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Abstract
The forthcoming Revised6 Report on Scheme differs from previ-
ous reports in that the language it describes is structured as a set
of libraries. It also provides a syntax for defining new portable li-
braries. The same library may export both procedure and hygienic
macro definitions, which allows procedures and syntax to be freely
intermixed, hidden, and exported.

This paper describes the design and implementation of a
portable version of R6RS libraries that expands libraries into a
core language compatible with existing R5RS implementations.
Our implementation is characterized by its use of inference to de-
termine when the bindings of an imported library are needed, e.g.,
run time or compile time, relieving programmers of the burden of
declaring usage requirements explicitly.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—modules, packages;
D.3.4 [Programming Languages]: Processors—compilers; prepro-
cessors

General Terms Languages

Keywords Scheme, binding phases, hygienic macros, libraries,
macro expansion

1. Introduction
The language defined by the current draft of the Revised6 Report
on Scheme (Sperber et al. 2007b) differs from the Revised5 Re-
port (Kelsey et al. 1998) language most noticeably in that it is struc-
tured as a base library along with a set of additional libraries. It
also provides programmers with a library form via which new li-
braries may be defined. Libraries define new syntactic constructs by
associating exported keywords with macro transformers and new
variable bindings by associating exported variables with computed
values, which are often but not always procedures.

A useful feature of R6RS libraries is that a library may export
both variable and keyword bindings. Because the transformations
implemented by the keyword bindings are hygienic (Kohlbecker
et al. 1986), references to identifiers introduced by an exported
macro resolve to references in the lexical scope of the macro defi-
nition, i.e., to bindings within the exporting library that may or may
not be exported explicitly by the library. This allows programmers
to keep hidden any bindings that should not be visible outside of a
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library without inhibiting their use in the output of a macro trans-
former. Requiring that keyword bindings be separated from the
variable bindings, as one might do via header files in C (Kernighan
and Ritchie 1988), would destroy this feature.

While useful, the export of both variable and keyword bindings
complicates the evaluation model, because variable and keyword
bindings are needed during different phases of evaluation: keyword
bindings are needed when the importing code is compiled, while
variable bindings are needed when the importing code is run. The
situation is further complicated by the fact that macro transformers
are themselves Scheme procedures that may need to reference
bindings imported from other libraries at compile time. When these
other bindings are themselves keywords, the bindings are needed
when the compile-time code of the compile-time code is compiled,
and so on.

The first public draft of R6RS (Sperber et al. 2006) required
programmers to declare the phases at which libraries are available
for use. If a library is imported explicitly for run (the default), its
keyword bindings are evaluated when the importing code is com-
piled, and its variable bindings are evaluated when the importing
code is run. Similarly, if a library is imported explicitly for expand,
both keyword and variable bindings are evaluated when the import-
ing code is compiled. Generally, a library may be imported explic-
itly for a specific phase by specifying the meta level of its import,
where run corresponds to meta-level 0 and expand corresponds to
meta-level 1. For macros that expand into transformers, negative
meta levels may also be needed. When the importing code is itself
a library, the declarations and their semantics become even more
complex.

These declarations can become unwieldy. The declarations are
also imprecise in nature, as discussed in Section 4.4, which in
turn leads to unnecessary compile-time overhead as bindings are
evaluated in some cases when they are not actually needed.

A better alternative is to shift the burden of determining and
declaring the phases at which each library’s keyword and variable
bindings must be evaluated from the user to the implementation.
With this alternative, the implementation infers the phases at which
the variable and keyword bindings of a library must be evaluated
based on how the identifiers are actually used by the importing
code. When a reference to a keyword imported from a library is
encountered during the compilation of the importing code, the key-
word bindings of that library are evaluated. Similarly, if the resid-
ual code after macro expansion contains a reference to an imported
variable, the variable bindings of the imported library will be eval-
uated at the run time of the residual code. Both occur automatically
whether the importing code is run-time code, compile-time code,
or code used at some higher meta level.

During the formal comment period for the first public R6RS
draft, we developed such an implementation and found it indeed
easier to use. It is also often significantly more efficient, since li-
braries are never loaded and initialized unnecessarily. The addi-
tional efficiency comes “only” at compile time, but we believe that
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compile time is important. Furthermore, compile time may coin-
cide with run time through the use of Scheme’s eval procedure or
various run-time compilation techniques.

Having implemented and seen the benefits of implicit phasing,
we lobbied the R6RS editors to switch to implicit phasing. We
got our way—partly. The subsequent draft (Sperber et al. 2007a)
and each that followed allows implementations to support either
implicit or explicit phasing. This means that programs to be run in
an implementation that requires phase declarations must include
them, but other programs can leave them out. A future version
of the report, e.g., R7RS, may mandate either implicit or explicit
phasing once the community settles on a de facto standard, and
we believe the relative simplicity and efficiency of implicit phasing
will win out in the end.

This paper describes the implicit-phasing model and why we
believe it to be superior to the explicit-phasing model. It also de-
scribes our implementation of R6RS libraries, which consists of a
library manager and a library expander. The library manager han-
dles the dependencies among libraries, and the library expander
handles the expansion of individual libraries. To allow for max-
imum portability, the library expander transforms a library into
code in a small core language compatible with R5RS Scheme. Both
the library manager and library expander are themselves written
as R6RS libraries and thus expand into R5RS compatible code.
This makes R6RS libraries readily available, now, and runnable on
most existing R5RS implementations. Additionally, the library ex-
pander produces straightforward code amenable to optimizations
like copy propagation and procedure inlining. In particular, no run-
time indirects are required to determine the values of either local
or imported variable bindings. To date, we have tested the imple-
mentation under Chez Scheme, Chicken Scheme, Gambit, Gauche,
Ikarus, Larceny, and MzScheme.

