by a factor of 4 or more, or if we severely
modified the rhythm (by changing it to a 4/4 meter, for example), we would
find that the identity of the tune was destroyed.

3. The spoken word “Indiana” normally has a stress on the [&] vowel. The
word is still the same even when spoken by different voices at a range of
speaking rates (up to a factor of about 2 faster or slower). In fact, one could
change the stress and say “IN-diana,” stretching or compressing various inter-
nal portions of the word in time by 15% to 20% and still have it be easily
recognizable. Eventually, of course, by such a process one would do severe
damage to its linguistic identity for a speaker of English (Tajima, Port, and
Dalby, 1993).

4. The spoken sentence “I love you” is also a temporal pattern, although a
sentence allows much wider leeway than words or melodies in the actual
layout of the events in time. Temporal detail plays a much smaller role in the
specification of the structure of a sentence than it does for tunes or spoken
words. It seems that they just need to appear in a certain serial order. Still,
temporal details are known to affect the parsing listeners construct for ambig-
uous utterances. Thus, if you read aloud 2(32), it will be quite different from
(2% 3)%. The difference between them is best described in terms of the loca-
tion of valleys and peaks in the instantaneous speaking rate, brief decelera-
tions or accelerations that lengthen or shorten speech segments along with
any silence. It is not usually a matter of pauses or silent gaps, as it is often
described.

It is clear that each of these examples can be defined only over time. Thus
a recognition mechanism must collect information over time so that decisions
can be delayed long enough to be meaningful. Each of these patterns has a
different set of temporal constraints on the essence of the pattern. Still, for all
of these examples, the pattern can occur at different rates even though the
rate change is of low importance in comparison with the importance of the
durational relations internal to each pattern. What kind of mechanism enables
humans to recognize such patterns? The view we defend is that nervous
systems adopt a variety of ad hoc strategies for describing the temporal
structure of patterns.

Living in Time

What is the relevance of time to animals like us? It is critical to differentiate
two major uses of the word time. First there is history, the Big Pointer, we
might say, that persistently moves our lives forward. And then there is time
as information about the world. In the latter role, events in time happening
now must be related to “similar” events that occurred earlier—either to the
individual or to the species. An animal needs to be able to find certain pat-
terns and structure in events that occur in time. To do this requires neural
mechanisms for recognizing when an event recurs. Many kinds of clocks, for
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example, have been found in animals and plants that track the cycles of the
sun, both through the day and through the year. Modern science has de-
veloped an absolute time scale for temporal description; a scale that depends
on the notion of historical time moving forward incessantly. One question is
whether animal nervous systems also have accurate mechanisms of this sort.

Scientific Time In order to address questions about the physical world
over the past few centuries, Western science has developed various mechanical
and mathematical tools for measuring and describing time as an absolute
variable. Given some form of clock, scientists and other “modemns” can treat
time as just another dimension, one that resembles one of the three dimen-
sions of Euclidean space. Instead of meters, we agree on standard units (sec-
ond, day, year) to provide a basis for absolute measurement. Mathematically,
one seldom needs to treat f(#) as different in any way from f(x). We do not
hesitate to plot time on the x-axis of a graph displaying temperature, air
pressure, velocity, or any other quantity that is measurable over a small
At. From such displays of waveforms and spectra, we are able to study the
properties of many kinds of events: economic cycles, cardiac signals, the
motion of physical objects, sound waves, etc. For example, figure 12.1 shows
a sound spectrogram of the phrase “mind as motion” spoken by an adult
male. Time is one axis and frequency the other. The darkness of stippling
shows the amount of energy in rectangular Af x At cells of size 300 Hz x 3
ms. Such displays have become almost second nature to us, and have become
integral components of modemn thought. Most Americans these days are
quite comfortable with stock reports and monthly rainfall graphs. One empiri-
cal question that arises for biology and cognitive science is this: To what
extent do the auditory systems of animals employ a display of energy by time in
support of the recognition of sound patterns at the cognitive time scale?

At very short time scales (under a millisecond) measures of time in absolute
units like microseconds play a major role in measuring the direction of sound
sources using time lags between the two ears (Shamma, 1989). This is, of

I m | ai

Y

!
I 04 |
[

I
P 8
ni diaizim o |
Figure 12.1 A sound spectrogram of the utterance “mind as motion,” where the x-axis is
time, the y-axis is frequency, and darkness represents intensity. Note that over much of the

utterance the regions of greatest intensity are changing continuously.

course, a “subcognitive” phenomenon. But what about at the longer, cogni-
tive time scale; the time scale suitable for recognizing events like words? We
propose that in an auditory system for cognitive processing, time is not
treated as just another spatial dimension. Spatial axes, like time in a plot of
temperature, are reversible. Unlike actual time, one can scan the graph in
either direction. If you were using a template to look for a pattern in such a
display, you could simply slide the template back and forth until an optimal
match were found. But such scannable displays are human artifacts. They are
generated by an “assignment clock,” some device that moves a sheet of
paper past a pen point at a constant rate, or that places equally spaced time
samples in a computer buffer, thereby creating a record of “instantaneous”
values of the parameter (or, more accurately, values averaged over a short
time interval). Since motion across the paper or placement in the buffer is
done at a constant rate, distance along the buffer serves as a reliable measure
of absolute time.

Scientists use these mechanisms to study the details of events that occurred
in the past. Phoneticians, for example, spend plenty of time contemplating
spectrograms like figure 12.1. But what about animals (or people) in the field?
They have to act immediately. What can they do to analyze and recognize
events that only unfold over time? To think clearly about this, we need to
first consider the kinds of information that will be of potential use to an
animal.

Biological Time Animals (and-humans) use temporal information for at
least two general reasons. First, they use timing information to “recognize
things,” ie. to relate events in the environment with previous experience
of the objects and events. This includes objects like the presence of other
animals, spoken words in human language, a banging window shade, the
sound of a horse’s gait, etc. Each of these “objects” imposes a characteristic
structure on sound over time. Patterns that extend in time can often be
usefully labeled by a name or by some “cognitive object.” That is, temporal
events can produce something rather like a “symbol” (van Gelder and Port,
1994). “It's a waltz.” “She spoke my name.” “It's my mother walking down the
hall.” A pattern extended in time, then, can cause a stable state to be entered
into by the perceptual system, as a kind of recognition state.

The second main reason to use temporal information in sound is to support
activity by the body. Ongoing perception directs action. The response of the
perceptual system to a familiar auditory pattern will sometimes be to directly
adjust the body to the input pattern itself. An animal can simply turn its head
to face an important sound, or begin to intercept the object generating a
sound, or occasionally to imitate another person’s pronunciation of a phrase.
Sometimes we even clap hands or dance to sound. So recognition of “things”
is only part of the problem. An animal sometimes needs to bind its own
real-time behavior to temporal events in stimulation. This frequently requires



predicting the timing of future actions of another animal for some period into
the future.

These are challenging functions. How can these jobs be fulfilled? And how
many of these functions are directly supported by a spatial map of absolute
time like figure 12.1?

