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Abstract

Evaluating models that approximate complex data distributions is a core problem
in data understanding. In this pedagogical review, we describe how the Minimum
Description Length principle (MDL) can be applied to evaluate the relative appro-
priateness of distinct models that defy conventional comparison methods, including
models that are obscurely equivalent under functional transformations and inequiv-
alent models with the same number of parameters. The MDL principle provides a
concrete approach to identifying models that fit the data, avoid over-fitting the noise,
and embody no more functional complexity in the model itself than is necessary. New
results on the geometric complexity of several families of useful models are derived,
and illustrative examples are worked out in detail.

1 Introduction

The world of experimental science is replete with applications that require suitable approx-
imations in order to model complex data sets that contain excessive apparent detail due to
noise. Signal analysis, image analysis, shape detection, modeling data from psychological
observations, modeling data from physical observations, and so forth, are only a few of the
examples that spring immediately to mind. As each new research paper develops yet an-
other clever technique or proposes yet another functional class of models, one bothersome
question remains: how can we distinguish among different approaches? What criterion
besides the author’s word do we have to conclude that one model is better than another? In
other words, how do we distinguish a suitable approach from an optimal approach? Our
purpose in this article is to present a core collection of data models analyzed so that the
Minimum Description Length (MDL) principle can be used, after a parameter choice has
been selected, as a possible means of comparing the appropriateness of distinct models.
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We outline the practices of MDL for a general scientific audience, derive new results for
the geometric complexity of common classes of functional models, and provide a selection
of illustrations suitable for a variety of modeling and data reduction problems.

The Idea in a Nutshell. The conundrum that leads us to the ideas presented in this article
is simply this: suppose you do a least squares fit to a proposed model for a data sample.
You suspect that the 10th-order polynomial you used to fit the data is in fact nonsense,
even if it has really low variance, because you have good reason to believe that a cubic
polynomial process actually generated the data. You confirm this by checking your 10th
order fit against another attempt at the measurement, and it is ridiculously bad, even though
the fit to the first sample was superb. If you check the new data against a cubic fit to the
old data, it will still be an appropriate fit. How do you figure this out a priori when you
cannot take a second sample? The MDL method described here shows how this can be
accomplished in well-behaved situations. The essence of the entire argument is illustrated
in Figures 2, 3, and 4, which show explicitly that the “best” model using MDL, the lowest
point on the graph, is also typically the “right” model, the one used secretly to simulate the
noisy data; the lowest-variance models are almost always wrong.

General Background. The Minimum Description Length principle appears first in the
work of Rissanen [15–17], where it arose in the information-theoretic analysis of stochas-
tic processes. Over the years, a number of refinements have appeared, many also due to
Rissanen and his collaborators (see, e.g., [1, 3, 5–14, 18–20]). The definitive formulation,
answering many questions regarding comparison to other alternative approaches, is found
in Rissanen’s paper [21]. The underlying idea is simply to stretch information theory to its
limits, and to evaluate all the parts of a data description in the same universal language: the
number of bits needed in the description. Thus an excessively simple model would require
few bits for its own description, but many bits to describe the deviations of the data from the
model, while an excessively complex model could describe the data flawlessly, but would
require a huge self-description. Less obvious is the fact that two models with the same
number of parameters can differ substantially in the measure of the “descriptive power” of
their functional spaces, and the appropriateness of a particular model can be distinguished
on that basis as well. If this is done carefully, the theory is insensitive to reparameterizations
of the models, a potential source of endless confusion and controversy. Also of interest to
some classes of problems is the fact that both the model for the data sample and the model
for its error process enter into the evaluation. Thus one intuitively expects the evaluation
of all modeling problems to involve a compromise including the model’s parameters, the
form of its statistical noise, and a description of the intrinsic complexity of the modeling
function itself. The best compromise is the most elegant description, the minimal overall
amount of required information, the concrete mathematical formulation of Occam’s razor.
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At this time, there are still some open questions regarding the uniqueness of the “geo-
metric cost” that permits the calculation of the relative complexity of two models, the han-
dling of small, as opposed to nearly-infinite, data samples, and an annoying arbitrariness
in the choice of model parameter volumes. However, practical calculations using formu-
las valid for asymptotically large data samples and a functional metric based on the Fisher
information matrix are straightforward in practice and exhibit the most essential desired
properties: the results are independent of functional reparameterizations of the models, and
favor models that generalize to other samples from the same distribution, as opposed to
deceptively accurate models that are in fact overfitting the noise.

2 Computing Model Description Length

The fundamental description-length or “cost” formula that we will use, loosely following
[11, 13, 14], takes this form:

D = F +G ; (1)

which can be read as

“Description-length equals Fit plus Geometry.”

The first term quantifies the “goodness-of-fit” to the data and takes the general form

F = � ln f(yj�̂) : (2)

To compute this term, we must have some means of making a specific numerical choice for
the fitted values f�̂g of the model parameters. We will restrict our treatment here to models
of the form

y = g(�; x) + error model ; (3)

which describes the dependent (measured) variable y in terms of a set of model parameters
f�g and the independent variables x; we assume an additive noise model, although other
error models such as multiplicative noise could be specified.