The remainder of this paper is organized as follows. Section 2
briefly describes the syntax and semantics of R6RS libraries and
macros. Section 3 describes how the library manager handles de-
pendencies among libraries. Section 4 describes how the library
expander transforms a single library, including its constituent defi-
nitions and expressions, into the core language. Section 4 also de-
scribes how the library expander triggers the evaluation of the key-
word and variable bindings of other libraries as they are needed.
Section 5 describes the three products of the library expander: in-
formation about bindings, code to evaluate keyword bindings, and
code to evaluate variable bindings. Section 6 describes the core lan-
guage of the code produced by the expander. Section 7 discusses the
expansion algorithm. Section 8 discusses related work, while Sec-
tion 9 presents our conclusions and possibilities for future research.

2. R6RS Libraries and macros
A Scheme library, from a programmer’s standpoint, is a set of
private and exported definitions that provide functionality often
related to a specific purpose. The R6RS document defines a set
of standard libraries that the programmer can extend using the
library form. Bindings exported from one library can be im-
ported into another library. We say that the imports define the lan-
guage in which a library is written. A simple library of numeric
procedures can be written as follows, where --- represents elided
code.

(library (numerics)
(export fact ack fib)
(import (r6rs))
(define (fact n)
(if (zero? n) 1 (* n (fact (- n 1)))))

(define (ack n m) ---)
(define (fib n) ---))

The (numerics) library imports all the identifiers that the (r6rs)
library exports. From this set, (numerics) uses the keywords
define and if and the variables zero?, *, and - among others.
The (numerics) library can be imported into other libraries using
the same syntax used for importing the (r6rs) library.

A library may need to initialize itself before any of the variables
it defines are used. In the following example, a library of facts about
Scheme is defined. The library uses the (hash-tables) library for
quick access to the factoids. The hash table is populated when the
library is initialized.

(library (scheme-factoids)
(export fact)
(import (r6rs) (hash-tables))
(define ht (make-eqv-hash-table))
(define (fact x)
(hash-table-ref ht x #f))

(hash-table-put! ht 120
"Scheme macros are written in Scheme.")

---)

If two libraries export like-named identifiers that represent different
keyword or variable bindings, they may not be imported together
without qualification into a third library or top-level program. A
set of import qualifiers are provided to allow programmers to work
around this and, more generally, exercise finer control over the set
of bindings imported from a library and the names used locally to
refer to those bindings. An import-set consists of zero or more qual-
ifiers wrapped around a library reference, which is itself a paren-
thesized sequence of names. These qualifiers are only, except,
rename, and prefix:

(only import-set identifier ...) selects from the set
of bindings selected by import-set only those named by the
given identifiers.

(except import-set identifier ...) selects all of the
bindings selected by import=set except those named by the
given identifiers.

(rename import-set (old new ) ...) selects all of the
bindings selected by import-set, using the local name new for
each binding named by a corresponding old.

(prefix import-set prefix ) selects all of the bindings
selected by import-set, prefixing the name of each binding with
the given prefix.

An import-set consisting of an unqualified library reference selects
all of the bindings exported by the named library. The qualifiers are
illustrated by the following Scheme top-level program.

(import
(only (r6rs) display)
(rename (scheme-factoids) (fact scheme-fact))
(prefix (except (numerics) ack fib) num:))

(display (scheme-fact (num:fact 5)))

In addition to extending the language by defining new variables,
programmers can extend the syntax of the language by defining
new keywords. Just as define binds variables to values (or loca-
tions holding values), define-syntax binds keywords to trans-
formers. A transformer is a procedure that accepts as input a single
value—a syntax object representing a macro call—and returns a
new syntax object. The right-hand-side of a macro binding form
can be any expression that evaluates to a transformer. Transformers
can use the full Scheme language to implement their transforma-
tions, using syntax-case to match and destructure the input and
syntax to construct the output (Dybvig 1992; Dybvig et al. 1992).
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A transformer often simply rewrites the input in a straightfor-
ward manner, extracting portions of the input and inserting them
into the output, as illustrated by the definition of when in terms of
one-armed if below.

(define-syntax when
(lambda (x)
(syntax-case x ()
[(when e0 e1 e2 ...)
(syntax (if e0 (begin e1 e2 ...)))])))

The input to a transformer is always the entire syntactic form,
including the identifying keyword, which is reflected by the pattern
given in the when transformer’s syntax-case expression. Pattern
variables, such as e0, are used to name pieces of the input, with
ellipses used to specify zero or more occurrences of the preceding
pattern. These pattern variables are also used to insert the selected
pieces of input into the output, as illustrated by the transformer’s
syntax template, using ellipses for pattern variables that represent
zero or more input subforms.

The list appearing after the input in a syntax-case expression
is a list of literal identifiers, used to recognize, e.g., the auxiliary
keyword else in a cond or case expression. It is empty in the
transformer expression above because when has no auxiliary key-
words.

To avoid redundant specification of the keyword, an underscore,
which matches any input, is often used in place of the keyword.
Also, the form (syntax x) may be abbreviated to #’x just as
(quote x) may be abbreviated to ’x. So the definition above
would typically be written more concisely as follows.

(define-syntax when
(lambda (x)
(syntax-case x ()
[(_ e0 e1 e2 ...)
#’(if e0 (begin e1 e2 ...))])))

For simple transformers like this, use of the syntax-rules form
results in still shorter code.

(define-syntax when
(syntax-rules ()
[(_ e0 e1 e2 ...)
(if e0 (begin e1 e2 ...))]))

The lambda expression and the syntax expression are implicit in
syntax-rules, which conveniently reduces the amount of syntac-
tic baggage when more generality is not required.

An important characteristic of each definition of when is that the
identifier references inserted into the output of its transformer are
scoped where the transformer code appears, not where the syntactic
form to be transformed appears. So the keywords if and begin
inserted into the output of the when transformer resolve to the if
and begin bindings in effect where when is defined, regardless of
any definition of if and begin in the context of a when expression.

A related characteristic is that bindings introduced by a trans-
former do not capture references in the input to the transformer.
For example, given:

(define-syntax compose-self
(syntax-rules ()
[(_ p x) (let ([t p]) (t (t x)))]))

the expression

(let ([t 3])
(compose-self (lambda (x) (+ x 1)) t))

expands into the equivalent of

(let ([t1 3])
(let ([t2 (lambda (x) (+ x 1))])
(t2 (t2 t1))))

so that the binding of t introduced by compose-self does not
capture the reference to t in its input.

