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The Dynamical Systems Hypothesis in Cognitive Science
Robert F. Port, Indiana University

A. Overview

The dynamical hypothesis in cognition identifies various research paradigms applying the
mathematics of dynamical systems to understanding cognitive function. The approach is allied
with and partly inspired by research in neural science over the past fifty years for which
dynamical equations have been found to provide excellent models for the behavior of single
neurons (Hodgkins and Huxley, 1952). It also derives inspiration from work on gross motor
activity by the limbs (e.g., Bernstein, 1967, Fel’dman, 1966). In the early 1950s, Ashby made the
startling proposal that all of cognition might be accounted for with dynamical system models
(1952), but little work directly followed from his speculation due to a lack of appropriate
mathematical methods and computational tools to implement practical models. More recently,
the connectionist movement (Rumelhart and McClelland, 1986) provided insights and
mathematical implementations of perception and learning, for example, that have helped restore
interest in dynamical modeling.

The dynamical approach to cognition is also closely related to ideas about the embodiment of
mind and the environmental situatedness of human cognition, since it emphasizes commonalities
between behavior in neural and cognitive processes on one hand with physiological and
environmental events on the other. The most important commonality is the dimension of time
shared by all of these domains. This permits real-time coupling between domains, where the
dynamic of one system influences the timing of another. Humans often couple many systems
together, such as when dancing to music -- where the subject's auditory perception system is
coupled with environmental sound, and the gross motor system is coupled to both audition and
musical sounds. Because of this commonality between the world, the body and cognition, the
method of differential equations is applicable to events at all levels of analysis over a wide range
of time scales. This approach directs explicit attention to change over time of relevant system
variables.

B. Mathematical Context

The mathematical models employed by dynamical systems research derive from many sources in
biology and physics. Of the two schemas to be pointed out here, the first is the neural network
idea, partially inspired by the remarkable equations of Hodgkins and Huxley (1952) which
account for many known phenomena of neurons in terms of the dynamics of cell membrane.
They proposed a set of differential equations for the flow of sodium and potassium ions through
the axonal membrane during the passage of an action potential down the axon. These equations,
which turn out to apply with slight modification to all neurons, inspired extensions to account for
whole cells (rather than just a patch of membrane) in terms of its likelihood to fire given various
excitatory and inhibitory inputs. Interesting circuits of neuron-like units were also constructed
and simulated on computer. The Hodgkin-Huxley equations also inspired many psychological
models, like those of Grossberg (1982;1986), the connectionist network models (Rumelhart and
MccClelland, 1986; Hinton, 1986) and models of neural oscillations (Kopell, 1995).



In this general framework, each cell or cell group in a network is hypothesized to follow an
equation like:

Equation 1: dA/dt = —yA(t) + daE(t) — bl(t) + cS(t)] + bias

indicating that the change in activation (i.e., the likelihood of firing) at time t, dA/dt, depends on
the decay, —y, of the current value of A plus a term representing inputs from other cells that are
either excitatory, E(t), (tending to increase the likelihood of firing), or inhibitory, —I(t) (tending
to decrease the likelihood of firing). For some units there may be an external physical stimulus,
S(t). A nonlinear function, &Xx), encourages all-or-none firing behavior and the bias term adjusts
the value of the firing threshold. An equation of this general form can describe any neuron. Over
the past 50 years, networks of units like these have demonstrated a wide variety of behaviors,
including many specific patterns of activity that animal nervous systems exhibit.

A second concrete schema inspiring the dynamical approach to cognition is the classical equation
for a simple oscillator like a pendulum. Indeed, it is obvious that arms and feet have many of the
properties of pendula.  Students of motor control have discovered that pendular motion is a
reasonable prototype for many limb motions. A nearly identical system (lacking the complication
of arc-shaped motion) is the equation for a system of a mass and spring. In this form:

Equation 2: m(d®)dt* + d(dx/dt) + k(x-xo) =0

it specifies simple harmonic motion in terms of the mass, m, times the acceleration, (dzx)dtz, the
damping, d, scaling the velocity, (dx/dt), and the spring’s stiffness, k, proportional to the distance
from the neutral position, X, of the mass. Fel’dman (1966) used heavily damped harmonic
motion to model a simple reach with the arm. If the neutral position, X, (the attractor position
when damped) can be externally set to the intended target position (e.g., by adjusting the stiffness
in springs representing flexor and extensor muscles), then an infinity of movements from
different distances and directions toward the target will result — simply by allowing the
neuromuscular system for the arm to settle to its fixed point, Xxo. A number of experimental
observations — reaching maximum velocity in the middle of the gesture, higher maximum
velocity for longer movements, automatic correction for an external perturbation plus the
naturalness and ease of oscillatory motions at various rates — can be accounted for with a model
using a mass and a spring with controllable stiffness, rest length and damping.