Naive Time

What we call the “naive view of time” is simply the notion that biological
time, ie., the temporal information used by animals, is based on a representa-
tion of absolute time. In the realm of audition, it is manifest in the assumption
that a critical early step in auditory processing of cognitive-level information
must be to measure time in absolute terms. Typically, naive time models assume
that humans or animals have access to real historical time. They apparently
presume some clock that can measure durations directly in seconds. For audi-
tory perception, the method usually implied is that the brain stores lists of
spectrum-time pairs, i.e., a kind of buffer not much different from the sound
spectrogram of figure 12.1. Such a display is often described as “short-term
auditory memory.”

This idea is widespread among psychologists, linguists, and phoneticians,
and is probably assumed by most laypeople as well. It is supported by our
intuition that we can remember recent sound events rather accurately. In
addition, for many people, measurement of time in seconds and hours is the
only natural way to think. If one assumes that every event has a location in
time,—some angle of the clock at which it occurred—then locations and
perhaps even durations in seconds may seem to be almost intrinsic to the
events themselves, perhaps as intrinsic as the identity of the events that occur at
each point in time.

Illustrative Models What is required for absolute time measurement is
what we call an assignment clock, a device that moves (changes state) at a
constant rate and supplies a unique label to describe each point in time. One
also needs a set of descriptors, i.e., a kind of alphabet, for characterizing
the set of possible events. Thus, for example, an audio tape recorder uses
constantly rolling wheels to lay down values corresponding to the sound
pressure over a very short time window on magnetic tape. In the sound spec-
trogram of figure 12.1, the descriptors are energy levels in a set of frequency
bins over some time interval. Time (as long as it is greater than some Af) is
translated into a corresponding unique position.

Psychologists have explored the possibility of such a time-buffer for many
years. In the 1960s “visual iconic memory” was discovered—a spatial image
of the visual field in which objects are still raw and unidentified (Sperling,
1960). It was a level of visual memory from which a subject can select sub-
portions for verbal description while unattended parts of the image are soon

lost. This led to postulation by analogy of a short-term memory for sound
(Crowder and Morton, 1969; Massaro, 1972; Baddeley, 1992), one that was
sometimes called “echoic memory” (Neisser, 1967). The models actually pro-
posed, however, did not resemble an echo at all. Since a real echo is an event
in time, it seems that an echoic memory should be something that replays in
time, like a tape loop that can be repeatedly scanned. But most theoretical
models “cut” the tape loop so it can be examined all at once as an auditory
“image.”

One model for such a memory might be implemented rather like a postwar
radar scope with a phosphorescent screen. These scopes displayed a decaying
image of rain clouds or airplanes for a couple of seconds until the radial
sweep rescanned that part of the circle and rewrote the image anew. Like the
sound spectrogram, of course, this logically requires an assignment clock with
its mechanism of constant motion to generate a spatial layout of the input
sound spectrum for the past second or so, in order to serve as an auditory
memory model. The spectrum just behind the sweeping radius would be the
most recent. The sweep wipes out the decaying old information from the
buffer. At least that is one way such a model might be implemented. How-
ever, without specifying any particular concrete mechanism, many models
of auditory pattern recognition (including, e.g., Massaro, 1972, 1987; Klatt,
1980) have proposed a similar kind of short-term auditory memory lasting
nearly a second that contains raw spectra straight from the auditory nerve.
All meaningful auditory features are to be extracted from this representation.
Durational cues, such as voice-onset time, are thus treated exactly the same as
spectral cues—measured, apparently, by straightforward examination of the
position of various spectral features arrayed along the time axis in short-term
auditory memory. Recognition of temporal patterns is thus (naively, we
would say) turned into a task that closely resembles recognition of visual
patterns. i

In the study of phonetics, time has posed recurring theoretical difficulties.
Whereas linguistically motivated models of phonetics rely entirely on se-
quential order (Jakobson, Fant, and Halle, 1952; Stevens and Blumstein, 1978),
phoneticians frequently found evidence that timing detail played an impor-
tant role in speech perception and production (Lehiste, 1970; Klatt, 1976; Port
and Dalby, 1982; Port, 1981). In one well-known controversy, Leigh Lisker
and Arthur Abramson (1964, 1971) argued that voice-onset time, the time
interval between the burst of an aspirated stop to the onset of voicing (as in
the word “tin”) was an example of a durational feature that was controlled by
speakers and also employed by listeners in differentiating “tin” from “din.”
They claimed that the serial order alone would not properly differentiate
these words; only a metrical measure would suffice. Thus, they argued, speech
requires better measurement of time than simply the serial order of features
(as proposed by Chomsky and Halle, 1968).

Of course, to serve as perceptual information, listeners themselves must
somehow be able to utilize actual voice-onset times. Little was said by Lisker



and Abramson (or anyone else) about a practical perceptual mechanism for
this. But since phoneticians themselves just measure acoustic durations of
speech by applying a ruler to sound spectrograms or from a computer screen,
one must conclude that, to the extent that phoneticians consider such mea-
surements relevant at all to the problem of human speech perception, they
implicitly suggest that human subjects are also able to extract equivalent
measurements. Thus far, however, the evidence for any ability to measure
time in milliseconds is strictly circumstantial: it is clear that sometimes people
are sensitive to quite small duration changes. But does this imply they mea-
sure time in absolute units?

Theories of speech production have also depended on naive time in some
cases. Directly analogous to the perceptual models, hypothetical speech pro-
duction processes are sometimes proposed that include a stage at which there
is a list of letterlike phonetic segments paired with appropriate durational
specifications. The buffer of these is then read out, from left to right, during
actual speech production, and the gesture for each segment is executed so as
to last just the specified amount of time. Thus Klatt (1976), followed by Port
(1981), proposed specific “temporal implementation rules” that compute how
long the phonetic states (i.e., various consonant and vowel segments) are
supposed to last given their inherent segment durations and specific features
of their context. In order for such numbers to serve as instructions, of course,
a “motor executive system” must be assumed that is able to assure that
the corresponding gestures do indeed last the correct amount of time. But
there are many difficulties with this proposal (Fowler, Rubin, Remez, et al,,
1981). To the extent that these are taken to be models of human behavior,
they assume that durations in absolute units like milliseconds are intrinsically
meaningful and interpretable. In short, temporal implementation rules are
instances of naive-time models for motor control. Of course, many other
approaches to motor control have avoided this pitfall and are based on dy-
namical models analogous to what we propose here for perception (Bernstein,
1967; Kelso, Saltzman, and Tuller, 1986; Saltzman and Munhall, 1989; Brow-
man and Goldstein, 1989).

What we are calling the naive view of time, then, amounts to the assump-
tion that time measured in milliseconds (a) is automatically available to a
perceiving system and (b) serves as useful information in a system for motor
control. Most researchers in both speech and other auditory patterns have
focused attention on static problems—perhaps in part to avoid dealing with
messy temporal patterns at all. Still there is a longstanding literature of re-
search on specific temporal issues like thythm production and perception (see,
e.g., Fraisse, 1957; Michon and Jackson, 1985), but research on time has
generally been treated as a backwater issue, not relevant to the major themes
of psychological research. Perhaps in hope of attracting a little attention to
the problem, one paper a few years ago bore the title “Time: Our Lost
Dimension” (Jones, 1976). With a few notable exceptions (see, e.g., Povel and
Essens, 1985; Jones, 1976; Watson and Foyle, 1985; Sorkin, 1987; Warren,

1993), including a large literature on speech perception, patterns that are
distributed in time tend not to be viewed as important thecretical problems
for perceptual theory.