These characteristics are required by the hygienic nature of the
macro expander (Kohlbecker et al. 1986) and essentially mean that
syntax definitions, like procedure definitions, are lexically scoped.
While lexical scoping is the default, transformers that violate lex-
ical scoping, i.e., transformers that refer to bindings in the context
of their input or that introduce bindings that capture references in
their input, can also be written, but we have no space or need to
describe such transformers here.

The following example illustrates a library that defines and
exports the keyword cteval, whose transformer uses eval at
expansion time to perform compile-time evaluation and also list
to build up the result.

(library (compile-time-eval)
(export cteval)
(import (r6rs) (r6rs eval))
(define-syntax cteval
(lambda (x)
(syntax-case x ()
[(_ expression library)
(list #’quote
(eval (syntax->datum #’expression)
(environment
(syntax->datum #’library))))]))))

The defined syntax cteval (cteval (+ 1 2) (r6rs)) expands
to (quote 3) by evaluating, at compile time, the expression
(+ 1 2) in the language defined by the (r6rs) library, and quot-
ing the resulting value.

While this degree of generality is seldom needed, the trans-
former for cteval illustrates how the full generality of Scheme
can be employed by a macro.

Any identifier imported from the (r6rs) library can be used
both for run and expand, so even in the explicit declaration model,
there is no need to declare the phases explicitly for the example
above. Our implementation extends this to arbitrary libraries and
phases. In other words, the import form of a library defines the
language in which the library body is written, regardless of phases.

3. Library management
The libraries described in the preceding section each depend on
other libraries, if only the built-in (r6rs) library. In general, each
library is expanded before it is imported into dependent libraries.
The import forms of a set of libraries implicitly define a depen-
dency graph. The graph is necessarily acyclic because a library im-
port relationships cannot be recursive. For example, suppose we
have a top-level Scheme program that imports the student-db as
follows:

(import (r6rs) (student) (student-db) ---)
(define print-student-record ---)
(new-repl
(lambda () (display "Enter a student name: "))
(lambda (x)
(print-student-record (find-student x))))

The library manager determines from the import form of the top-
level program that the program depends on (r6rs), (student),
and (student-db). Each in turn depends on its own set of li-
braries. After following the (finite) chain of imports, the library
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manager determines a partial ordering of dependencies that is illus-
trated by the directed acyclic graph below.

(r6rs)

(structures)

(student)

(student-db)

program

step 0

step 1

step 2

step 4

step 3

Based on this partial order, expansion of this program must proceed
in the steps identified in the graph, as elaborated below.

• Step 0 defines the (r6rs) library. Although the library is likely
to be constructed from several other libraries, we treat this
library as primitive, hence Step 0.

• Step 1 expands the (structures) library. This defines the
define-structure macro that can be used in any library that
imports (structures) at a later step.

• Step 2 expands the (student) library. In this step, the
student structure is defined by constructing a unique iden-
tifier for the structure type along with a set of definitions and
macros that provide the constructor, predicate, and accessor
operations. Such procedures and macros (with the embedded
structure identifier) are available for later imports. The student
structure identifier does not change across invocations.

• Step 3 expands the (student-db) library. The expanded body
of the library contains instances of student structures (generated
at compile time) and a procedure find-student, for accessing
the database.

• Step 4 expands the top-level program, using the outputs of
previous stages.

3.1 Library visiting and invocation
In cooperation with the library expander, the library manager must
arrange for the keyword and variable definitions of a library to
be evaluated at the appropriate times. The evaluation of keyword
definitions is referred to as visiting a library, while the evaluation of
variable definitions and library initialization expressions is referred
to as invoking a library. A library must be visited when its keyword
bindings are required, directly or indirectly, for the expansion of
another library or top-level program, and it must be invoked when
its variable bindings are required for expansion of another library
or top-level program or for a run of a top-level program. The
process of visiting and invoking a library in our implementation
is described in detail in Section 5.

3.2 Inconsistency of multiple expansions
Although not specifically required by the draft R6RS, it turns out
that every library must be expanded exactly once to avoid incon-
sistencies that may appear in the set of identifiers exported by a
library. Using separately expanded versions of one library may
yield to inconsistent and “unlinkable” programs. A simple exam-
ple showing the possibility of producing such programs is shown
below.

(library (E0)
(export x)
(import (r6rs))

(define-syntax def
(lambda (x)
(define inline-constants?
(cdr (assq ’inline-constants?

(with-input-from-file "config.ss"
read))))

(syntax-case x ()
[(_ name val)
(if inline-constants?

#’(define-syntax name
(identifier-syntax val))

#’(define name val))])))
(def x 17))

(library (E1)
(export f) (import (r6rs) (E0))
(define f (lambda () x)))

If, during the expansion of (E1), (E0) is expanded and the config-
uration file says not to inline constants, then the reference to x in
(E1) will residualize to a reference to the variable x exported by
(E0). If linked with a version of (E0) that is expanded again, this
time with inlining of constants enabled, the variable x will not exist
at run time.

3.3 Exploiting single expansion
This single-expansion guarantee can be exploited by the program-
mer when a compile-time constant is needed. This is useful, for
example, for defining structures1 that are guaranteed to have the
same type across library invocations, as illustrated in the following
example.

(library (structures)
(export define-structure)
(import (r6rs) (guid))
(define-syntax define-structure

(lambda (x)
(syntax-case x ()

[(_ name (fields ...))
(with-syntax ([id (generate-id)]

[maker ---]
[pred? ---]
---)

#’(begin
(define (maker fields ...)

(vector ’id fields ...))
(define (pred? x)

(and (vector? x)
(= (vector-length x)

(+ 1 (length ’(fields ...))))
(eq? (vector-ref x 0) ’id)))

---))]))))

Without the single-expansion guarantee, the programmer would be
forced to generate the unique identifier manually and to hard-code
it at every structure definition.