The function f(yj�) is a user-chosen statistical likelihood function corresponding to
the model of Eq. 3 with its error process, and the f�̂g are model parameters fixed by some
(typically maximum likelihood) fitting procedure. F is thus an information-theoretic mea-
sure corresponding to the number of bits of description length attributable to inaccuracy:
if f � 0, the data are not well-described by f�̂g, while if f � 1, the description is ideal.
(Note: we will use natural logarithms denoted by “ln” throughout, although technically
perhaps log2 should be used to express all description lengths directly in bits.)
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If we have a sample, fyn(x); n = 1; : : : ; Ng, then we evaluate f(yj�̂) as the product of
the probabilities for each individual outcome yn at the fixed parameter values �̂ found from
the maximum likelihood fit to the hypothesized model g(�; x):

f(yj�̂)! f(fyngj�̂) �
NY
n=1

f(ynj�̂) : (4)

This makes explicit the intuition that F quantifies the cost of describing the deviation of the
set of N measured outcomes in the sample fyn(x)g from the maximum likelihood fit. A
critical feature of the approach is that the error distribution must be specified to completely
define the model; MDL can in fact theoretically distinguish between identical models with
differing statistical error generation processes.

The second term is the “geometric term” (technically the parametric complexity of the
model),

G = +
K

2
ln

N

2�
+ ln

Z
Vol

dK�
q
det I(�) ; (5)

where K is the number of parameters and f�k; k = 1; : : : ; Kg is the parameter set of the
model having Vol as the domain of the entire K-dimensional parameter space integration
for the model being considered. I(�) is the K � K Fisher Information Matrix averaged
over the data samples, but with each y replaced by its expectation; the computation of I(�)
is complex, and will be discussed in detail in a moment. Note that our choice of upper-case
K for the number of model parameters is often written with a lower-case k in the literature.

Intuitively, I(�) has many properties of a metric tensor, and in fact dK�
p
det I has

precisely the form of a reparameterization-invariant volume element dKx
p
g familiar from

Riemannian geometry and general relativity. This volume element effectively allows us
to count the number of distinct probability distributions the model can generate (see the
discussion in [14] and related citations).

The Fisher Information Matrix. We now attend to the definition of the Fisher Informa-
tion Matrix and the rest of the machinery required to carry out explicit computations of
I(�), as well as working out a standard example that will serve as our model throughout
the rest of the article.

First, we define the general notion of an expectation of a function h(y) with respect to
a statistical likelihood function as follows:

E(h(y)) =
Z

dy h(y) f(yj�) : (6)

Thus, any coefficient in a polynomial expansion of h(y) will be multiplied by the expecta-
tion corresponding to the appropriate m-th moment,

E(ym) =
Z

dy ym f(yj�): (7)
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To compute the Fisher Information Matrix, one begins by considering the expectation
of the second derivative of the chosen log likelihood function for continuous variables and
parameters,

Lij(�;x) = E

 
@2

@�i@�j
[ln f(yj�;x)]

!
; (8)

where we explicitly include the possible dependence of f on the dependent variable x

through g(�;x). When the expectation is computed, the dependent variable y is integrated
out; however, the values of the dependent variables x remain, and, in particular, will be
known for each outcome of a particular sample fyng. This leads to the definition of the
Fisher Information Matrix, which is the average of Lij over the actually obtained outcomes
in the data sample; using Eq. (4) to expand ln f(yj�) as the sum of the logs of the individual
components for the dependent variable yn measured at the location xn in the space of
independent variables, we obtain the basic definition

Iij(�) =
1

N

NX
n=1

Lij(�;xn)

=
1

N

NX
n=1

E

 
@2

@�i@�j
[� ln f(yj�;xn)]

!
(9)

for the Fisher Information Matrix of a measured sample.

The Normal Distribution. The easiest way to understand I(�) is to choose a specific
error model and work out an example. The Gaussian describing the usual normal distribu-
tion,

f(yj�;x) = 1

�
p
2�

exp
�
� 1

2�2
(y � g(�; x))2

�
; (10)

is by far the most common error distribution, and is easy to compute with. The error is
modeled by the Gaussian width �, and the relevant expectations may be computed explic-
itly:

E(1jx) = 1

E(yjx) = g(�; x)

E(y2jx) = �2 + g(�; x)2

� � � : (11)

To get the Fisher Information Matrix for the normal distribution, we find from direct
differentiation and Eq. (11) that

Lij(�; x) = � 1

�2
E(y � g(�; x)) @i @j g(�; x) +

1

�2
@ig(�; x)@jg(�; x)

= 0 +
1

�2
@g(�; x)

@�i

@g(�; x)

@�j
: (12)
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We obtain the corresponding Fisher Information Matrix by computing the average over
outcomes,

Iij(�) =
1

N

NX
n=1

Lij(�;xn) =
1

N�2

NX
n=1

@ign(�)@jgn(�) ; (13)

where we use the convenient abbreviation gn(�) = g(�1; : : : ; �K; xn). Note that the f�g
are free variables, not the maximum likelihood values, since we must integrate over their
domains; however, the values f�̂g may still be of importance, since they can in principle
determine the dominant contribution to the integral. It is important to realize that det I will
vanish unless the number N of linearly independent measurements is at least equal to the
dimension of the parameter space, N � K; the geometric term is undefined unless there
are enough measurements to determine a fit to the model parameters.