Why is there a certain blindness to the unique problems of time in theories
of psychology? One reason may be that it is simple to represent sound in a
buffer based on absolute time measurements. Also, engineers have had at
least some success in handling sound that way. For example, in speech recog-
nition models, a buffer of audio input with discrete time labels (coded as
spectral slices) was the basic data structure of the exciting Hearsay-1I speech
recognition system (Lesser, Fennel, Erman, et al, 1975). Although designed
for engineering purposes, Hearsay-II has nevertheless served as a kind of
archetypal speech perception theory for a generation of scientists. The model
was based on standard structuralist ideas about the organization of a sen-
tence: syntactic structure at the top, then a list of words, then phonemes,
allophones, and acoustic cues. So, in order to recognize a sentence of speech,
a second or two of audio signal is stored up in a buffer. Then a set of modules
analyze various descriptions of the sentence, using phonetic, lexical, prosodic,
and grammatical descriptors. These hypotheses are posted onto a “black-
board” with time as its x-axis, as shown in figure 12.2. Hearsay-I interprets
the sentence all at once—only after the whole sentence has been presented.

Hearsay II Blackboard

|
Sequence | Tell me about Nixon
Hypothesis , -

Word j tell me !about | Nixon
Hypotheses 4y jadoubt | nexthymn
. .

Syllable | tel miy o baut ' niks en

Hypotheses il jo daut , nekst him

- I, Nl !

Segment It e | mlabaut]nlk san
Hypotheses | i et him
T A o w1
Buffered | e
Spectral LS R
input f N
i s 2 shdliabidad)

time | | | & 1 1 b 1o

Figure 12.2 The Hearsay-II system stores the raw input in a buffer. Independent demons
test hypotheses (such as that a particular phoneme is present in a particular temporal region),
while simultaneously other demons look at the posted results of every other demon and create
further hypotheses about other possible units (such as syllables). Thus gradually, a roughly
simultaneous analysis is achieved for all levels of description for all sections of the utterance.
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The behavior of the model over time (if we imagine running it continuously)
would thus be to alternately collect data and then process it. One collects
“enough” data (however much is needed for the problem at hand) and then
crunches it. The structure of this model illustrates the basic form of many
naive-time models of speech perception.

Connectionist approaches to speech using classic feedforward networks
have had limited success at real speech recognition (Watrous, 1990; Elman
and Zipser, 1988). This may reflect the fact that many connectionist models
have continued the static tradition of dealing with time. For example, Elman
and Zipser (1988) collect a syllable’s worth of acoustic input into a buffer.
Then the entire pattern is submitted to the neural network for analysis and
recognition. Another current model for speech recognition, one that aims for
high-quality performance, is the time-delayed neural network (TDNN) (Lang,
Waibel, and Hinton, 1990). This model uses precisely controlled time delays
to allow at least a syllable-length stretch of speech to be stored in a buffer
that contains sampled absolute time as one axis. The recognition of syllable-
length patterns takes place only after the whole syllable is present in the
buffer. Of course, when researchers are solving practical problems, they
should do whatever seems as though it might help. But cognitive perceptual
models for speech and music perception, and so on have been copying fea-
tures of these systems. Unfortunately, to do so is naive.

Problems with Naive Time There are two critical difficulties with the
naive view of time surveyed above: (1) the lack of direct evidence for a
temporal buffer and (2) the surprising lack of usefulness of millisecond mea-
surements. If we are to rely on time labels (or physical positions) to record the
past, we must depend on a highly accurate assignment clock (e.g., an audio
tape recorder, sound spectrograph, digital-to-analog converter, video record-
er, etc.). This clock assigns labels to descriptions of the energy layout of
events. What evidence supports such a mechanism in humans or other higher
animals? Note that our everyday measurement of absolute time is only made
possible by various modern technologies that allow us to compare a real-
world event with some device whose rate of change is presumed constant: a
mechanical pendulum clock, the rotation of the earth, or the oscillation of a
cesium atom.

The hypothesis of a spectrographic auditory memory makes at least three
strong predictions. First, since the memory must have a limited duration, we
should expect very good measurement of time for the duration of the mem-
ory, but then a sharp falloff in accuracy and perhaps greater reliance on
relative durations for patterns longer than the short-term memory. Second,
since it stores time only as absolute values, we should expect that patterns
defined by relative durations should be more difficult to learn than ones
defined in absolute terms. Similarly, subjects should need to be exposed
to rate-varying productions in order to learn to recognize a pattern that is
defined only relationally. Third, it should be fairly easy to recognize the

absolute time alignment of unrelated events, e.g., “When, during the pronun-
ciation of the word ‘Indiana,’ did the car door slam?” On any spectrogram of
such a complex event, the relative position of the two events is obvious. As
far as we can tell, for humans (and presumably other animals), none of these
expectations holds. Absolute measurements are harder than relative ones for
events at most time scales. Generalizing a pattern across a change of rate
is easy and natural. Yet we perform very poorly at judging the lineup of
unrelated events.

The second major problem with naive-time models is this: time measured
in seconds is simply the wrong kind of information for many problems. Lis-
teners to environmental sounds, music, and speech have much less use for
absolute time measurements than one might think. Both melodies and words
(and many other kinds of auditory patterns as well) retain their identity even
when their rate of production is varied. And changes in rate tend to change
the durations of all the segments in a pattern uniformly. For example, know-
ing that some vowel in a word (or a note in a melody) is 150 ms in duration
is, by itself, almost useless information regarding its identity and its role
in the word (or melody). On the other hand, knowing its duration in relation
to the duration of a number of (labeled) neighboring segments is very in-
formative indeed (Port, Reilly, and Maki, 1987). Rather than an absolute
time scale, what is much more useful is a scale intrinsic to the signal itself—a
scale that will support local comparisons, such as durational ratios (Port and
Dalby, 1982). Internal perceptual mechanisms may be able to lock onto some
period and measure relative durations as phase angles and even predict future
events in the pattern.

Other Ways to Measure Time

We propose that ecological patterns have at least two kinds of time informa-
tion that are “weaker” than absolute time, but nevertheless very useful: serial
order and relative duration.? Serial order is a topic with a long and well-
developed history. The analysis of strings of symbols is the basis of much of
computer science as well as linguistic theory. Relative duration, however, has
received much less attention and few mechanisms have been explored for
its extraction and description.

We hypothesize that human cognition, like the cognition of other less
sophisticated animals, does not have a completely general-purpose store of
raw acoustic information that is created in advance of pattern recognition.
Instead, recognition, i.e., a labeling process that depends on extensive previ-
ous experience, precedes the generation of whatever buffers there may be of
events in time. The kind of short-term auditory memory we propose contains
labels or “names” for analyzed microevents. Each event contains its own
time specification. No abstracted time scale may exist at all. The unfortunate
consequence of this state of affairs, is that familiar patterns each have an
appropriate temporal representation, but if listeners are presented with a com-



pletely novel pattern (not containing obvious periodicities) or if several famil-
iar patterns overlap in time, listeners have only very weak resources for
representation of such complexes (Port, 1990).

Since absolute time representation must be ruled out as a general method,
despite clear evidence that animals and people are very sensitive to many
temporal structures, what other possibilities are there?