The guarantee can be exploited further by the ability of the pro-
grammer to generate, at compile time, structures with the correct
run time values. For example, suppose the library (student) de-
fines a student structure as follows.

(library (student)
(export make-student student? student-name ---)
(import (structures))
(define-structure student (name id major))
---)

1 A structure is represented as a vector with a unique tag.
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A user of the library can define at compile time a database of
students which results in translating the entire database into a single
quoted constant. Moreover, the call to student-name won’t fail
because of data mismatch in the structure identifier of compile-time
generated structures.

(library (student-db)
(export find-student)
(import (r6rs) (student))
(define-syntax define-students

(lambda (x)
(syntax-case x ()

[(_ db-name [name id major] ...)
(let ([students

(apply map make-student
(syntax->datum

#’((name ...)
(id ...)
(major ...))))])

#‘(define db-name ’#,students))])))
(define-students student-db

["jane" "111-11-1111" journalism]
["john" "222-22-2222" psychology]
---)

(define (find-student x)
(memp

(lambda (s) (equal? (student-name s) x))
student-db)))

The single-expansion guarantee also allows a programmer to record
information that was current as of the time of expansion. For
example, the following library, (compile-time), exports a sin-
gle macro, ctime, that expands to a string representing the time
the macro is called, supposing that the implementation provides a
(date/time) library that exports a time->string procedure.

(library (compile-time)
(export ctime)
(import (r6rs) (date/time))
(define-syntax ctime
(lambda (_) (time->string (now)))))

Using (compile-time), a Scheme top-level program can print a
greeting message showing the time the system was compiled, sup-
posing that the implementation provides a (formatted-output)
library that exports a printf procedure.

(import (compile-time) (formatted-output))
(printf "This program was compiled on ~a\n"
(ctime))

The entire program expands to the following code:

(printf "This is program was compiled on ~a\n"
"2007/04/02 23:17:04")

We can define a library (F) that exports a single procedure
F-compile-time. The procedure returns a string representing the
time on which the library (F) was compiled.

(library (F)
(export F-compile-time)
(import (r6rs) (compile-time))
(define (F-compile-time) (ctime)))

Intuitively, expanding (F) results in code that binds the variable
F-compile-time with a procedure that returns a constant string:

(define F-compile-time
(lambda () "2007/04/02 23:29:54"))

Consequently, any call to the procedure F-compile-time would
return the same string. This is true regardless of the time or place in
which the procedure F-compile-time is called. For example, the
program

(import (r6rs) (F))
(let-syntax ([t (lambda (_) (F-compile-time))])
(string=? (F-compile-time) (t)))

calls the F-compile-time once when it is expanded, and once
again when resulting code is evaluated. The program expands to
the following run time code which returns #t when evaluated.

(string=? (F-compile-time) "2007/04/02 23:29:54")

4. Phased expansion model
In Section 3, we discussed the order in which libraries must be
expanded, based on the dependency graph implicit in the import
forms. In this section, we discuss how the library body itself is
expanded. To expand a library L, we assume that all imported
libraries have already been expanded to core forms. We start with
a discussion of local identifiers, then proceed to a discussion of
imported identifiers.

4.1 Phase of local identifiers
We say that the phase of an identifier binding is the time at which
the value of the binding is computed. The simplest phase is phase
0, which is the run phase in a Scheme top-level program. The
right-hand-side expression of a top-level define-syntax form is
a phase 1 expression. In general, if a macro definition appears in
phase n code, then its right-hand-side expression is in phase n +
1. Although there is no limit on the number of phases that an
expression can have, the residual code of a phase n expression
contains only phase n bindings.

An expression in phase 0 can access any phase 0 identifier that is
in the lexical scope of the expression. In the following example, the
variables x, y, and f are all phase 0 bindings because their values
are determined at run time.

(let ([x 5])
(define f (lambda (y) (+ y x)))
(display (* x (f 3))))

Because an expression must be expanded before it is evaluated,
transformers, which are evaluated at expression expansion time,
cannot access the values of variables that are computed at run time.
For example, the following code cannot be compiled because a
reference to the run time variable x is referenced at expansion time,
when the lambda expression is evaluated.

(let ([x 5])
(define-syntax f (lambda (y) (+ x y)))
(display (* x (f 3))))

We call the binding of y a phase 1 binding since it appears in
the right-hand-expression of a syntax binding form. Our syntax
system rejects such an expression because it does not make sense
in the R6RS language, which requires that expressions be fully
expanded before they are evaluated. The program is rejected during
the expansion of the transformer expression at the point where the
reference to x is found in (+ x y).

A similar restriction is enforced when a phase 1 binding is ref-
erenced in phase 0 code. In the following example, (f 3) expands
to a reference to the compile-time variable.

(let ([x 5])
(define-syntax f (lambda (y) #’y))
(display (* x (f 3))))
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This program is rejected because the phase 0 expression (f 3)
expands to a reference to a phase 1 variable y. This program is
rejected when the output of the call to (f 3) is re-expanded and
the reference to y is discovered.

In general, our syntax system rejects any attempt to residual-
ize a reference to a phase n local variable in a phase m context
when n 6= m. It also rejects attempts to residualize a reference to
a variable outside of its lexical boundaries. Only by using poorly
styled code that uses expansion-time side effects can such anoma-
lous cases be triggered.

4.2 Phases of imported identifiers
In contrast with local identifiers, imported identifiers represent code
that has already been expanded, so there is no need to restrict their
usage to specific phases. The R6RS allows programmers to declare
the phases in which an imported library can be used. With the
explicit-phase specification, one would be required to specify the
exact run, expand, (meta 2), (meta 3), etc., for every phase in
which a library is used. This is done via the for syntax, which
is a wrapper for the import sets described in Section 2: (for
import-set phase ...) restricts the identifiers specified by
import-set to use only at the specified phases.

For example, one would have to annotate the top-level program
from Section 3.3 as follows.

(import (r6rs) (for (F) run expand))
(let-syntax ([t (lambda (_) (F-compile-time))])
(string=? (F-compile-time) (t)))

So, even though the two references to the F-compile-time vari-
able refer to the same binding that is exported from (F), an im-
plementation of R6RS may reject the original program because the
programmer did not specify at which phases the references to the
imported libraries are valid.

