Guardians in a Generation-Based Garbage Collector

R. Kent Dybvig, Carl Bruggeman, and David Eby

Indiana University
Computer Science Department
Lindley Hall 215
Bloomington, Indiana 47405
{dyb,bruggema,deby} @cs.indiana.edu

Abstract

This paper describes a new language feature that allows
dynamically allocated objects to be saved from deallo-
cation by an automatic storage management system so
that clean-up or other actions can be performed using
the data stored within the objects. The program has
full control over the timing of clean-up actions, which
eliminates several potential problems and often elim-
inates the need for critical sections in code that in-
teracts with clean-up actions. Our implementation is
“generation-friendly” in the sense that the additional
overhead within a generation-based garbage collector is
proportional to the work already done there, and the
overhead within the mutator is proportional to the num-
ber of clean-up actions actually performed.

1 Introduction

Many programming systems, such as Scheme, Common
Lisp, ML, and Prolog, support dynamic allocation and
automatic deallocation of objects. Within these sys-
tems, some form of storage manager takes responsi-
bility for handling both requests to allocate new ob-
jects and automatic deallocation of objects that are no
longer needed. Most current automatic storage man-
agers employ a garbage collector [8] to deallocate un-
needed objects, although some also employ reference
counting mechanisms! [2].

Automatic storage management is useful for several
reasons. First, it simplifies the programmer’s job, elim-
inating the burden of freeing dynamically-allocated ob-

LAlthough the ideas presented in this paper can be extended
to reference counting systems, we limit our discussion to collector-
based systems.

Proceedings of the SIGPLAN 93 Conference on
Programming Language Design and Implementa-
tion, pp. 207-216. Copyright © 1993 ACM.

jects and the need to decide which part of a possibly
complex system is responsible for freeing shared stor-
age. Second, it can be more efficient than explicit free-
ing of objects. Modern garbage collectors run in time
proportional to the amount of data retained in the sys-
tem rather than the amount freed; in most cases, this
results in far less overhead than explicit freeing, which
is proportional to the amount of data freed. Third, it
eliminates the possibility of storage leaks. Finally, most
importantly, it eliminates the possibility of dangling ref-
erences, i.e., references to deallocated storage. This is
especially important in systems that purport to guar-
antee the type safety of all memory references.

The collector considers an object to be unneeded
when no pointers to the object remain, i.e., when the
object is no longer accessible from within the rest of the
program, conventionally called the mutator. In most
cases, this is ideal; if an object is inaccessible, how could
any part of the mutator still need the storage associated
with it, or more particularly, the information contained
within that storage? In fact, however, there are cases
in which the object or the information contained within
the object may still be needed or may at least be use-
ful. Often, these cases concern the need to clean up or
deallocate some resource (perhaps external) associated
with the object.

For example, files in Scheme are represented by ports.
Ports encapsulate a file identifier, used to perform op-
erating system requests for primitive I/O operations, a
buffer containing unread or unwritten data, and various
other items of information relating to the file or buffer.
Because of exceptions and nonlocal exits, a port may
not be closed explicitly by a user program before the
last reference to it is dropped. This can tie up system
resources and may result in data associated with output
ports remaining unwritten until the system exits. It is
important, therefore, for a Scheme implementation to
arrange to flush unwritten data and close a port when
the port becomes inaccessible.

Scheme programs that employ external library rou-
tines must often cope with external resources required



by those routines, in particular, with external memory
managed with the Unix malloc and free procedures or
their equivalent. In order to simplify deallocation of
external memory, a Scheme header can be created for
each block of storage, and a clean-up action associated
with the Scheme header could then be used to free the
storage. Similar mechanisms can be used to free other
external resources, such as temporary files and subpro-
cesses.

A different but related problem arises in the manage-
ment of hash tables. Hash tables provide a convenient
and efficient way of attaching values to a set of keys,
where each key is an arbitrary Scheme object. Hash
tables can be used to represent symbol tables and to
support shared structure detection during the printing
of directed acyclic and cyclic graph structures. While a
hash table must retain both the key and value as long
as some possibility exists for the value to be accessed
through the key in the table, the key/value association
should be dropped from the table whenever the key be-
comes inaccessible outside of the table. Weak pairs,
which are discussed in the following section, can be used
to construct the hash table in such a way that the keys
are dropped automatically by the collector, but they
do not support removal of the values associated with
dropped keys without a periodic scan of the entire ta-
ble.

Sometimes it is useful to maintain an internal “free
list” of objects that are expensive to allocate or initial-
ize. Support for automatically returning such objects
to the free list when they would otherwise be reclaimed
can lead to a simpler, more efficient, and more robust
implementation. This might be true, for example, of a
set of large objects (such as a set of bit maps represent-
ing graphical displays) whose structure and/or contents
remain fixed once they are initialized. In order to save
the cost of rebuilding or reinitializing new storage loca-
tions, it may be less time consuming to reuse a freed
object if one exists.

These problems all have in common the need for an
object to be saved from destruction once it becomes
inaccessible so that finalization? actions involving the
object can be performed. Essentially, we would like
to extend the benefits derived from automatic storage
management, as described above, to external resources
and higher level internal storage management.