When computing the determinant in the integral of the geometric term for the normal
distribution, it is sometimes convenient to rearrange the terms in Eq. (13) using

ln
Z
dK�

q
det I(�) = ln

Z
dK�

s�
1

N�2

�Ks
det jX

n

@ign(�)@jgn(�)j

= �K
2
lnN�2 + ln

Z
dK�

s
det jX

n

@ign(�)@jgn(�)j :

This permits us to cancel the factors of N and re-express the geometric term as

G =
K

2
ln

N

2�
� K

2
lnN�2 + ln

Z
dK�

s
det jX

n

@ign(�)@jgn(�)j

= �K ln�
p
2� + ln

Z
dK�

s
det jX

n

@ign(�)@jgn(�)j :

3 Piecewise Constant Models

Suppose that a particular data set is sampled at intervals corresponding to power-of-two
subdivisions of the domain. Then we can identify the “simplest” model — the global
mean, the most complex model, where each data point is itself a model parameter, and a
complete set (the binary tree) of power-of-two models between these two extremes. We
now treat each in turn.

Global Mean Model. The simplest possible model is just a constant

y = �
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Figure 1: (a) Data set generated from a constant plus noise (identical to the N = K-
parameter “perfect” piecewise fit). (b) Single-parameter mean value fit. (c) Overfitting with
an evenly spaced set of 8 piecewise constants. (d) Overfitting with 32 piecewise constants.

(plus noise) corresponding to the simulated data shown in Figure 1(a). A least squares fit
to the data gives the maximum likelihood solution

�̂ =
1

N

NX
n=1

yn;

as shown in Figure 1(b). �̂ is expected to be very close to the value of � used to simulate
the data, but will virtually never match it exactly. The cost of representing the deviations
from this fit is given by

F = � ln f(fyngj�̂)

= � ln
NY
n=1

1

�
p
2�

exp(�(yn � �̂)2=2�2)

= N ln�
p
2� +

1

2�2

NX
n=1

(yn � �̂)2
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= N ln�
p
2� +

N

2�2
(variance) : (14)

Since K = 1 and the Fisher matrix is 1� 1, we have simply

I(�̂) =
1

N

NX
n=1

1

�2
=

1

�2
; ( Note: (@�̂)2 = 1 )

so the geometric term becomes (from Equation 5)

G =
K

2
ln

N

2�
+ ln

1

�

Z max

min
d�

=
1

2
ln

N

2�
+ ln

�max � �min
�

: (15)

Data-Perfect Model. On the other hand, the most complex model is effectively no model
at all, the model with one parameter for each measured value (K = N ),

y =
NX
n=1

yn�(x; xn) ;

where �(x; xn) is the Kronecker delta (unity for x = xn, zero otherwise). There is nothing
to fit: assuming the choice of fxng is a regularly-spaced sequence, so fxng is not a choice
of parameters, then we have N parameters fyng; if the fxng are specified independently in
the measurement, then we would have 2N parameters, f(xn; yn)g. For simplicity, we treat
the former case, so the model graph is the same as the data plot in Figure 1(a), and

F = � ln f(fyngjfyng)

= N ln�
p
2� +

1

2�2

NX
n=1

(yn � yn)
2

= N ln�
p
2� + 0 : (16)

As promised, this has no cost corresponding to deviations of the data from the model. The
Fisher information matrix, however, is now N �N , and (from Equation 12)

Lij =
1

�2

 X
n

@(yn�(x; xn))

@yi

! X
n0

@(yn0�(x; xn0))

@yj

!

=
1

�2
�(x; xi)�(x; xj) (17)

Iij =
1

N�2

NX
n=1

�(xn; xi)�(xn; xj) =
1

N�2
�(i; j) : (18)
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This is tricky because
PN

n=1 �(xn; xi)�(xn; xj) equals 1 only if i equals j, so it equals �(i; j).
Since K = N and �(i; j) represents the N �N identity matrix, the geometric contribution
(assuming identical parameter domain sizes V ) is (from Equation 5)

G =
N

2
ln

N

2�
+ ln

Z
V
� � �

Z
V| {z }

N

dNy

s
det

1

N�2
�(i; j)

=
N

2
ln

N

2�
� N

2
lnN + ln

V N

�N

= +
N

2
ln

1

2�
+N ln

V

�
: (19)

Binary-Tree Model. Data are often approximated by a binary tree generated by applying
recursive 2-element box filters. We can represent an entire family of models in this fashion,
each with 2M parameters, where M = 0 is the single parameter (global mean) model
treated first, and M = log2N (N = 2M ) is the zero-error model. The models each take the
form

y =
NX
n=1

gn(M)�(x; xn) :

The power-of-two subdivision is represented by requiring the gn(M)’s to be repeatedN=2M

times, and defining the 2M independent parameters to be fzn(M); n = 1; : : : ; 2Mg. The
best-fit values ẑ then are computed from the means over the repeated occurrences (e.g., the
box-filtered means at each level). To be explicit, if fyng is a sample, the M independent
parameter sets giving the best fit at each level are:

M = log2N ! ẑn = yn
M = log2(N=2) ! ẑ1 = (ĝ1 = ĝ2) = (1=2)(y1 + y2),

ẑ2 = (ĝ3 = ĝ4) = (1=2)(y3 + y4); : : :
M = log2(N=4) ! ẑ1 = (ĝ1 = ĝ2 = ĝ3 = ĝ4) =

(1=4)(y1 + y2 + y3 + y4); : : :
. . . . . . . . .
M = 0 ! ẑ1 = (ĝ1 = : : : = ĝn) = �̂

In Figure 1(a,b,c,d), we show a single data set generated by a distribution with constant
mean along with the fits for M = 0, M = 3, and M = 5, respectively, to illustrate
overfitting.