In the most general terms, a dynamical system may be defined as a set of quantitative variables
(e.q., distances, activations, rates of change, etc.) that change simultaneously in real time due to
influences on each other. These mutual influences can be described by differential or difference
equations (van Gelder and Port, 1995). Defined this way, Newton's equations of motion for
physical bodies were the earliest dynamical models. Mathematical developments over the past 30
years have revolutionized the field. Whereas up until the 1950s, the analysis of dynamical
models was restricted to linear systems (as in Equations 1 and 2) and only when they contain no
more than 2 or 3 variables, now, through the use of simulations by discrete computer programs
and using computer graphics, practical methods for studying nonlinear systems with many
variables are now possible (Strogatz, 1994).



C. Perceptual Models

Dynamical models seem particularly appropriate to account for motor control and for perceptual
recognition since research on temporal aspects of perception has been conducted for many years.

One well-known example of a dynamical model for general perception is the adaptive resonance
theory (ART) model of Grossberg (1995). This neural network is defined by a series of
differential equations, similar to the network Equation 1 above, describing how the activation of
any given node is increased or decreased by stimulus inputs, excitation and inhibition from other
nodes and intrinsic decay. This depends on weights (represented as matrices for a, b and c in
Equation 1) which are modified by previous successful perceptual events (simulating learning
from experience). The model can discover the low-level features that are most useful for
differentiating frequent patterns in its stimulus environment (using unsupervised learning) and
identify specific high-level patterns even from noisy or incomplete inputs. It can also reassign
resources whenever a new significant pattern appears in its environment without forgetting earlier
patterns. Notions like ““successful perception’” and “significant pattern’” are provided with
mathematical specifications that drive the system toward greater ““understanding’” of its
environment.

To recognize an object such as a letter from visual input, the signal from a spatial retina-like
system excites low-level feature nodes. The pattern of activated features here feeds excitation
through weighted connections to a higher set of identification nodes. These nodes compete
through mutual inhibition to identify the pattern. The best matching unit quickly wins by
suppressing all its competitors. When the match is good enough, a ““resonance loop’” is
established between some sensory feature units and a particular classification unit. Only at this
point is successful (and, according to Grossberg, conscious) identification achieved. This
perceptual model is dynamic because it depends on differential equations that increase or
decrease the activation of nodes in the network at various rates. Grossberg's group has shown that
variants of this model can account in a fairly natural way for many phenomena of visual
perception, including those involving backward masking, reaction time and so on.

D. High-level Models

Dynamical models have also been applied to higher-level cognitive phenomena. First, Grossberg
and colleagues have elaborated the ART model with mechanisms like masking fields that extend
the model to tasks like word recognition from temporally arriving auditory input. Several time-
sensitive phenomena of speech perception can be successfully modeled this way (Grossberg,
1986). In a second example, models of human decision making have for many years applied
expected utility theory where evaluation of the relative advantages and disadvantages of each
choice is made at a single point in time. But Townsend and Busemeyer (1995) have been
developing their decision field theory that not only accounts for the likelihood of each eventual
choice, but also accounts for many time-varying aspects of decision making, such as “approach-
avoidance’ or vacillatory effects, and the fact that some decisions need more time than others.

It’s also important to keep in mind that some phenomena that at first glance seem to depend on
high-level reasoning skills may turn out to reflect more low-level properties of cognition. One
startling result of this kind is in the ““A-not-B problem". Infants (9-12 mo.) will sometimes reach
to grab a hidden object yet when the object is moved to a new location, infants often reach to the
first site — to A not to B. This puzzle was interpreted by Piaget (1954) as demonstrating a lack of
the concept of “object permanence’, that is, that children have an inadequate understanding of
objects, thinking that they somehow intrinsically belong to the place they are first observed.



Recently Thelen, Schéner, Schrier and Smith (2001) demonstrated a dynamical model for control
of reaching that predicted sensitivity to a variety of temporal variables that are supported by
experimental tests. The lesson is that sometimes what seems at first to be a property of abstract,
high-level, static representations may turn out to result from less abstract time-sensitive processes
naturally modeled using dynamical equations.

E. Relation to Situated Cognition and Connectionism

From the perspective of situated cognition, the world, the body and the cognitive functions of the
brain can all be analyzed using the same conceptual tools. This is important because it greatly
simplifies our understanding of the mapping between these domains, and is readily interpreted as
an illustration of the biological adaptation of the body and brain to the environment.