There are four important issues to consider in the
design of a finalization mechanism:

e When does finalization occur? If finalization is
done by the collector, then all access to structures
shared by the mutator and finalization routines
must be done within a critical section because the
collector may interrupt the mutator at any point.

2Following traditional usage, we use the term “finalization”
even though the actions may not really be “final.”

For example, if the mutator is updating a hash ta-
ble when a garbage collection occurs (with the table
in an inconsistent state), restructuring the hash ta-
ble at the end of the collection to remove unneeded
bindings would corrupt the table.

e In what order are objects finalized? For cyclic or
shared structures it may be important to finalize
related objects in a particular order.

e Is the full range of language features available to
finalization routines? For example, can allocation
be done? Can another collection occur? What hap-
pens if a a finalization routine signals an error?

e Is the object being finalized available to the final-
ization routine? If so, can it be let loose into the
system again? Can objects being finalized be re-
registered for finalization?

There is a fifth issue to consider for generation-based
garbage collectors, which segregate objects based on
their ages and scan older objects less frequently than
newer objects [9]. A “generation-friendly” finalization
mechanism must insure that the overhead for finaliza-
tion is (at worst) proportional to the amount of work
already done by the collector. Among other things, this
means that there should be no additional overhead for
older objects that are not being collected during a par-
ticular collection cycle. Furthermore, overhead in the
mutator should be proportional to the number of ob-
jects for which clean-up actions are actually performed;
it does no good to eliminate the overhead of scanning
older objects in the collector if the mutator must do so.
In particular, scanning through an entire hash table,
as described above, in order to eliminate the values for
keys that have disappeared is unacceptable.

The ideal answers to the first two questions above,
“when does finalization occur” and “in what order”, de-
pend on the particular application. This led us to design
a mechanism that gives the program complete control
over when and in what order finalization occurs. The
guardian mechanism that resulted also permits unre-
stricted access to all language features and makes the
object available to the finalization routine without re-
strictions.

Guardians provide a means to protect objects from
destruction by the garbage collector. A guardian is an
object with which objects can be registered for preser-
vation and from which objects actually saved from de-
struction can be retrieved, one at a time, at the con-
venience of the program. New guardians are created
dynamically using make-guardian, the single new prim-
itive required by this mechanism. An object may be
registered with more than one guardian or registered
multiple times with a guardian. Finalization of a group



of objects can be canceled by simply dropping all refer-
ences to the guardian.

We have added guardians to our generation-based col-
lector. The cost for handling guardians in both the col-
lector and mutator is very small, and there is no over-
head for older objects except when they are subject to
collection. The collector also supports weak pairs (men-
tioned above and described in the following section),
which complement the guardian mechanism.

The remainder of this paper is organized as follows:
Section 2 discusses existing mechanisms. Section 3 de-
scribes the guardian mechanism and gives examples
of its use. Section 4 discusses the implementation of
guardians and weak pairs within the framework of a
generation-based garbage collector. Section 5 summa-
rizes the paper and presents a somewhat more general
interface to the same basic mechanism.

2 Background

Guardians are related to the weak sets® provided by the
T language [11]. A weak set is a data structure contain-
ing a set of objects. Operations are provided to add new
objects, remove objects, and retrieve a list of the objects
in the set. Weak sets are so-called since they maintain
“weak” pointers to the objects in their sets. A weak
pointer to an object is treated like a normal pointer by
the garbage collector as long as nonweak pointers to the
object exist. If only weak pointers to an object exist,
however, the pointers are “broken” and the object is
released. As a result, an object that is not accessible
except by way of one or more weak sets is ultimately
discarded and removed from the weak sets to which it
belonged.

MultiScheme [10] provides a similar, more primitive
feature, weak pairs. Weak pairs are like normal pairs
except that the “car” (data) field of the pair is a weak
pointer. The “cdr” (link) field is a normal pointer.

MIT Scheme and recent versions of T support a “weak
hashing” feature that provides a form of weak pointer.
The primitive hash accepts an object and returns an in-
teger that is unique to that object, i.e., the same integer
is never returned for a different object. The primitive
unhash accepts an integer and returns the associated ob-
ject, if the object has not be reclaimed by the garbage
collector. If the object has been reclaimed, unhash re-
turns false. The integer can be used as a weak pointer
to the object.

Weak sets, weak pointers, and weak hashing are es-
sentially equivalent for our purposes; each allows the
program to maintain a pointer to an object that is ul-
timately broken once the object becomes otherwise in-
accessible. Any data contained within the object, how-
ever, is lost when the pointer is broken. In spite of

3Weak sets were originally called populations.

this, weak pointers can be employed to solve the sorts
of problems described in the preceding section if we are
willing to introduce an extra level of indirection. Instead
of maintaining a pointer directly to the data, the pro-
gram can maintain a weak pointer to an object header
containing a nonweak pointer to the data. If a sepa-
rate nonweak pointer to the data is maintained, then
when the weak pointer to the header is broken the data
needed to perform the clean-up action is still available.