The two references to F-compile-time in the code above can-
not reference two distinct bindings of the same name because the
import form requires that all imported identifiers be unique. There
is no ambiguity in deciding where the F-compile-time identi-
fier came from, just as it is clear where the lambda identifier came
from. The draft R6RS specifies that the (r6rs) library exports its
identifiers to both run and expand phases in order to make it “con-
venient for users who do not care about phases.” We extend the
convenience to all libraries and all phases.

In the first revision of the R6RS document, R5.91RS, explicit
phase specifications were required and implementations were re-
quired to reject any library if its body was inconsistent with the
declared phases of the imports. Soon after, two reference imple-
mentations of the proposed R6RS library semantics were provided,
ours and one by André van Tonder (Dybvig et al. 2006). Both
implementors realized that one of the report’s specified macros,
identifier-syntax, was not implementable in the R6RS library
system. Each proposed a different fix. The suggestion of the im-
plicit phasing camp lead to allowing implementations to infer the
phases in which libraries are used while the library is being ex-
panded. The suggestion of the explicit phasing camp lead to the
inclusion of negative meta levels.

To see why this is needed, consider a library that exports macro
helpers (i.e., procedures and macros that are normally used at
macro-expansion time). For example, the library (Q) below exports
the procedure quote-5, which returns a syntax object representing
the quoted number 5.

(library (Q)
(export quote-5)
(import (r6rs))
(define (quote-5) #’(quote 5)))

The library (Q) can be used at compile time in another library as
follows:

(library (R)
(export number-5)
(import (r6rs) (Q))
(define number-5
(let-syntax ([m (lambda (x) (quote-5))])
(m))))

In the explicit phase specification model, the programmer must
specify that the library (Q) should be imported in (R) for expand,
or (meta 1), because it is used at library expansion time. Now
because (Q) is imported for phase 1, the quote it produces is
a phase 1 quote which cannot be inserted into the output of the
macro m. Therefore, the (r6rs) library must be imported into (Q)
for both run and (meta -1). Therefore, the import of (Q) for
(meta 1) combined with the import of (r6rs) for (meta -1)
result in a (meta 0) quote that is inserted in the run code of (R).
Thus, we end up with the following, assuming the programmer does
not mistakenly add unnecessary phase specifiers while trying to get
the program to compile.

(library (Q)
(export quote-5)
(import (for (r6rs) run (meta -1)))
(define (quote-5) #’(quote 5)))

(library (R)
(export number-5)
(import (r6rs) (for (Q) expand))
(define number-5
(let-syntax ([m (lambda (x) (quote-5))])
(m))))

In both models, the import form defines the meaning of the im-
ported identifiers. For example, one cannot import two identifiers
named quote for two phases and have them mean two different
things. If quote is imported from (r6rs), then it is the same R6RS
quote at all phases. Explicit phasing merely restricts the phases in
which the identifiers can be referenced.

In the implicit phase specification model, reference to the vari-
able quote-5 in compile-time code makes (Q) implicitly imported
for that phase. Since the R6RS-quote that quote-5 produces is
placed in the run-time code of the output of the m macro, the quote
is placed in phase 0 automatically.

A question arises: Does the set of libraries that can be written
using the implicit phase model differ from the set that can be
explicitly specified? If the two sets are the same, then maybe we
can write a program that statically derives the exact set of phases
that may be required. In fact, however, the set of programs whose
phases can be inferred is larger than the set that can be explicitly
specified. This is due to the fact that the set of phases that the library
can specify is fixed. The following contrived macro illustrates this
problem by expanding to references to itself in as many phases deep
as there are sub-expressions in its use site.

(define-syntax let-syntax***
(syntax-rules ()
[(_ () body) body]
[(_ ((i* e*) ... (i e)) body)
(let-syntax ([i (let-syntax*** ((i* e*) ...)

e)])
body)]))

While we do not know if this problem will ever arise in practice, it
does point out a limitation of the explicit phasing model.
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4.3 Shared vs. separate bindings across phases
In the preceding section, we discussed two models for determining
the phases in which an imported binding can be used. The explicit
phasing model requires the programmer to restrict the availability
of an identifier to a fixed set of phases, while the implicit phasing
model makes all identifiers available at all phases.

Regardless of how the phases of the imported bindings are
determined, the implementation must decide when libraries must be
invoked. At a minimum, we know that if library X exports variable
x that’s referenced in the run time code of library Y , then X must
be invoked before Y is invoked. Failure to do so would result in an
invalid reference. Similarly, if v is referenced in compile-time code
of library Z, then X must also be invoked at Z’s compile time, and
before any transformer code that might reference x is evaluated.

Our implementation invokes a library, minimally, only when
it is needed, using a simple demand-driven approach. When the
need arises to invoke the library, it is invoked, and not before. Once
invoked, it is never invoked again in the same Scheme process. The
library can actually be in one of three states: uninvoked, invoking,
and invoked. It is set in the invoking state just before it is initialized
so that the system can detect attempts at circular invocations, which
can occur only via improper use of eval.

A similar mechanism is used to visit libraries on demand.
While the semantics described above is compatible with the

R6RS requirements, the report also allows other semantics in which
separate instances of the same library exist for every phase in which
the library is imported and even for the expansion or evaluation of
different programs by the same Scheme process. Implementations
that create separate instances in this manner must generally visit
and/or invoke each library multiple times.

One reason why we chose to have no more than one instance is
that repeatedly evaluating transformer and/or variable bindings and
initialization code may be expensive, both in time and space. While
this affects primarily compile time, compile-time costs should not
be ignored, and compilation can happen at run time when Scheme’s
eval procedure is used.

Another reason why we chose to have no more than one in-
stance of a library is that system programming requires the ability
to manage resources, some of which cannot be replicated. An ex-
ample of such a resource is the Scheme symbol table. If the sym-
bol table is defined in a Scheme library, and a separate instance
of that library is created for every phase, then calling the proce-
dure string->symbol on the same string at two different phases
would incorrectly yield two non-eq? symbols2. Management of
non-generative records, pseudo random number generators, excep-
tion handlers, external devices, etc., would be problematic if sepa-
rate instances of these resources exist independently.