Serial Order The weakest descriptive scheme for time is just to specify the
serial order of events. Such a description is what linguistic models provide:
the standard European alphabet, widely used for orthographic writing sys-
tems, is a classic tool for linguistic analysis in the slightly modified form of
the phonetic alphabet. Words are made up of phonemes, serially ordered
like beads on a string but with no durational properties (i.e., the only measure
of length is the number of segments). Sentences, in turn, are viewed as noth-
ing but serially ordered words. Our commonsense understanding of how
events are ordered due to a relation of cause and effect also leads to expecta-
tions of serial order: a sudden squeal of brakes causes us to expect the sound
of a collision, thunder follows lightning, and click follows clack in the many
whirligigs of modemn life. Serial order may be noncausal as well: when one
hears a shoe drop on the floor upstairs, one may expect to hear the other
one after some unpredictable delay.

Early speech recognition models which grounded measurement in absolute
time ran up against a myriad of problems due to the intrinsic variability of
speech timing. The most successful of these systems modeled speech as a
series of ordered states using techniques like “dynamic time-warping” to get
rid of much of the absolute information. Still, mere order, with time measure-
ment achieved by counting segments, will not do the job for many important
environmental events. If there is a periodic structure of some sort in the input
signal, then an effective auditory system can exploit that regularity both to
predict and to describe.

Relative Duration Relative duration is just the comparison of one duration
with another. Like other ratios, it is dimensionless. We may arbitrarily select
one unit as a reference unit. If the reference time unit is extremely regular, like
the motion of our planet relative to the sun, then relative time approaches
equivalence to absolute time. But other, context-sensitive, reference units
are also possible—a period detectable from the signal. We can enumerate
periods just as well as seconds. Instead of fractions of a second, phase
angle can be measured with respect to the reference period. Then if the rate of
the input pattern changes slowly, our scale can remain calibrated. The differ-
ence between this intrinsic referent and absolute clock time is enormous be-
cause for many ecological events, a relative scale of time is much more useful.

The fundamental reason for the value of relative duration measurements is
simply that many dynamic events in the environment that are functionally
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equivalent (i.e., have the same meaning) can occur at a range of rates: charac-
teristic animal or human gaits, musical rhythms, songs, engine noises, the
swaying of tree limbs, and, of course, spoken words. If you want to recognize
a waltz rhythm, it should not matter much what the rate of the rhythm
is in milliseconds per cycle. This property is acknowledged in the standard
notation system of Western music which employs a notational variant of
phase angle for time measurement: thus, in a 4/4 time signature, a half-note
represents the duration of 7 radians (relative to the “measure”). Indeed, most
forms of music around the world are constructed around such periodic, partly
rate-invariant hierarchical structures.

But a complex signal may contain subparts, whose duration relative to the
signal rate is of importance. For example, it is clear that relative timing, not
just serial order and not absolute time, plays a major role in the information
for speech timing (Port, Dalby, and O'Dell, 1987; Port, 1981; Port and
Dalby, 1982; Lehiste, 1970). A well-known example is the syllable-final voic-
ing distinction in English and other Germanic languages. One of the major
cues for the distinction between pairs such as rabid and rapid or camber and
camper is the relative duration of the vowel to the postvocalic stop consonant
or consonants. This is more naturally expressed with reference to the syllable
period, rather than the second (Port et al., 1987; Port and Cummins, 1992).
A satisfactory account of speech perception requires time measurement that is
more powerful than just serial order, but clearly must be less powerful than
absolute time in seconds.

Need for New Approaches

Thus far we have argued that the widespread view of time as somehow
naturally assigned in seconds is not usually an appropriate approach to the
study of perception of temporal patterns by animals. It presumes neurological
mechanisms for which little direct evidence exists, and does not provide the
most useful description of information without further arithmetic processing
that would throw away the absolute information obtained with such diffi-
culty. As an alternative, one can analyze time with just serial order. This has
been attempted many times and seems to be adequate for some aspects of
problems like grammatical syntax. However, such an approach leaves many
phenomena unaccounted for. For example, what about events that are regu-
larly periodic? Serial order contributes nothing to understanding temporal
measurement of this type. It is not sufficient merely to get the notes of The
Merry Widow in the right order if the note durations vary randomly. And if
the note durations are specified symbolically (as in musical notation), how can
these be accurately implemented for production or accurately recognized in
perception? How do listeners obtain or use this temporal information? What
kind of mechanisms can listeners employ to be able to measure all the major
classes of temporal information?



Our hypothesis is that listeners employ a bag of temporal tricks. As they
gain experience with their auditory environment, they develop a variety of
mechanisms for capturing spectrotemporal patterns—the specific ones that
occur frequently. To a significant degree these structures are self-organized
(Anderson, 1994) and do not require explicit tutoring. Wherever possible,
these mechanisms will exploit any periodicity in stimulus patterns. If none can
be detected, then serial order may have to suffice—but in any case, temporal
structure is learned as part of the patterns themselves, not as an independent
abstract dimension. The best way to study these mechanisms in our view, is
to simulate them computationally using simple dynamical models and then to
compare qualitative properties of performance with human or animal data.
The dynamical systems we propose are orders of magnitude simpler than
the dynamics of real nervous systems and, consequently, could be plausibly
implemented by biological systems. In the following sections, we suggest
several general methods for extracting useful temporal information, both with
respect to serial order and relative duration.

12.3 MEASUREMENT MECHANISMS

The two methods of serial order and relative duration are closely related to
S. S. Stevens’s notion of an ordinal scale vs. an interval scale (Stevens,
1951) and, like them, they are conceptual types of measurement. Any actual
achievernent of such measures in a nervous system may involve a wide range
of mechanisms. In this section we review some methods that will allow rec-
ognition of both serial order and relative duration. As we shall see, both
methods depend on the behavior of internal dynamic models to keep track of
time in the perceptual system.

Recognition of Serial Order

Some models that identify the serial order of elements in a temporal sequence
were developed by those working on speech recognition in order to over-
come the problem of invariance of patterns across changes in the duration of
individual components as, for example, due to a change in rate or emphasis.
To achieve this, it is useful to factor out as much durational information as
possible, focusing on transitions from one element to the next. The first
model, the finite-state machine (FSM) has certain strengths. The same ideas
appear again in slightly disguised form in the hidden Markov model. We will
show how a dynamical system can emulate an FSM that runs in real time and
what advantages it possesses in dealing with continuous signals.

Finite-State Machines The traditional mathematical system that recog-
nizes and classifies sequences of events is called a finite-state machine (see
Pollack, chapter 10, for further discussion of these systems). An FSM consists
of a set §; of states, including two privileged kinds of state, S;, the start state,
and S, @ subset of 5, containing one or more “accept” states. If the FSM
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Figure 12.3 A finite-state machine which recognizes the sequence ABC. It makes transitions
from state to state only when a particular letter is received. Thus only a B will allow the
transition from SI to S52. Transitions other than those shown cause the machine to reject
the sequence. The final state (with a double circle) is the only “accept” state.

is in an accept state, it has successfully recognized the sequential pattern for
which it is specific. Transitions between these states are defined in a transition
table, in which entry ¢; is the state to which the machine is set when it
is already in state 5; and receives the input I;. Transition is therefore depen-
dent only on the state at the previous time step and the current input. The
only memory the FSM has for earlier inputs therefore resides in the state
of the machine. Figure 12.3 shows a simple FSM which has four states and an
input vocabulary of three symbols, A, B, C. The transitions that are labeled
are the only ones that may appear if the machine is to recognize a sequence.
All other possible combinations of input and state lead to an implicit “reject”
state, from which there is no return. The illustrated FSM will accept, among
others, the sequences AABBBC and ABCCCC, but will reject AAABBA and
AAACCCBBC.