Connectionist models are discrete dynamical systems and so are the learning algorithms used with
them. But the touchstone of a thoroughly dynamical approach to cognition is the study of
phenomena occurring in continuous time — something not all connectionist models do. Of course,
neural networks are frequently used to study time-varying phenomena, but other dynamical
methods are also available not employing connectionist networks. The development of
connectionist modeling since the 1980s has certainly helped to move the field in the direction of
dynamical thinking, but connectionist models are not always good illustrations of the dynamical
hypothesis of cognition.

F. Contrasting the dynamical systems framework with traditional approaches.

Of course, the most widespread conceptualization of the mechanism of human cognition proposes
that cognition resembles computational processes, like deductive reasoning or long division, by
using symbolic representations of objects and events in the world that are manipulated by
cognitive operations modeling time only as serial order -- not in real time. These operations
reorder or replace symbols, and draw deductions from them. The computational approach has its
best-known articulation in the physical symbol system hypothesis (Newell and Simon, 1972). The
theoretical framework of modern linguistics (Chomsky, 1963, 1965, 1967) also falls squarely
within this tradition since it views sentence generation and interpretation as a serially ordered
process of manipulating word-like symbols (e.g., table and go), abstract syntactic symbols (like
NounPhrase or Sentence) and letter-like symbols representing minimal speech sounds (such as /t/,
fal or features like [Voiceless] or [Labial]) in discrete time. In application to skills like the
perceptual recognition of letters and sounds or recognizing a person's distinctive gait, or the
motor control that produces actions like reaching, walking or pronouncing a word, the traditional
approach hypothesizes that essentially all processes of cognition are computational operations
that manipulate digital representations in discrete time. The mathematics of such systems is
based on the algebra of strings and graphs of symbol tokens. Chomsky's work on the foundation
of such abstract algebras (Chomsky, 1963) served as the theoretical foundation for computer
science as well as modern linguistic theory.

It should be noted that the dynamical systems hypothesis for cognition is in no way incompatible
with serially ordered operations on discrete symbols. However proponents of the dynamical
systems approach deny that most cognition can be satisfactorily understood in computational
terms. They propose that any explanation of human symbolic processing must sooner or later
include an account of its implementation in continuous time. The dynamical approach points out
the inadequacy of simply assuming that a “symbol processing mechanism' is somehow available
to human cognition, the way a computer happens to be available to a programmer. A
fundamental contrast between these frameworks is that the discrete time of computational models
is replaced with continuous time for which first and second time derivatives are meaningful at



each instant and where critical time points are specified by the environment and/or the body
rather than by the needs of a discrete-time device jumping from one clock tick to the next.

G. Strengths and Weaknesses of Dynamical Models

Dynamical modeling offers many important strengths relative to traditional computational
cognition. First, the biological plausibility of digital, discrete-time models remains a problem.
How and where might there be in the brain, a device that would behave like a computer chip,
clicking along performing infallible operations on digital units? The answer often put forward in
the past was "We don't really know how the brain works, anyway, so this hypothesis is as
plausible as any other’ (Chomsky, 1965 and even 2000). Such an argument does not seem as
reasonable today as it did 30 or 40 years ago. Certainly neurophysiological function exhibits
many forms of discreteness. But that does not justify simply assuming whatever kind of units and
operations would be useful for a digital model of cognition.

Second, temporal data can finally, by this means, be incorporated directly into cognitive models.
Phenomena like (a) processing time (e.g., reaction time, recognition time, response time, etc.), (b)
temporal structure in motor behaviors (like reaching, speech production, locomotion, dance), and
(c) temporal structure in stimulation (e.g., for speech and music perception, interpersonal
coordination while watching a tennis match, etc.) can now be linked together if critical, domain-
spanning events can be predicted in time.

The language of dynamical systems provides a conceptual vocabulary that permits unification of
cognitive processes in the brain with physiological processes in our bodily periphery and with
environmental events external to the organism. Unification of processes across these fuzzy and
partly artificial boundaries makes possible a truly embodied and situated understanding of human
behavior of all types. The discrete-time modeling of traditional approaches is always forced to
draw a boundary somewhere to separate the discrete-time, digital aspects of cognition from
continuous-time physiology (as articulated in Chomsky's,1965, distinction of Competence vs.
Performance).

Third, cognitive development and runtime processing can now be integrated, since learning and
perceptuo-motor behavior are governed by similar processes even if on different time scales.
Symbolic or computational models were forced to treat learning and development as totally
different processes unrelated to motor and perceptual activity.