4.4 Inaccuracies of phase requirements
Another drawback of explicit specification is that programmers are
sometimes forced to overestimate import requirements in order to
achieve the minimal requirements they need.

We illustrate why the explicit phase specification overestimates
the requirements by first questioning what one might mean when
one declares (import (for (Q) expand)) in library (R).

On the one hand, it is possible that (R) references one of (Q)’s
exports in a local macro as shown in page 6. After (R) is expanded,
its residual code contains (define number-5 ’5) and, therefore,
(Q)’s exports would not be used after (R)’s expansion. On the
other hand, it may be that (R) imported (Q) for expand because
(R) exports a macro that expands to a reference to (Q)’s exports in

2 There would actually be multiple procedures named string->symbol,
one per phase, each with its own copy of the symbol table.

compile-time code. In this case, expanding (R) does not reference
any of (Q)’s variables, but expanding the importer of (R) does.

An explicitly phased implementation would invoke (Q) once
when (R) is expanded, and invoke it again when (R) is imported
for expanding a third library. This is guaranteed to do more work
than necessary if the bindings are not required in both situations,
again increasing compile-time costs.

4.5 Benefits of explicit phasing?
Given that the explicit phasing model requires more work on the
part of the programmer, does not allow the programmer to specify
phases precisely, generally incurs more compile-time overhead,
and limits the set of programs that can be written, it is fair to ask
whether it has compensating benefits. We believe it does not.

The only benefit of explicit phasing to the programmer is that
it allows the programmer to express his or her understanding of a
sufficient (but, unfortunately, often not necessary) set of phases at
which the bindings of a library are required and to have this un-
derstanding tested by the expander. This might be useful if the user
could use this information to determine when the side effects of ini-
tializing a library occur, but the implementation has broad latitude
even under the explicit phasing model to initialize a library at the
time or times of its choosing. Thus, side effects must generally be
of the kind that affect only the library’s own bindings, not the kind
that are visible externally. Given this, explicit phasing seems, for
the user at least, not to be a worthwhile exercise, and it is likely to
be more frustrating than illuminating.

Furthermore, we have found that the explicit phasing model is
at least as difficult to implement. With both models, the implemen-
tation must determine the phases at which an attempt to use each
identifier is made. In the explicit phasing model, the implementa-
tion must also record and check phase restrictions and report them
to the programmer. The only compensation is that the implemen-
tation can eagerly initialize a library based on the declared phases,
obviating the need to do so on demand.

5. Components of an expanded library
When our expander processes a library, it reconstructs the library
into a “core-library” form composed of three components orga-
nized by usage. The three components are the library meta data
(describing the library’s products and dependencies), the library
visit-time code (used to evaluate transformer definitions), and the
library invoke-time code (used to evaluate variable definitions and
initialization expressions). Each component is described below.
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System

Library 
Source

Expanded
and 

Compiled 
Libraries

Visit 
Core

Invoke 
Core
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DataImport

Expand
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5.1 Library meta data
When a library is expanded, the following meta data is recorded:

1. The library name and version. This information is used by
the expander when it processes imports in order to determine
whether the library satisfies the version requirements that the
importing library specifies.

2. A library identifier. Every time a library is expanded, a globally
unique identifier is given to the expanded instance in order
to distinguish it from other expanded instances of the same
library. This is used to detect violations of the single-expansion
invariant that was discussed in Section 3, which might occur
through improperly managed separate compilation.

3. Identifiers of imported libraries. This list of libraries is used to
resolve re-exported identifiers.

4. Library substitution. This is an association list that maps the
names of the set of exported identifiers to a set of unique labels.
When the library is used to expand another library, some of the
names may be removed, renamed, or prefixed with an identifier
depending on the import modifier (only, except, rename, and
prefix).

5. Keyword locations. This is a mapping from labels to locations
where every location denotes a global macro binding that is
defined in the library. Re-exported keywords are looked up
through the chain of imports (item 3). The values of the trans-
formers are obtained by evaluating the visit-time code (5.2).

6. Variable locations. This is a mapping from labels to locations
where every location denotes a global variable binding that
is defined in the library. Re-exported variables are looked up
through the chain of imports (item 3). The locations are initial-
ized by evaluating the invoke-time code (5.3).

7. Visit requirements: This is a list of library identifiers that must
be invoked before the visit-time code is evaluated.

8. Invoke requirements: This is a list of library identifiers that must
be invoked before the invoke-time code is evaluated.

5.2 Visit-time code
When a library is being expanded and a reference to an imported
macro binding is found, the visit-time code of the exporting library
must be evaluated to obtain a list of transformers (one for each
exported macro definition). The list of labels and the list of trans-
formers are joined to obtain the mapping. The list is cached and the
visit code is never evaluated again. The visit-time requirements of
the library must be invoked before evaluating the visit-time code in
order to initialize any variables that may be referenced in the code.

5.3 Invoke-time code
The invoke-time code is evaluated in order to initialize the locations
that a library defines. This code may be evaluated at compile time,
before any code that references one of the library variables is
evaluated. The code may also be invoked at run time if any of the
library variables may be referenced at run time. The invoke-time
code is evaluated at most once.

Both the visit-time code and invoke-time code is pre-expanded
and is, therefore, composed of core Scheme expressions. The code
may be run interpreted, may be compiled on the fly, or batch com-
piled to native form. Because the code does not contain any syn-
tactic extensions, it is easy to cross-compile the code to different
architectures. The same expanded code serves as a basis for many
source-compatible binary instances of the library. This is also the
main reason why we separate the library meta data, its visit code,
and its invoke code. The visit-time code is needed only for compil-

ing other libraries and need not be shipped in the final application
if the application performs no run-time compilation.

6. Target language
The target language of a library expander is not specified by the
report. Our system takes advantage of this lack of specification
to target core language that can be evaluated by any complete
implementation of R5RS. This section describes the core language
that the expander targets, how R6RS code is evaluated in an R5RS
system, and how top-level locations are constructed.