The goodness-of-fit term becomes

F (M) = � ln
NY
n=1

f(ynjẑ(M))
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= N ln�
p
2� +

1

2�2

NX
n=1

(yn � ẑm(n)(M))2 (20)

where m(n) = dn2M=Ne, so the ẑm(M) are understood as the 2M independent constants
(not N independent values) giving the best-average fit to the measurements at binary-tree
level M .

The geometric term, which gives the measure of the functional space spanned by the
zm(M) considered as variable parameters, is based on the 2M � 2M matrix

Iij(M) =
1

N�2

NX
n=1

�
@

@zi

 
NX
l=1

zm(l)(M)�(xn; xl)

!

@

@zj

 
NX
l0=1

zm(l0)(M)�(xn; xl0)

!�

=
1

�22M
�(i; j) ; (21)

where we have used the fact that N=2M occurrences of zm(M) are replicated at the level
M .

Thus, with K = 2M and �(i; j) representing the 2M � 2M identity matrix, we have
(assuming identical parameter domain sizes V ) (similar to Equation 19),

G(M) = +
2M

2
ln

N

2�
+ ln

Z
V
� � �
Z
V| {z }

2M

d2
M

z

s
det

�(i; j)

2M�2

= +
2M

2
ln

N

2�
+ lnV 2M +

1

2
ln
�

1

2M�2

�2M

=
2M

2
ln

N

2� (2M)
+ 2M ln

V

�
; (22)

and, for the M -th level binary-tree model, the total description length is

D(M) = F (M) +G(M)

= N ln�
p
2� +

1

2�2

NX
n=1

(yn � ẑm(n)(M))2

+
2M

2
ln

N

2� (2M)
+ 2M ln

V

�
: (23)

This form shows explicitly the transition from Eq. (15), with M = 0, to Eq. (19), with
2M = N .
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Quadtrees, Octrees, etc. The binary tree model for piecewise constant 1D data can be
easily extended to higher dimensions. For D-dimensional data, the corresponding model is
a piecewise constant 2D-tree (D = 2 being a quadtree, D = 3 being an octree, etc.). For
simplicity, we assume ND data samples over all D dimensions. We define the model as

A(x; y; : : :) =
NDX
ij:::

zm(ij:::)(M)�(x; xi)�(y; yj) : : : :

Then the data-fitting and geometric terms become

F (M;D) = � ln
NDY
ij:::

f(Aij:::jẑ(M)) (24)

= ND ln�
p
2� +

1

2�2

NDX
ij:::

(Aij::: � ẑm(ij:::))
2 :

The number of parameters is K = (2M)D and the K �K Fisher matrix is

Iij:::;i0j0::: =
1

�2

�
1

2M

�D
�(ij : : : ; i0j 0 : : :) ;

where i; j; : : : now range to 2M instead of N . The geometry term becomes

G(M;D) =
2MD

2
ln

N

2� (2MD)
+ 2MD ln

V

�
; (25)

which generalizes Equation 23 for D = 1. One could even apply this approach to the
independent modeling of each level of a signal’s resolution hierarchy to achieve optimal
compression.

Numerical Experiments. The principal motivation for the MDL approach is to distin-
guish between a good fit and overfitting to achieve what is referred to in the statistics and
pattern recognition literature as generalization. If the model does not generalize, then addi-
tional data sets with the same statistics will not be well-described, indicating the presence
of an excessively complex model that conforms to the random noise patterns of one iso-
lated sample. We can test this by generating a 256-element sample normally distributed
about a mean of zero with � = 1, and allowed parameter values [�3; 3] so that V = 6
(ambiguities can arise if V=� is too small). For M = 0, the fit to the single parameter is
ẑ = �̂ = (1=N)

P
yn; for M = 1, we can determine ẑ1 and ẑ2 to be the means for the left

and right halves of the data, etc.
In Figure 2(a), we compare the variance term (F (M) � const) (the heavy curve) vs

(G(M) + const) (the light curve) as a function of M , and show the summed description
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Figure 2: Comparison of the variance contribution F � const (heavy curve), the geometric
contribution G + const (light curve), and their sums D(M) (heavy dots) as a function of
level M for three different data distributions: (a) Original data generated by a single mean,
M = 0. (b) Original data generated by two means, M = 1. (c) Original data generated by
four means, M = 2.

length D(M) as black dots. In Figure 2(b), we repeat the process, except that the data are
distributed about a “true” M = 1 model, with means 0 and 1 for the left and right halves
of the data. Figure 2(c) shows the results for an M = 2 model, with means (0; 1; 0; 1).
We can now explicitly see the tradeoff between the data fit and the model description: the
minimum sum occurs as promised for the true model.

Curiously, we see that the drastic drop in the data error for the “perfect” N -parameter
model gives it a slight statistical edge over its neighbors. However, this is an illusory ad-
vantage: if we generate several additional data sets with the same distributions and evaluate
them against the set of fits fẑ(M)g determined by the original data sets, we see the results
in Figure 3. The overfitted models with excess parameters are extremely poor descrip-
tions of the abstract data distribution. The minimal models generalize perfectly, and the
overfitted models are terrible generalizations.