Orne of the most successful of the first generation of automatic speech
recognizers was Harpy, a system based on a large FSM with some 15,000
states. The Harpy system was the most successful entry in the 1971-1976
speech recognition project sponsored by the Advanced Research Projects
Agency of the Department of Defense (Lesser et al, 1975; Klatt, 1977). It
contains a hierarchy of nested FSMs plus a search procedure to identify the
path through the space of possible input sequences with the least total error.
Figure 12.4 shows schematically how these FSMs, here represented as net-
works or graphs, are layered. Phoneme recognition networks scan the raw
acoustic buffer, trying to identify individual phonemes. These in turn serve as
input to a lexical-level FSM. One of the principal advantages of a Harpy-like
system was the fact that no time normalization was required. Just as in our
example FSM above (see figure 12.3), each state has self-recurrent transitions.
Thus, if a single element (phoneme, word, etc.) is repeatedly presented (or
presented more slowly), the network does not move from its current state.
Thus in principle, one could stretch one segment (say, the a in about) for an
indefinite number of time steps and Harpy would still recognize about.
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Figure 12.4 A schematic representation of the Harpy system. Hierarchies of finite-state
machines scan the acoustic input and recognize units at ever greater scales, from phonemes to
words to sentences. Here, a set of phoneme recognizers are fed spectral input. As each in turn
recognizes “its” part of the input, it outputs its result to a lexical unit which pieces together
words. The order of the spectral slices yields phonemes, the order of the phonemes yields
words, and the order of the words yields grammatical (acceptable) sentences.

This contrasts sharply with Hearsay-II, discussed above, since Harpy
employs no direct representation of time—merely the order of events. Of
course, if such a model is refined to allow recognition of additional variant
pronunciations, the size of the transition table for the FSM will increase expo-
nentially. If the signal being studied is not easily reducible to a reasonably
small number of states or features, then an FSM model rapidly grows to
unmanageable size. This problem of the proliferation of states applies not
only to FSMs like Harpy but to any of the more sophisticated Markov
models, which are ultimately based on the FSM. We will look briefly at
hidden Markov models, which represent the current state of the art in speech
recognition, and then show how a simple dynamical model can circumvent
this problem of exponential growth in complexity.

Markov Models Finite-state machines are a straightforward way of recog-
nizing sequences and can be used for producing sequences as well. In the
example FSM given above, the sequence ABC could be presented at any rate
(i.e., any number of A’s followed by any other number of B’s, etc.) and still be
recognized by the FSM since it would be guaranteed to reach a goal state.
Time has been factored out completely. In dealing with real-world signals,

however, where the exact sequence of possible states is not known for cer-
tain, the model needs more machinery. In many successful models, the FSM is
augmented as follows: it is assumed that the unknown signal has been gener-
ated by an FSM which outputs a symbol in each state. An attempt can now
be made to reconstruct the generating model by a process of inference. In
order to do this, probability distributions are obtained for both the outputs
associated with each state and with the transitions from one state to the
other. The model that is inferred is known as a hidden Markov model. The
assumptions of the FSM have been retained, since transitions depend only on
the previous state and the current input, but has been augmented by prob-
abilistic transitions between states. It is hidden because the deterministic FSM
has been replaced by a best guess, in which the outputs are generated sto-
chastically and cannot be known with certainty. Hidden Markov models are
at the base of many contemporary speech and temporal pattern recognition
models (e.g., Lee, Rabiner, and Pieraccini, 1992; Lee, 1992). As mentioned
above, they too may run into the problem of state proliferation if the under-
lying signal is not easily reducible to a small number of relatively steady
states.

Simple Dynamic Memories In the last few years, several new approaches
to speech recognition have emerged within the area of artificial neural net-
works. Most innovative has been the use of recurrent networks that process a
small amount of external input at a time and retain information about the past
only in the particular internal activation state of the fully connected units.
In the best cases, these networks have outperformed the hidden Markov
models, with the advantage of requiring no domain-specific knowledge to be
encoded by the programmer (Robinson and Fallside, 1991). They have been
applied to a number of problems in speech recognition and appear to hold
promise for many kinds of pattern recognition. We present a recurrent net-
work model of our own that is similar in many ways to an FSM recognizer, at
least over a limited range of stretching or compression of time. The model
nevertheless has some significant advantages that come from having a contin-
uous state space rather than a discrete one.

Ore of the many tasks which recurrent networks have proved to be good
at is the emulation of FMSs (Pollack, 1991; Das, Giles, and Zheng Sun, 1992;
Cummins, 1993). They are fed as input the same finite string of symbols as an
FSM and the output is trained to reflect the distinction between accepted and
rejected sequences. Rather like FSMs, the properly trained network will rec-
ognize the same sequence of elements, despite considerable variation in the
rate at which they are presented, e.g., AAAABBCCC will be recognized as
being the same sequence as ABC. This “normalization” is perhaps surprising,
since, during training, the network may have seen each sequence presented
only at a single rate. The generalization across rate changes was obtained “for
free.” In the remainder of this section, we look more closely at the dynamics
of the trained network and see how this “rate normalization” is achieved.
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Figure 12.5 Schematic diagram of a recurrent network that accepts (sensory) input on three
input lines, processes the input, and outputs a binary tuple. Each unit sums over the input
it receives from the input lines and from other units, computes an output value, and passes
it on. Because of the recurrent connections, information about previous inputs is retained
in the current state of the recurrent units.

A recurrent neural network, like the one shown in figure 12.5, is a pro-
cessing model comprising several external input lines (from “sensors”) feed-
ing to a layer of fully connected processing units. In this system, which we
call a simple dynamic memory, each unit collects input from all the external
lines and from the other units. At each time step, each unit sums over all its
inputs, performs a simple squashing transformation on the sum, and outputs
the result. Thus the activation equation is

vilt + 1) = squashlay, () + Y wyy; + input + bias) (1)

for connections from unit j to i « is the decay rate, the bias serves as a
threshold, and input refers to external (sensory) input only. Some units of
the network are designated output units and the outputs on these repre-
sent the response of the model to the input (see figure 12.5). The input here
is the external stimulus fed to some nodes. Because of the recurrent connec-
tions, information from previous inputs remains implicit in the state of the
recurrent units. Gradient descent training procedures using a teacher signal
for just the output nodes is employed (Williams and Zipser, 1989; Anderson
and Port, 1990).