6.1 Core forms
The expander transforms code from R6RS library syntax to a core
Scheme form. A core Scheme expression can be defined according
to the following grammar.

〈Expr〉 → (quote 〈datum〉)
→ 〈Primitive〉 (e.g., cons, +, vector?)
→ 〈Variable〉
→ (if 〈Expr〉 〈Expr〉 〈Expr〉)
→ (set! 〈Variable〉 〈Expr〉)
→ (begin 〈Expr〉 〈Expr〉 ...)
→ (letrec ([〈Variable〉 〈Expr〉] ...) 〈Expr〉)
→ (〈Expr〉 〈Expr〉 ...)

〈Formals〉 → () | 〈Variable〉 | (〈Variable〉 . 〈Formals〉)
This choice of core forms makes the core language language rea-
sonably simple while avoiding loss of information during expan-
sion. For example, let is not included among the core forms be-
cause expanding let to an application of a direct procedure does
not lose any information, and we expect that optimizing compilers
know how to treat them efficiently. On the other hand, letrec is
included because expanding letrec to the equivalent set of bind-
ings and assignments loses information, and would therefore inhibit
certain optimizations (Waddell et al. 2005).

Two additional expression forms are also included in the core
by default:
〈Expr〉 → (case-lambda [〈Formals〉 〈Expr〉] ...)

→ (letrec* ([〈Variable〉 〈Expr〉] ...) 〈Expr〉)
The first is a generalization of lambda to multiple formal parameter
lists, each with a corresponding body, and is used to support the
source-language case-lambda form, which is included in one of
the standard R6RS libraries. For an implementation that does not
support case-lambda natively, the expander can be configured
to produce lambda expressions instead, using a dynamic dispatch
on the length number of arguments when other than one clause is
appears. We expect that implementations that will target R6RS will
eventually provide native support for the case-lambda form.

The other, letrec*, is a variant of letrec that evaluates its
bindings from left to right. This is useful for handling source-
language letrec* expressions, library bodies, and lambda bodies.
For an implementation that does not support letrec* natively, the
expander can be configured to produce semantically equivalent set
of bindings and assignments.

If desired, in fact, implementors can configure the expander
to produce code in an even smaller core language, such as the
following.
〈Expr〉 → (quote 〈datum〉)

→ 〈Primitive〉
→ 〈Variable〉
→ (if 〈Expr〉 〈Expr〉 〈Expr〉)
→ (set! 〈Variable〉 〈Expr〉)
→ (lambda 〈Formals〉 〈Expr〉)
→ (〈Expr〉 〈Expr〉 ...)
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Implementors can also customize the expander to recognize core
forms that are not included in the set above. This feature can
be used to define implementation-dependent core-language syn-
tax, e.g., for creating foreign functions. Such core forms would
presumably appear in the expanded code only when non-standard
libraries provided by the implementation are imported by a pro-
gram’s source code.

As evident in the core-language grammar, lambda bodies con-
sist of a single expression, with no definitions, as do the bodies of
letrec and letrec*. In addition, the names used for the local and
global bindings produced by the expander are disjoint each from
each other and also from the set of core-language keywords and
primitive names. An implementor may (but need not) take advan-
tage of these restrictions to simplify the parsing of core-language
expressions when compiling or evaluating the output of the ex-
pander.

6.2 Core primitives
Our system is an expander that transforms R6RS libraries to the
host implementation’s core forms. The system does not itself de-
fine any R6RS primitives that are not related to the syntax system.
Syntax-related procedures that are provided by the system include
syntax->datum, datum->syntax, free-identifier=?, etc., in
addition to the R6RS eval and environment procedures. Imple-
mentations that target R6RS would have to provide definitions of
the other R6RS primitives.

The code of the expander itself uses a subset of the primitives
that is either shared between R5RS and R6RS or is portably avail-
able in all implementations.

6.3 Evaluation of core expressions
The existence of expressions that must be evaluated at compile
time implies that the expander must perform some evaluation while
a library is being expanded. We identify three places where the
expander requires evaluation:

1. When the expander encounters a syntax binding form (such as
define-syntax, let-syntax, etc.), it expands and evaluates
the transformer expressions in order to obtain the transformer
procedure.

2. When the expander encounters a reference to a macro that
is defined in another library, the visit-code of the exporting
library must be evaluated in order to obtain the values of the
transformers.

3. When the expander encounters a reference to a variable that is
exported from another library in compile-time code (i.e., phase
n for n > 0), the invoke-code of the exporting library must be
evaluated in order to initialize the exported locations.

The final output of the expander may also be evaluated, of course,
but that evaluation occurs after expansion has been completed and
is outside of the control of the expander.

6.4 Top level locations
Library variables are given global locations in the R5RS top-level
namespace. Every time a library is expanded, each of its variables
is given a unique top-level location. Direct access to the underlying
locations is restricted at the source level; the only way to access
a top-level location is through a library that explicitly defines or
imports it. Therefore, all library locations are shared in one flat
namespace, and access to these locations is managed by the library
expander.

When evaluating previously expanded or compiled libraries, the
expander loads the appropriate files using the R5RS load proce-
dure. Every such file is structured as a series of top-level variable

definitions followed by an expression that initializes all such vari-
ables (using set!). We generate the top-level define forms for
all globally defined variables because some R5RS implementations
(legitimately) reject assignments to “undefined” variables. While
most systems’ eval procedures accept definitions, R5RS does not
require eval to handle definitions, so we use load rather than eval
to avoid portability problems.

On the other hand, the evaluation of a transformer expression
never creates new top-level locations, so R5RS’s eval usually suf-
fices for evaluating transformer expressions. Transformers may ref-
erence top-level bindings, however, and so need access to the en-
vironment into which library bindings have been defined. In most
implementations, this access is provided by calling eval with just
one argument, the expanded transformer expression, or with two ar-
guments, the expanded transformer expression and the environment
returned by (interaction-environment). If neither mechanism
is supported by an implementation, some other, implementation-
dependent mechanism, must be used to evaluate transformer ex-
pressions.