We conclude that choosing the model with the minimum description length avoids both
the traps of underfitting and overfitting, and suggests the selection of models close to those
generated by the actual data rather than being confused by models with artificially low
variance. In principle, models with different statistical distributions and parameter-space
geometry can also be distinguished, though non-compact parameter spaces require some
externally-imposed assumptions [11, 14].

4 Continuous Linear Models

Polynomial Functions Polynomials form the simplest class of differentiable models be-
yond the piecewise-constant models of the previous section, and can be extended to include
piecewise continuous splines in principle. If we choose K-parameter polynomial models
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Figure 3: MDL cost as a function of binary-tree-level M for the model for four data set
samplings and three different models. The heavy dots are the same points D(M) as in
Figure 2 and denote the costs of the model used to determine the maximum likelihood
parameters used in evaluating curves for the remaining models. (a) Original data are dis-
tributed about a single mean (M = 0); (b) two means (M = 1); (c) four means (M = 2).

of the form

y =
K�1X
k=0

akx
k (26)

and then carry out a least-squares fit to get the maximum-likelihood parameter estimates
âk, the data-fitting term for N outcomes f(xn; yn)g is

F (K) = N ln�
p
2� +

1

2�2

NX
n=1

 
yn �

K�1X
k=0

âk(xn)
k

!2

; (27)

and the K �K geometric term matrix with i; j = 0; : : : ; K � 1, is

Iij =
1

N�2

NX
n=1

@

@ai

 
K�1X
k=0

ak(xn)
k

!
@

@aj

 
K�1X
k0=0

ak0(xn)
k0
!

=
1

N�2

NX
n=1

(xn)
i(xn)

j =
1

N�2

NX
n=1

(xn)
(i+j) : (28)

The geometric term becomes

G(K) = +
K

2
ln

N

2�
+ ln

Z
V
� � �

Z
V| {z }

N

dKa

vuutdet

"
1

N�2

NX
n=1

(xn)(i+j)
#

=�K
2
ln 2� +K ln

V

�
+

1

2
ln det

"X
n

(xn)
(i+j)

#
; (29)

where we assumed the same domain size V for each parameter. The determinant van-
ishes even for linearly independent outcomes unless N � K, excluding underdetermined
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models. Note that, unlike the piecewise constant case, G(K) now has an explicit data
dependence.

In the specific case where there are sufficiently many outcomes so that the sum in
Eq. (29) approximates a Monte Carlo integration over some domain, say a � x � b,
we can explicitly compute the last term in Eq. (29), with �x � (b� a)=N , as

1

2
ln det

N

b� a

"
bi+j+1 � ai+j+1

i+ j + 1

#
:

We remark on the close relationship of the resulting matrix to the notoriously ill-conditioned
Hilbert matrix, which is exact if a = 0 and b = 1.

An identical exercise to that in Figure 3 can now be carried out. In Figure 4, we show the
cost of fits up to K = 9 (8th power) for samples generated using constant, linear, quadratic,
and cubic models with normally distributed error. We observed that the relative magnitudes
of the standard deviation in the error model and the scale of x can affect whether the correct
polynomial order is unambiguously selected. Here we used � = 1, ak = 1, and 0 � x � 3
with 256 outcomes. We see that the optimal K is that used to generate the data.

Orthonormal Functions. If we replace the power series by a set of normalized orthogo-
nal polynomials, we would write

y =
K�1X
k=0

akhk(x) ; (30)

where the orthogonality relation between hk and its conjugate hk, using integration domain
U , is by definition Z

U
dx hk(x)hk0(x) = �k;k0 ; (31)

so that we may formally determine the expansion coefficients from the integrals

ak =
Z
U
dx hk(x)y(x) : (32)

Here we in principal have a choice of methods to determine the optimal coefficients fâkg:

� Maximum Likelihood. The model Eq. (30) can be fit using least squares methods
like any other function. This method is probably preferred for sparse data distribu-
tions.

� Projection. Provided the samples are appropriately distributed or can be selected in
such a way that the discretely sampled version of the projection Eq. (32) is a good
approximation to the analytic integral, we can take �x � U=N , and write

âk � U

N

NX
n=1

hk(xn)yn : (33)
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Figure 4: The lowest MDL cost as a function of the number of fitted polynomial parameters
K for one data sample (heavy dots) selects the generating model, as well as generalizing
to four additional data samples (curves). (a) The simulated data are normally distributed
about a constant function; (b) linear function; (c) quadratic function; (d) cubic function.

The polynomials themselves form our first example of this class of functions if we
normalize the Legendre polynomials appropriately, e.g.,

Q0(x) =

s
1

2
� 1

Q1(x) =

s
3

2
� x

Q2(x) =

s
5

2
�
�
3

2
x2 � 1

2

�
...
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with integration range �1 � x � 1. Choosing the model sequence up to some maximum
K as

y = a0

s
1

2
+ a1

s
3

2
x+ a2

s
5

2

�
3

2
x2 � 1

2

�
+ � � � ; (34)

we can choose either the least-squares fit or the projection to determine the model coeffi-
cients; the projection can be computed using

â0 =
2

N

NX
n=1

s
1

2
yn

â1 =
2

N

NX
n=1

s
3

2
xnyn

â2 =
2

N

NX
n=1

s
5

2

�
3

2
x2n �

1

2

�
yn

...