We have noted that the memory of a recurrent network arises from the
change in internal state after each vector presentation. The dynamics of the
trained network can be studied by looking at the trajectories followed by
the network in the state space of unit activations. Assume that a network is
trained to recognize the sequence ABC and distinguish it from, among others,
BAC and CAB. The network signals recognition of ABC with an output node
which is off (activation = 0) until the last element of ABC is seen, at which
time it switches on briefly (activation = I). The state space can be divided
into two principal regions, the hyperplanes defined by outputnode = 0 and
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Figure 12.6 (Left) The state space, here, for simplicity, illustrated as being two-dimensional,
is partitioned into a large not yet recognized area and a sequence recognized region. When the
system trajectory enters the recognition region, it signals sequence identification. (Right) For
each possible input, A, B, C, there is an associated point attractor. As input changes (e.g., from
A to B), the system trajectory is redirected toward the new attractor. Only the trained se-
quence brings the trajectory through the recognition region (since it was the learning algo-
rithm that located the recognition region in just the right place). The solid line is the trajectory
on presentation of ABC, and the dashed line is BAC.

outputnode = 1, associated with nonrecognition and recognition, respectively.
This is illustrated in figure 12.6 (left). If we present the network with a contin-
uous, unchanging input, it rapidly settles into a steady state. Thus a global
point attractor can be identified for each of the possible input vectors, includ-
ing the zero vector (no input). Figure 12.6 (right) illustrates how this system
is able to distinguish the sequence ABC from all other sequences of A’s, B's
and C’s, such as BAC, etc.> Assuming that the system is reset to some neutral
state between sequences (marked start), the trajectory corresponding to the
system evolution can be visualized as always starting in the same area of
state space. As long as the first element, A, is presented, the system grad-
ually approaches a point attractor specific to that input. Once the input changes
to B, the attractor layout also changes and the system trajectory changes course
toward the new attractor. The task of learning to identify a sequence now
amounts to insuring that the trajectory passes through the recognition region
if and only if the sequence to be identified has been presented. This learning
can be based on either tutoring or self-organization, but it must be based on
actual experience with the temporal patterns.

We can now illustrate how this general model, the “simple dynamic mem-
ory,” handles varying rates of presentation. Figure 12.6 (right) shows the
system trajectory as jumps in discrete time, since each sequence element is
presented for an integral number of clock ticks, AAABBBCCC.... The trained
network can now be presented with the same sequence, but at a different rate,
and it will still successfully distinguish among targets and distractors. This is
illustrated in figure 12.7 (right). The two trajectories illustrated are for presen-
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Figure 12.7 (Left) System trajectory taken by the network trained on AABBCC when the
target sequence is presented. (Right) Trajectory of the same network when the sequence is
presented at novel rates, both faster (ABC, solid line) and slower (AAAAABBBBBCCCCC,
dashed line). The trajectory still passes through the recognition region.

tations of ABC (solid line) and AAAAABBBBBCCCCC (dashed line), which,
assuming constant sampling of a continuous signal, represent faster and slower
presentations of the sequence A"B"C" (for small n). Despite the variation, the
underlying dynamics are nearly the same, and the trajectory remains qualita-
tively unaltered. In each case, the trajectory still passes through the recogni-
tion region. Thus, like the FSM, this system intrinsically ignores variations in
rate.

There are additional parallels between this model and an FSM. The part of
state space we call the recognition region corresponds to an “accept” state,
while the individual attractors, together with their vector fields, correspond
to individual states. Unlike the FSM approach, the dynamic memory will ulti-
mately break down if patterns are presented too slowly. As the state of
the system gets closer to the fixed point of the current input (after the input
is repeated many times), it becomes increasingly difficult to differentiate
the effects of previous events since there will always be limited precision
in activation space. However, this type of solution has its advantages too.
In particular, it generalizes to continuously varying input, without growing
in complexity. It is therefore more suitable for signals which vary smoothly
and are not easily reducible to a small number of discrete states.

In order to show this property imagine an input set of at least two ortho-
gonal vectors, each of which has a distinct point attractor. As input varies
continuously from A to B, the attractor itself may move smoothly from the
point associated with A to that associated with B, as shown in figure 12.8.
The continuous nature of the state space allows smooth interpolation be-
tween attractor regimes (cf. chapter 5, by Beer, which illustrates a model with
this feature). This behavior is without parallel in the perfectly discrete FSM.
The induction of such a dynamical system presents a technical problem, as
there is no guarantee that the dynamics will always remain as well-behaved
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Figure 12.8 Continuous interpolation between attractor regimes is possible with a dynamic
system which emulates a finite-state machine (FSM). Unlike the FSM, the system does not
increase in size or complexity as we generalize from a small set of discrete inputs to an

"unbounded set of continuous inputs.

as observed thus far (see Kolen, 1994). For example, attractors may split
in two, producing bifurcation. Or they may be more complicated than sim-
ple point attractors and undergo catastrophes. However, recent work in
the induction of general FSM-like dynamic systems has been encouraging
(see Pollack, chapter 10; Das et al. 1992). With well-behaved dynamics, sim-
ple dynamic memory offers the possibility of an FSM-like approach to the
recognition of serial order which generalizes to continuous dynamic signals
such as speech.

We have shown that serial order is a kind of information about events
in time that a simple network can recognize and identify. Although more
sophisticated models of serial pattern recognition exist (Grossberg, 1986,
1988; Anderson, 1994), the simple dynamic memory illustrates one method
by which problems resulting from variation in rate of presentation can be
overcome. The biological correctness of the method described here, it should
be noted, has not yet been demonstrated.

Recognition of Relative Time Patterns

The simple dynamic memory model of unstructured fully connected nodes is
capable of recognizing a familiar sequence of ordered elements, independent
of the rate of presentation. In doing so, it loses (or ignores) absolute time.
Many problems, however, depend critically on more powerful measurement
of duration than serial order. Simple dynamic memories will not suffice for
these patterns. But durations of importance to perception of the environment
are frequently relative; ie., they could be adequately measured with respect
to salient intervals within the signal itself. Relative durations are critical for
animal gaits, periodic bird and insect sounds, and so forth. In Western music,
the basic time unit is the beat. In speech it will be the syllable period for some
measurements and perhaps other prosodic units (like the foot or mora) in
other languages (Port et al., 1987; Anderson and Port, 1994; Lehiste, 1970).



Having such a periodic standard, be it only a slippery and flexible one, can
provide a practical means for measuring duration, evaluating rates of change
and for entraining activity to an external signal (as in playing music or danc-
ing to it), and for defining rhythmic structure. In order to detect rate and thus
calibrate duration, a mechanism which can rapidly entrain to the period of a
signal is useful. In fact, it is not too difficult to design such a device as long as
a distinctive entraining event can be identified, i.e., an event that defines
phase zero. A practical “adaptive oscillator” was developed in our laboratory
following earlier work by Carme Torras (Torras, 1985; McAuley, 1994a,b;
Large and Kolen, 1994). Once more, this can be achieved with a simple
dynamical model. We describe the model in some detail here, because of its
importance to our central theme.

First we should distinguish the adaptive oscillator from the more familiar
case of a pair of continuously coupled oscillators, in which the phase of each
oscillator continuously influences the periodic behavior of the other. The net
result is an oscillation frequency for the coupled system that is determined by
the coupling strength and the intrinsic oscillation frequencies of each oscilla-
tor. As soon as the oscillators become uncoupled, each independent oscillator
immediately resumes its intrinsic oscillation frequency.