Finally, trumping the reasons given above, is the fact that dynamical models include discrete-
time, digital models as a special case whereas the other way around is not possible. (The
sampling of continuous events permits discrete simulation of continuous functions, but the
simulation itself remains discrete and only models a continuous function up to one half its
sampling rate. See Port, Cummins and McAuley, 1995). Thus, any actual digital computer is, in
fact, also a dynamical system with real voltage values in continuous time that are discretized by
an independent clock. Of course, computer scientists prefer not to look at them as continuous
valued dynamical systems (because it is much simpler to exploit their digital properties) but
computer engineers have no choice. Hardware engineers have learned to constrain computer
dynamics to be governed reliably by powerful attractors for each binary cell that assure that each
bit settles into either state zero or state one before the next clock tick comes round.

These strengths of dynamical modelling are of great importance to our understanding of human
and animal cognition. As for weaknesses of dynamical modelling, there are several. First, the



mathematics of dynamical models is more inscrutable and less developed than the mathematics of
digital systems. It is clearly much more difficult, for the time being, to construct actual models
except for carefully constrained simple cases.

Second, during some cognitive phenomena (e.g., a student performing long division, or designing
an algorithm, and possibly some processes in the use of language) humans appear to rely on
ordered operations on discrete symbols. Although dynamical models are capable of exhibiting
digital behavior, how a neurally plausible model could do these tasks remains beyond our grasp
for the time being. It seems that computational models are, at the very least, simpler and more
direct, even if they remain inherently insufficient.

H. Discrete vs. Continuous Representations

One of the major intuitive strengths of the classical computational approach to cognition has been
the seeming clarity of the traditional notion of a cognitive representation. Since cognition is
conceived as functioning somewhat like a program in Lisp, the representations are constructed
from parts that resemble Lisp atoms and s-expressions. A representation is a distinct data
structure that happens to have semantic content (with respect to the world outside or inside the
cognitive system). They can be moved around or transformed as needed. Of course, such tokens
have an undeniable resemblance to words and phrases in natural language (cf. Fodor, 1975).
Thus, if one considers making a sandwich from bread and ham in the refrigerator, one can
imagine employing cognitive tokens standing for bread, the refrigerator, etc. Thinking about
sandwich assembly might be cognitively modeled using representations of sandwich components.
Similarly, constructing the past tense of walk can be modeled by concatenating the representation
of walk with the representation of —ed. However, this traditional view runs into more difficulties
when we try to imagine thinking about actually slicing the bread or spreading the mayonnaise.
How could discrete, wordlike representations be deployed to yield successful slicing of bread?
But if this is instead to be handled by a nonrepresentational system (such as a dynamical one),
then how could we combine these two distinct and seemingly incompatible types of systems?

The development of connectionist models in the 1980s, employing networks of interconnected
nodes, provided the first alternative to the view of representations as context-invariant,
manipulable tokens. In connectionist models, the result of a process of identification (of, say, an
alphabetic character or a human face) is only a temporary pattern of activations across a particular
set of nodes, not something resembling a context-free object. The possibility of representation in
this more flexible form led to the notion of distributed representations, where no apparent “object'
can be found to do the work of representing, but only a particular pattern distributed over the
same set of nodes as are used for many other patterns. Connectionists emphasized that such a
representation would not seem to be a good candidate for a symbol as conventionally conceived
in the formalist or computational tradition, yet can still function as a representation for many of
the same purposes.

The development of dynamical models of perception and motor tasks has led to further extension
of the notion of the representational function to include time-varying trajectories, limit cycles,
coupled limit cycles and attractors toward which the system state may tend. From the dynamical
viewpoint, static, computational representations will play a far more limited role in cognition.
Indeed, a few researchers in this tradition deny that static representations are ever needed for
modeling any cognitive behavior (Brooks, 1997).
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Glossary

dynamical system. A set of real variables changing over time (real time or discrete) due to
mutual influence, described using differential or difference equations.

state space. The set of all possible values of all variables in a dynamical system. For a small
number of variables, this is usually displayed graphically as a line, circle, torus or other geometric
figure. The dynamical equations for the system constrain possible instantaneous system states and
determine possible trajectories through the state space.

attractor. Any location or closed trajectory in the state space of a dynamical system toward
which the system tends over time.

settling. The process in which the state of a dynamical system approaches an attractor state --
whether a static attractor or a periodic trajectory.

vector field. A graphic representation of the behavior of a dynamical system specifying for each
point in the state space which direction the state will move and at what rate.

coupling. A situation of unidirectional or mutual influence between two or more oscillating
dynamical systems, as when a musician plays in time with a metronome or in time with another
musician.
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