Given the model Eq. (34) and the coefficients fâg, we can compute f(yjâ) and thus F and
G almost exactly as we did for the polynomial example leading to Figure 4, and we expect
similar results if the samples are sufficiently well-behaved.

Other examples of this class include the discrete sine-cosine series, (1=
p
�) cos j� and

(1=
p
�) sin j� for j 6= 0, and (1=

p
2�) for j = 0, where, e.g.,Z

U=2�
d�

 
1p
�
cos j�

! 
1p
�
cos j 0�

!
= �j;j0 ; (35)

and the spherical harmonic series with basis functions Ylm(�; �), detailed below.

Remark. The calculation of the geometric term of the description length for orthonormal
functions has one notable peculiarity. If we assume a real basis, so h = h (e.g., the cosine),
the Fisher matrix can be reduced to

Iij =
1

N�2

NX
n=1

hi(xn)hj(xn) : (36)

Remarkably, just as we saw for the projection, Eq. (32), this is essentially a Monte Carlo
approximation to the orthogonality integral, Eq. (31), if the samples are appropriately dis-
tributed. Therefore, as N ! (large) (which is, indeed, the condition for the validity of
many of the MDL formulas we are using), with �x � U=N , then

Iij � 1

N�2
N

U
�i;j : (37)
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If VK =
Q
k

R
dak, then the geometric term is just

G =
K

2
ln

N

2�U
+ ln

VK
�K

: (38)

If we assume identical parameter domains, then we can also make the simplification VK =
(V )K .

Similar classes of functions such as wavelets would give results exactly analogous to
our findings for orthogonal expansions:

Iij =
1

N�2

NX
n=1

Wi(xn)Wj(xn)

� 1

N�2
N

U

Z
U
dxWi(x)Wj(x)

� 1

N�2
N

U
Hij ; (39)

so

G =
K

2
ln

N

2�U
+ ln

VK
�K

+
1

2
ln detHij ; (40)

for some appropriately defined integration domains and overlap functions Hij .

Explicit example: real spherical harmonics. Suppose that we have a model for a ra-
dially varying spherical data set that we wish to expand around a fixed origin using an
unknown optimal number L of spherical harmonics. Then we can express this radial func-
tion for sampled values of the angular coordinates (�; �) on an ordinary sphere as

y = r(�; �) =
LX
l=0

+lX
m=�l

(clmY
c
lm(�; �) + slmY

s
lm(�; �)) ; (41)

where Y c
lm and Y s

lm are the cosine-like and sine-like real spherical harmonics (see, e.g.,
the mathworld web page, http://mathworld.wolfram.com/SphericalHarmonic.
html, Arfken [2], or Ritchie and Kemp [22] for full details). Note that fclm; slmg are
the model parameters that we previously denoted by f�g, while (�; �) now corresponds
to “physics convention” polar coordinates with (x = r cos� sin �; y = r sin� sin �; z =
r cos �) in order to have the correct correspondence to the conventions for Ylm(�; �): we
take 0 � � < 2�, 0 � � � �, so the integration volume element d
 = d cos � d� has
total volume 4�. Our task is to determine the optimal value L of the last useful term in the
harmonic series for a body of data using MDL.

For each value of L in a set of attempted data descriptions with L = 0; 1; 2; 3; : : :, we
determine by some suitable means (e.g., least squares fit or projection) a corresponding
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set of optimal model parameters fĉlm; ŝlmg from the data. The goodness-of-fit term in the
MDL expression with normal statistics becomes

F = �
NX
n=1

ln f (r(�n; �n)jfĉlm; ŝlmg)

= N ln�
p
2� +

1

2�2

NX
n=1

 
r(�n; �n)�

X
lm

(ĉlmY
c
lm(�n; �n) + ŝlmY

s
lm(�n; �n))

!2

(42)

and the geometric complexity term is

G =
K

2
ln

N

2�
+ ln

Z
dfclmg

Z
dfslmg

q
det I(fclm; slmg) : (43)

We remark that for even functions, only the clm survive, and so K = (L + 1)2; for odd
functions, the l = 0 term is absent, and so technically K = (L + 1)2 � 1; for mixed
functions, we would therefore expect K = 2(L + 1)2 � 1 parameters. We will leave K
unspecified to allow appropriate adjustments for particular data sets.

Expanding the Fisher Information matrix, we can explicitly write the terms as

det Ilm;l0m0(fclm; slmg) =
det

1

N�2

�����
PN

n=1 Y
c
lm(�n; �n)Y

c
l0m0(�n; �n)

PN
n=1 Y

c
lm(�n; �n)Y

s
l0m0(�n; �n)PN

n=1 Y
s
lm(�n; �n)Y

c
l0m0(�n; �n)

PN
n=1 Y

s
lm(�n; �n)Y

s
l0m0(�n; �n)

�����
=

�
1

N�2

�K
det

NX
n=1

����� Y
c
nY

c
n Y c

nY
s
n

Y s
nY

c
n Y s

nY
s
n

����� : (44)