In contrast, the adaptive oscillator mechanism augments a pair of pulse-
coupled oscillators in which only the phase information at each input pulse of
one of them is available to influence the oscillation frequency of the other.
Based on this phase information, the adaptive mechanism makes a more
durable internal change to the intrinsic frequency of the oscillator. Thus,
specifically, an input pulse occurring somewhat before the oscillator would
spontaneously fire causes two things to occur. First, the oscillator spikes
immediately and begins a new cycle. That is, phase is reset to zero. Second,
the oscillator makes a small change in its own natural period, so that it more
closely resembles the period of the input. In this way, the oscillator will
quickly entrain itself so as to fire at the same period as the input signal (or at
some integral multiple or fraction). If the input signal ceases, a slowly acting
decay process causes it to drift back to its original period. This process of
synchronization and decay is based on a gradient descent procedure described
in more detail below. It is easy for the model to adapt to tempos that are near
its preferred rate, but increasingly difficult to adapt to tempos that are signifi-
cantly faster or slower. These may result in entrainment to harmonic ratios
other than simply 1:1 or 1:n. Ratios such as 2:1 or more exotic ratios like
5:2 can also be attractor states of the system.

The Adaptive Oscillator Model The specific adaptive model that we will
look at is the adaptive simple harmonic oscillator as described by McAuley
(1994a). This model has been applied to psychophysical data on the ability of
listeners to discriminate small changes in the rate of isochronous auditory
pulses (McAuley, 1994b).
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Figure 12.9 (A) Two periods of a 2.0-Hz harmonic oscillator. (B) Input pulses are now added
to the harmonic oscillator every 400 ms, a shorter period than the intrinsic rate. Each input
pulse now causes the oscillator to spike and phase-reset to 0. Output values, equal to the
activation of the oscillator when it spikes, are marked by the dot at each phase reset. (C)
Fast-acting synchronization is applied to the oscillator. Note that output values at each phase-
reset continue to increase, providing a measure of the degree of entrainment. The output
approaches the value of 1 as an attractor.

The preferred period of the oscillator is based on a periodic activation
function, which in this case is simply a cosine function, scaled to oscillate
between 0 and 1 (figure 12.9A):

27t
¢(h = <1 + cos (a("—))>/2 (2)

The oscillator period Q(n) is initialized to some preferred period: Q(0) = p.
Each time ¢(f) reaches or exceeds a threshold, 6, set to 1, the oscillator gener-
ates an output spike. In the absence of external input, this happens at the end
of each period (at phase = 0). We now add periodic input (figure 12.9B) to
#(#), producing a total activity that is the sum of the basic activation function
plus the input:

a() = ¢(O) + i) (©)

Again, each time the threshold is reached, the oscillator fires, but now it is
firing before the end of its period. On firing, we introduce a discontinuity by
resetting the phase to 0. Figure 12.9B illustrates the effect of adding the input
to the intrinsic activation (the threshold 6 is 1.0). Each time input occurs, there
is a jump in activation and phase is reset to 0. It is useful to define an output
spike function o(n), by letting o(n) = @(f) at the point in time when i arrives.
This is marked with a dot in figure 12.9B and C.

How does adaptation or entrainment work? If an input happens to arrive
exactly in phase with the intrinsic period, it will have no effect, since the
oscillator fires then anyway (e.g.. at f = 0.5 second in figure 12.9A). If it
arrives at any other time, however, it will force the oscillator to spike earlier
(as shown in figure 12.9B). This phase difference provides information which
is used to define a spike-driven gradient-descent procedure which synchro-
nizes or entrains the spontaneous spiking behavior of the oscillator with
rhythmic aspects of the input pattern. The result of this adaptation can be



seen in figure 12.9C, where the amount of jump when inputs occur can be
seen to decrease as the period of the oscillator comes into line with faster
frequency of the input. The synchronization error is defined by squaring the
distance in time between input-forced spikes and spontaneous spikes. This is
simply the squared difference between the threshold 6 and the spontaneous
activation ¢(#), scaled by the input:

E(n) = 1/2(i(1)(6 — ¢(1)*.

To minimize the discrepancy between the oscillator’s initial spikes and the
forced spikes, the oscillator’s period Q(n) is adapted by a small fraction « that
is negatively proportional to the partial derivative of the synchronization
error E(n) with respect to Q(r):

SE(n)

Qn + 1) = Qn) — aég—(”)

In this way, the oscillator adjusts quickly to the faster or slower frequency
of a signal that excites it. One can also arrange for a decay process that will
cause the oscillator, once adapted away from its initial frequency, to gradually
return to that frequency, as a “preferred frequency.” This can be done by
including a term in the update rule that pushes the adapted period back
toward its preferred period p. This decay should be quite a bit slower than the
process of adapting to a periodic input.

Simulations have shown that these oscillators can entrain rapidly (largely
within two or three periods of the periodic input). They are very robust to
noise and occasional missing inputs since the decay rate is slow compared to
the entrainment process. If the input is not perfectly periodic, but varies
somewhat in frequency from one period to the next, the oscillator will still
closely track the variations and should allow a good guess about the time of
the next input.

Measuring Time as Phase Angle Some useful features of this oscillator
model include its behavior in noise and when occasional inputs are absent. If
there are irregular or noisy inputs, the oscillator will tend not to be affected.
Because the entrainment process takes several oscillator cycles, irregularly
spaced inputs tend to cancel out one another’s effect, while periodic input will
quickly cause the oscillator to approach the input frequency.

If an oscillator has a preferred period that is very different from the input
signal, it may also entrain at ratios of, e.g., 2:1 or 3:1. These other ratios
allow a single complex pattern to entrain a number of oscillators for different
periodic components of the pattern: some at the “measure level” and others
at the “beat level,” etc. By setting up a number of oscillators with a range
of preferred periods, it is possible to use the different entrainment ratios
to extract the hierarchical rhythmic structure of the input. Some units will
entrain at the most basic level such as the musical beat (or the fundamental
frequency of voiced speech), while slower oscillators will pick out larger met-
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rical units such as musical bars (or, hopefully, prosodic units like the syllable
or foot). Such a hierarchical structure has been demonstrated in simulations
in which a bank of oscillators with a range of preferred periods were exposed
to two kinds of rhythmic inputs (McAuley, 1994a). The first was a waltzlike
rhythm (Dah dit-dit, Dah dit-dif) and the second a two-beat measure (Dah dit,
Dah dif). In each case, some oscillators in the simulation entrained at the
measure level, locking into the strong beats only, while others picked out the
individual beats. Those entrained to the beats are therefore measuring events
that occur at fixed phase angles with respect to the larger, measure-sized
cycle—either thirds or halves of the measure-size unit. Note that modest
changes in the rate of the entire hierarchical pattern will not disrupt these
relationships. This is a simple example of time measured purely as phase
angle, rather like musical notation. The absolute duration of the period is
irrelevant to the phase angle time measurements as long as regular periodicity
is maintained.

This mechanism entrains rapidly to underlying periodic structures in a
signal despite noise, missing beats, and slow variation in rate. Further devel-
opment of adaptive oscillation should allow the measurement of time as
phase angle under a broad range of conditions. All that is required is an
unambiguous “start pulse” that must be supplied by a preprocessing system.
Measuring relative durations without prior measurement of absolute time is
now a possibility. In the case of speech, for instance, we hope it will prove
possible eventually to entrain directly to the roughly periodic syllable and
foot-sized units in speech. Phonetically relevant vowel durations might then
be expressed in relation to these entrained periods rather than in terms of
absolute values like milliseconds. By quickly and adaptively identifying and
tracking the periodicities intrinsic to the speech signal, useful measurements
of duration that are robust under changes in rate of presentation may be
possible. Sounds that are merely quasi-periodic abound in nature and are by
no means restricted to speech. Anywhere oscillation occurs—after striking,
rubbing, blowing, dripping, as well as in animal gaits etc.—the signal may
display an underlying period which might be exploited to scale the measure-
ment of its subcomponents or other associated events. Adaptive oscillation
offers a plausible mechanism for description of such temporal patterns, both
as a model for neural mechanisms in cognition and potentially for engineering
purposes as well.