In order to avoid name clashes between different library identi-
fiers, globally unique names must be generated for every global
identifier. Implementations that provide a read/write invariant
gensym can utilize that extension for generating the names. The
portable implementation generates sequentially different names,
with a sequence id that is incremented across invocations of the
syntax system. The name generation routine can be made more ro-
bust by customizing it to the specific implementation. For example,
an implementation can use a procedure specific to the operating-
system to generate globally unique identifiers.

7. Expansion algorithm
The expansion algorithm used by our expander to process the defi-
nitions and expressions contained within a library is essentially the
same as Waddell’s syntax-case expansion algorithm (Waddell
and Dybvig 1999; Waddell 1999). It differs only in the handling
of references to identifiers that are determined not to be lexically
bound. Waddell’s algorithm looks for such bindings in the imports
of the enclosing top-level module, if any, and if not found there,
then in the top-level (interaction) environment. Our expander looks
for such bindings only in the imports of the current library or top-
level program, since the imports specify the entire environment of
the code within the library or top-level program. Also, when an
imported binding is found, the expander may trigger, through the
library manager, the visiting or invocation of the exporting library.

8. Related work
8.1 Chez Scheme modules
Chez Scheme’s support for libraries can be roughly divided among
the module, import, and eval-when forms, and various file-
level procedures (e.g., compile-file, include, load, visit,
revisit). Modules control the visibility of bindings, but the user is
required to manually load, visit, or invoke (revisit) code in order to
make the modules available when needed. This is facilitated by the
eval-when form, which allows the programmer to control manu-
ally when files are loaded. In most other respects, Chez Scheme’s
top-level module forms are similar to the R6RS library form.

Chez Scheme’s module system is freely available in a portable
implementation. The system has been successful and used by many
implementations including Chicken Scheme, Gambit, Ikarus, SISC
in addition to Chez Scheme and Petite Chez Scheme.

We used the portable syntax-case implementation as the basis
of our implementation, so the architecture of our system is similar.
The major difference between the two systems is in the level of
details that the user must specify. In our system, a library import
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form specifies the environment in which the library is defined and
expanding the body of the library determines when various pieces
must be made available. In Chez Scheme, such details must be
handled explicitly by the user.

The syntax of libraries in our system differs from Chez
Scheme’s modules in the sense that libraries in our system are
stand-alone entities while Chez Scheme’s modules are syntactic
forms that can be produced through macro expansion. And while
modules in Chez Scheme are defined in an external environment
that’s determined by where and when the module is compiled and
loaded, our library system has no external environment.

8.2 MzScheme modules
The R6RS library system is similar to the MzScheme module
system (Flatt 2002). Like an MzScheme module, a library must
specify its imports explicitly, so the language in which the library’s
code is written does not rely on the ambient environment of the
expander or compiler.

In contrast to our implementation, the expander in MzScheme
instantiates a separate instance of every library for every phase in
which it is imported; the expander enforces that uses of an im-
ported library match the declared phases in which said library is im-
ported. Additionally, MzScheme’s module system guarantees the
invocation of imported libraries at the declared phases regardless
of whether the bindings of the module are used or not.

The motivation for this decision was mainly the desire of the
MzScheme implementors to implement “compile-time registry”
libraries into which different modules would intern compile-time
information during macro expansion time. The problem one faces
in this setting is that information interned while one library is
compiled will not persist when the library is loaded at subsequent
stages. To guarantee proper registration, compile-time code that
side-effects the compile-time environment has to be invoked again
when the library is visited.

8.3 Chicken eggs
Chicken Scheme’s eggs (Winkelmann 2007) provide a distribution
mechanism for Scheme code that differs from the other systems de-
scribed here in that Chicken does not allow the mixing of hygienic
macro definitions and procedure definitions in the same library. In-
stead, macros are defined separately and given global scope. Also,
the programmer must write an “egg-description” file which lists
the exact dependencies, exports, and macros of the library while
the R6RS library system is designed to allow that information to be
extracted from the library itself.

9. Conclusion
The import form of an R6RS library specifies the language in
which the code contained within the library is written. With the
implicit-phasing model described in this paper, the import form
need not also specify when the bindings imported into the library
are available. Instead, the implementation determines from the ac-
tual use of each imported library’s identifiers at which phases the
library’s keyword and variable bindings are needed. Thus, the pro-
grammer is responsible for saying only what is needed, while the
implementation is responsible for determining when.

This paper also describes a portable implementation of R6RS
libraries that supports the implicit phasing model. It expands R6RS
top-level programs and libraries into code in a core language that
is a small subset of the R5RS language supported by most ex-
isting Scheme systems, which should facilitate rapid adoption of
the library system and the remainder of the R6RS language. The
system is compatible with a variety of evaluation models, includ-
ing interpreters, incremental compilers, and batch compilers. It

has already been ported to several popular Scheme systems: Chez
Scheme, Chicken Scheme, Gambit, Gauche, Ikarus, Larceny, and
MzScheme.

We have chosen in the implementation to evaluate the trans-
former bindings and variable bindings of a library at most once
per compilation session. We have made this choice to allow shar-
ing of system-managed resources like symbol tables and random-
number generators across phase boundaries and also to reduce the
cost of compiling programs that use many libraries, some of which
may require nontrivial initialization, at multiple phases. It would be
straightforward, however, to modify our implementation to main-
tain separate environments for each phase and to evaluate trans-
former and variable bindings once per phase. In particular, the im-
plicit phasing model does not inhibit doing so in any way.

Since it is based on the portable syntax-case expander ex-
tracted from the Chez Scheme source code, our system supports
a few useful extensions featured by that expander, including local
modules, local imports, and meta definitions (Dybvig 2005). We
plan also to implement local libraries, which differ from local mod-
ules in that a nested library’s exports may be used in any phase be-
cause they cannot depend on the environment in which the library
appears. Local libraries are useful because they are encapsulated
within the enclosing top-level library (and thus invisible outside)
and can be produced via macros.
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