Thus we can write the geometric contribution as

G =
K

2
ln

N

2�
� K

2
lnN�2 + ln

Z
dfclmg

Z
dfslmg+ 1

2
ln det

NX
n=1

����� Y
c
nY

c
n Y c

nY
s
n

Y s
nY

c
n Y s

nY
s
n

����� :
If we denote the parameter integrals as, e.g.,

R
dclm = Clm, we can finally write

G = �K ln�
p
2� +

X
lm

lnClm +
X
lm

lnSlm +
1

2
ln det

NX
n=1

����� Y
c
nY

c
n Y c

nY
s
n

Y s
nY

c
n Y s

nY
s
n

����� : (45)

If, as noted above, the sampled values should provide an approximation to the orthogonality
relation integral Z

d
Y c
lmY

c
l0m0 = jidentity matrixjlm;l0m0 ;

then with �
 � 4�=N , we can obtain the approximate result

G = �K ln�
p
2� +

X
lm

lnClm +
X
lm

lnSlm +
1

2
ln
�
N

4�

�K

= �K ln�
p
2� +

X
lm

lnClm +
X
lm

lnSlm +
K

2
ln

N

4�
: (46)
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Observations. We can see that it is almost trivial to test to see whether or not least-
squares fitting should be performed rather than numerical projection for orthogonal polyno-
mials: for projection to be a valid approximation, the numerical sum over the independent
variables must give a (user-definable) sufficient approximation to the orthogonality relation
for the bare basis functions, independent of any measured data or model selection.

We note also that if complex functions such as the classical spherical harmonics are
used instead of the real cosine-like and sine-like harmonic combinations, one finds experi-
mentally that it is necessary to use complex conjugate pairs of Ylm’s in the matrix Ilm;l0m0

in order to get positive definite numerical results.
If continuous Fourier expansions are used as models, the determination of quantities

such as the functional integrals over the coefficients required in the MDL procedure appears
to be an open question for future research.

5 Gaussian Models

Our examples so far have all been linear in the coefficients, so that the derivatives in the
Fisher matrix computation eliminate the parameter dependence, and nothing particularly
interesting happens in the integration. In this section, we treat a new class, the Gaussian
models, which are very important data models in their own right, and exhibit new and non-
trivial behavior in their parameter derivatives. Unfortunately, it is also much more difficult
to determine reliable least-squares fits; a single Gaussian’s parameters can be determined
by a polynomial least squares fit to the logarithm, but sums of Gaussians require more
general methods such as Levenberg-Marquardt optimization (see, e.g., [4]).

We choose as our general model a sum of K=3 Gaussians, with K parameters in total,
of the following form:

y = g(x; �) =
K=3X
k=1

ak exp

 
�(x� bk)

2

2c2k

!
: (47)

This can easily be generalized to use a D-dimensional independent variable x by extending
bk to a D-dimensional vector bk. This increases the number of parameters per Gaussian to
2 +D instead of 3.

The calculation of the description length follows the usual procedure: assume that the
Gaussian distribution itself has random errors described by a normal distribution with stan-
dard deviation � and carry out a least-squares fit procedure to get the maximum-likelihood
parameter estimates fâk; b̂k; ĉkg. (We assume the total error model is given by a single
�, though we could choose different ones for different values of K if we wished.) The
data-fitting term for N outcomes f(xn; yn)g is

F (K) = N ln�
p
2�
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+
1

2�2

NX
n=1

0
@yn � K=3X

k=1

âk exp(�(xn � b̂k)
2

2ĉ2k

1
A2

: (48)

The K �K geometric term matrix is

Iij =
1

N�2

NX
n=1

����������

A1(xn)
B1(xn)
C1(xn)

...


 A1(xn)B1(xn)C1(xn) : : :

����������
(49)

where

Ak(x) =
@g

@ak
= e

�(x�bk)
2

2 c2
k

Bk(x) =
@g

@bk
=

ak (x� bk)

c2k
e
�(x�b

k
)2

2 c2
k

Ck(x) =
@g

@ck
=

ak (x� bk)
2

c3k
e
�(x�bk)

2

2 c2
k :

We denote the allowed integration domains by amin � a � amax, bmin � b � bmax,
cmin � c � cmax, and note that, for each triple of parameters, there is an overall factor of
a4=c10 in the determinant of Iij; thus the argument of the logarithm in G(K) is an integral
of the form

V (K) =
Z
dK=3a

Z
dK=3b

Z
dK=3c

vuuutK=3Y
k=1

a4k=c
10
k det jsum of exponentialsj

=
K=3Y
k=1

Z
dak a

2
k

Z
dbk

Z
dck c

�5
k

q
det jsum of exponentialsj :

6 Models with the Same Number of Parameters

For completeness, we summarize here the comparison of the Fechner and Stevens models
presented by Pitt, Myung, and Zhang [14]; these models each have only two parameters,
and the problem of whether one or the other is a better description of a given body of
psychophysics data had long been an unanswerable question. We shall see that, while
standard analysis overwhelmingly favors one model over the other, no matter what the
source of the data, MDL can clearly distinguish them.
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Goodness of Fit for the Fechner and Stevens Models. The Fechner model,

y = a ln(x + b) ;

and the Stevens model,
y = axb

both have two parameters and can in principle describe the same data. Assuming corre-
sponding probability distributions

fF(yja; b) =
1

�
p
2�

exp� 1

2�2
(y � a ln(x + b))2

fS(yja; b) =
1

�
p
2�

exp� 1

2�2

�
y � axb

�2
;

the goodness of fit term for a body of data with maximum-likelihood parameters (â; b̂) is

FFechner GOF = � ln f(fyngjâ; b̂)

= N ln�
p
2� +

1

2�2

NX
n=1

(yn � â ln(xn + b̂))2

= N ln�
p
2� +

N

2�2
(variance) (50)

for the Fechner model, with an obvious analogous expression for the Stevens model.