12.4 CONCLUDING DISCUSSION

In this chapter we have highlighted the problem of recognizing auditory
patterns in time. We claim that the naive view of time, despite its widespread
employment, is not a useful model of any process in human audition. Events
do not come with time stamps on them, nor does human audition supply
them. It is difficult to imagine how there could be any direct representation of
time either using labels marked in seconds or by translating time into physical



distance (for anything beyond extremely short delays). Apparently nothing
resembles a sound spectrogram in the auditory system. Thus the exploitation
of durations in the acoustic signal is made possible by the use of the serial
order of known patterns and by measuring duration relative to some predict-
able interval—not by measuring absolute time. We have made some first
steps toward development of two models of auditory processing in audition
that may simulate human performance for periodic patterns and sequences at
the cognitive time scale. Both of the general methods described here are
formulated as dynamical systems. In both cases, the behavior of these sys-
tems over time is exploited to keep track of location within a temporally
distributed pattern. And in both cases, predictable features of the stimulus
itself provide the yardstick for the measurement of time.

These methods are simple enough that we can imagine them implemented
in many ways in the auditory system, but, of course, each method has certain
apparent drawbacks. The method of simple dynamic memory for sequence
recognition, for example, may offer rate invariance for free, but it requires
actually learning an inventory of individual patterns. The system can only
represent the serial-order structure of events it is familiar with. In our view,
this property in no way disqualifies it as a model of processing in animal
auditory systems. After all, most of the sounds we hear are, in fact, very
similar to sounds we have heard before. Most animals live in environments in
which the same kind of events recur. There may need to be a large inventory
of auditory events, but any inventory is still minute compared to the space of
possible frequency-by-time auditory patterns. Indeed, it is known that if lis-
teners are presented with very novel yet complex auditory patterns, their
ability to compare them or make judgments about their internal structure is
astonishingly poor (see, for example, Watson and Foyle, 1985; Espinoza-
Varas and Watson, 1986). Only practice with a specific set of novel patterns
makes detailed comparison possible if patterns are both complex and com-
pletely novel.

In fact, given typical auditory ecosystems, this “drawback” of requiring
familiarity with the patterns would have the practical advantage that when
several familiar events happen to overlap in time (e.g., a spoken word and the
slam of a car door), an auditory system that is able to represent only the
learned set of patterns should automatically do “auditory scene analysis”
(Bregman, 1990) and parse the complex into its familiar components.* Since
the serial order of the subcomponents of familiar patterns were learned inde-
pendently for each pattern, the temporal alignment between the two distinct
events will, however, not be well represented. It would be very difficult to
say which phonetic segments in the word coincided with the door slam. This
accords with our intuition as well as with experimental results (see Port, 1990
for further discussion).

The measurement of relative duration, that is, measurement of a durational
ratio between some event and a longer event, is useful for many kinds of
sound patterns. Description of duration as an angular sweep of phase within

a pattern of known period depends on predicting the duration of the longer
event. The adaptive oscillators described here offer a way to do this when the
input signal contains salient periodic events that can trigger phase resetting
and period adaptation. Adaptive oscillators are quite simple to arrange neuro-
logically, but obviously, to apply this mechanism to very complex auditory
structures like speech or music will require (among other things) some highly
sophisticated preprocessing in order to supply triggering signals for events
of just the right sort. Adaptive oscillation should be a useful mechanism
for analysis of many different kinds of environmental events and may be
embedded in many places within a general auditory system.

One implication of the employment of adaptive oscillation for handling
unfamiliar patterns should be that a pattern of clicks, say, that lack regular
periodicity (e.g., with random spacing in time) will be much more difficult to
remember or to differentiate one from another, than patterns of periodically
spaced clicks. This has been shown to be the case (Sorkin, 1987; Povel and
Essens, 1985). More subtly, if subjects listen to a series of several clicks and
then try to determine if a second series of clicks has the same rate, perfor-
mance improves as the number of clicks in each series increases from, say, 2
to 8 (after which there is no further improvement). This follows naturally
from the hypothesis that more clicks permit closer adaptation of the percep-
tual oscillator to the input pattern and thus better discrimination (McAuley,
1994b).

In conclusion, then, it can be seen that the kind of auditory pattern recog-
nition system we envision must be customized for a particular auditory envi-
ronment. It is a system that organizes itself to construct a large inventory
of special-purpose recognition mechanisms appropriate to the inventory of
acoustic events that have relevance to the organism. These recognition mech-
anisms can not simply be part of long-term memory, or part of a system that
analyzes the contents of a general-purpose, spatially arrayed short-term mem-
ory (like a sound spectrogram). Instead, we propose that these mechanisms
themselves provide the first level of auditory memory. On this view, low-
level auditory recognition and low-level auditory memory are collapsed into
a single system that responds in real time to sound as it occurs. This system
does not rely on a universal clock or other representational mechanism for
absolute time. It consists, basically, of a bag of dynamical tricks that enable an
animal to deal with the dynamically generated sound patterns.
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NOTES

1. There are other difficulties with a “neural spectrogram” model of auditory memory. The
main one is, how could it be implemented? The memory could not plausibly be sampled
in time, since this should lead to obvious aliasing artifacts for inputs at certain frequencies.
Nor could it just be an exponentially decaying trace for independent frequency bands of
the spectrum (like the way a piano “records” your voice if you shout at it after lifting the
dampers with the pedal). If it worked like this, then later sounds in a given frequency range
would tend to be confused with earlier sounds, which does not seem to be the case. Of
course, it is undeniable that we do have introspective access to recent sound, at least when
the sounds are familiar. For these, we probably store some kind of descriptive labels. Evidence
for the necessity of learning complex patterns comes from research on patterns that are novel
but complex. It is known that subjects cannot make good discriminations of complex patterns
that are unfamiliar (Espinoza-Varas and Watson, 1986; Spiegel and Watson, 1981; Port, 1990).

2. By “weaker” and “stronger” measures of time, we refer informally to the set of invariance
transformations that are permitted on the scale (Stevens, 1951; Port, 1986), i.e., the trans-
formations that do not disturb the temporal description. For serial order, many complex transfor-
mations on the duration of component events are possible without disturbing serial order.
For phase angle measurement, only durational transformations that preserve relative duration
are allowable. Absolute measurements permit no durational changes at all.

3. These are actually schematic diagrams that illustrate the principles at work. When our
simulations (Anderson and Port, 1990; Cummins, 1993) were carried out, the state space
was of higher dimension (typically around 12) and the set of targets and distractors was
considerably larger (as large as ten each).

4. Of course, the primitive dynamic memory described here can only track one familiar se-
quence at a time. One would need several distinct simple dynamic memories to track several
patterns simultaneously. Presumably animal auditory systems can deal with this for at least
several overlapping patterns.
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