Geometric Terms. The geometric term is easily seen to take the general form

Lij(a; b; x) =
1

�2

����� ( @
@a
g(a; b; x))2 @

@a
g(a; b; x) � @

@b
g(a; b; x)

@
@a
g(a; b; x) � @

@b
g(a; b; x) ( @

@b
g(a; b; x))2

����� :
For the Fechner model, with E(yn) = a ln(b+ xn), the relevant matrix term becomes

LFechner
ij (a; b; xn) =

1

�2

������
(ln(b+ xn))

2 a ln(b+xn)
b+xn

a ln(b+xn)
b+xn

a2

(b+xn)2

������ ; (51)

while for the Stevens model, with E(yn) = axbn, the matrix is

LStevens
ij (a; b; xn) =

1

�2

����� x2bn ax2bn lnxn
ax2bn lnxn a2x2bn (lnxn)

2

����� : (52)

For sample sizes two or greater, we average over the values of xn to find the corre-
sponding 2� 2 matrix

Iij(a; b) =
1

N

NX
n=1

Lij(a; b; xn) : (53)
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The geometric term for each model is determined from the integral over the K = 2 dimen-
sional parameter space in the expression

G = ln
N

2�
+ ln

Z
da

Z
db
q
det I(a; b) : (54)

Thus we find for the Fechner model, y = a ln(x + b),

GFechner = � ln 2��2 + ln
Z
a da

Z
F (b) db

F 2(b) =

 
NX
n=1

(ln(xn + b))2
! 

NX
n=1

(xn + b)�2
!
�
 

NX
n=1

ln(xn + b)

(xn + b)

!2

; (55)

and for the Stevens model, y = axb,

GStevens = � ln 2��2 + ln
Z
a da

Z
S(b) db

S2(b) =

 
NX
n=1

(xn)
2b

! 
NX
n=1

(xn)
2b(lnxn)

2

!
�
 

NX
n=1

(xn)
2b lnxn

!2

: (56)

Comparison and Analysis. The comparison of these two two-parameter models can now
be seen to reduce to the comparison of the two integrals over b: we may assume that, if the
model choice is ambiguous, the two variance terms are comparable, and that the overall
contribution of the scaling coefficient a is also the same. Hence the difference is

�(Stevens � Fechner) = ln
Z
S(b) db� ln

Z
F (b) db : (57)

Pitt et al. [14] observe that the integral over b from (0 ! 1) diverges for S(b), requiring
an ad hoc choice of finite integration domain, while the integral converges for F (b), so no
such choice is necessary. With a reasonable choice of integration domain (0 � b � 3, to be
precise), and random samples drawn from the Stevens and Fechner distributions, respec-
tively, the full MDL cost equation clearly prefers the model that created the distribution,
while the Stevens model is overwhelmingly chosen over Fechner in all cases if only the
goodness-of-fit is taken into account.

7 Remarks and Future Work

The Minimum Description Length criterion for model selection has the remarkable prop-
erty that it can be formulated in a way, e.g., using the Fisher information matrix as a met-
ric, that does not depend in any essential way on reparameterizations of the models; unlike
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many standard methods, the MDL procedures presented here are not deceived by disguises,
and so confusions that can arise from subtle transformations are avoided. Furthermore, it is
often possible to distinguish a priori among competing models to select the model that was
most likely to have produced the original distribution, even when a much lower maximum-
likelihood fitting error results from overfitting with a more complex model.

However, there are a number of overall problems to be addressed in practical applica-
tions of the method. Among these, we note particularly the following:

� Parameter Ranges. As we have seen in many examples such as the Stevens model,
the parameter values must often be restricted to obtain finite integrals for the geomet-
ric term. This technically invalidates the reparameterization invariance. This problem
is well-known and various attempts have been made to address it: Rissanen [18], for
example, discusses the issue and suggests possible correction terms; other solutions
(Myung, private communication) might be to approximate the integral over the deter-
minant using the value of the determinant at the maximum-likelihood point (though
this again invalidates reparameterization invariance), or to seek alternative metrics to
replace the Fisher information matrix, optimally selected according to some meta-
criteria that are consistent with the rest of the MDL procedure. An elegant solution
for regression problems has been found by Liang and Barron (this volume); see also
Lanterman’s contribution (this volume).

� Sample Sizes. The MDL formalism that is the basis for the equations we have used is
the result of a very sophisticated mathematical analysis, and is valid only for asymp-
totically large sample sizes. The accuracy of the basic formulas is therefore suspect
for the frequently-occurring case of small samples. Correction terms are known, but
just how to handle small data samples has not been completely understood.

� Model Complexity Computation. The mathematical foundation of the geomet-
ric complexity terms we have used is deeply rooted in the mathematics of functional
forms, functional integrals, and functional measures (see, e.g., Balasubramanian [3]);
while these methods are used extensively in relativistic quantum field theory for sim-
ple subclasses of integrands, the general analysis is very poorly understood and lies
at the limits of current mathematical methods. There are very likely many details,
such as the treatment of unusual probability distributions and error distributions, that
remain to be properly analyzed.
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