There are several problems with this solution. The
extra level of indirection causes additional complexity
since any part of a program that might receive the ob-
ject must know about the indirection and adjust for it.
For this reason, it is inherently unsafe, since it is pos-
sible for some part of a program to keep a pointer to
the data itself even after the header has been dropped.
This problem is addressed by Atkins [1], who proposes
the use of a forwarding object that causes the indirec-
tion to be performed automatically. Also, the overhead
caused by the extra level of indirection is unacceptable
in some cases. In the case of ports, for example, it
significantly increases the cost of reading or writing a
character, since these operations otherwise involve only
two or three memory references. Finally, if a list of
weak pointers is maintained (say to the set of objects
in a large hash table or to a set of externally allocated
objects), the entire list must be traversed to find the
pointers that have been broken, even if none or only a
few of the elements have been dropped by the collec-
tor. This is especially undesirable in a system with a
generation-based collector, since some or all of the ele-
ments may be located in older generations not recently
subject to collection.

A number of Lisp and Scheme systems contain a prim-
itive finalization mechanism that is not made available
to the user but is used internally by the runtime system.
MultiScheme, T, and Chez Scheme (among others) use
such a mechanism to finalize files. Chez Scheme also
supports the elimination of unnecessary oblist entries,
as proposed by Friedman and Wise [6].

Dickey [3] has proposed a user-level mechanism that
allows a program to register objects for finalization.
The procedure register-for-finalization accepts two ar-
guments: an object and a thunk (zero-arity procedure).
The thunk is invoked automatically during garbage col-
lection if the object has been reclaimed. If implemented
properly, this mechanism can eliminate the overhead of
searching through a list of weak pointers. Since the ob-
ject itself is not preserved, however, this solution suffers
from the other problems associated with weak pointers.
In addition, the thunk is not permitted to cause heap
allocation since it is invoked as part of the garbage col-
lection process and must not cause another garbage col-
lection. This is an unfortunate restriction, both because
it eliminates a useful set of tools and because it forces



the programmer to be aware of all sources of alloca-
tion, some of which may not be obvious. Furthermore,
since garbage collections can happen at arbitrary times,
the programmer has no control over when the actions
are invoked. FErrors that occur within the thunk are
problematic as well; since they must not be allowed to
prevent the invocation of other finalization thunks, er-
ror signals must be suppressed or somehow delayed until
all finalization is complete.

A discussion of various finalization mechanisms found
in other languages and operating systems such as ob-
ject destructors in C++, final actions for modules in
Euclid, and finalization actions for limited types in Ada
9X, can be found in [7]. None of the mechanisms de-
scribed there, however, provide a general solution to the
problems mentioned in Section 1.

3 Guardians

Guardians are created using the zero-arity primitive
make-guardian:

(make-guardian) — (guardian)

A guardian is represented by a procedure that encap-
sulates a group of objects registered for preservation.
When a guardian is created, the group of registered ob-
jects is empty. An object is registered with a guardian
by passing the object as an argument to the guardian:

> (define G (make-guardian))
> (define z (cons 'a ’b))
> (G x)

The group of registered objects associated with a
guardian is logically subdivided into two disjoint sub-
groups: a subgroup that we shall refer to as “accessible”
objects, and one that we shall refer to as “inaccessible”
objects. Inaccessible objects are objects that have been
proven to be inaccessible (except through the guardian
mechanism itself), and accessible objects are objects
that have not been proven so. The word “proven” is
important here; it may be that some objects in the ac-
cessible group are indeed inaccessible, but that this has
not yet been proven. Depending upon the implemen-
tation, this proof may not be made in some cases until
long after the object actually becomes inaccessible.

Objects registered with a guardian are initially placed
in the accessible group, and are moved into the inacces-
sible group at some point after they become inacces-
sible. Objects in the inaccessible group are retrieved
by invoking the guardian without arguments. If there
are no objects in the inaccessible group, false (#f) is
returned. Continuing the above example:

> (@)
(a.b)
> (G)
F#f

The initial call to G returns #f since the pair bound
to x is the only object registered with G, and the pair
is still accessible through that binding. At some point
after this binding is nullified, however, the object shifts
into the inaccessible group and is therefore returned by
the later call to G.

Although an object returned from a guardian has
been proven otherwise inaccessible, it has not yet been
reclaimed by the storage management system and will
not be reclaimed until after the last reference to it
within or outside of the guardian system has been
dropped. In fact, objects that have been retrieved from
a guardian have no special status in this or in any other
regard. This feature circumvents the problems associ-
ated with finalization of shared or cyclic objects. A
shared or cyclic structure consisting of inaccessible ob-
jects is preserved in its entirety and each piece registered
for preservation with any guardian is placed in the in-
accessible set for that guardian. The programmer then
has complete control over the order in which pieces of
the structure are processed.

An object may be registered with a guardian more
than once, in which case it is retrievable more than once:

> (define G (make-guardian))
> (define z (cons ’a ’b))

> (G z)
> (
> (

set! z #f)

It may also be registered with more than one guardian:

> (define G (make-guardian))
> (define H (make-guardian))
define z (cons 'a ’b))

(
(
(G )
(
(



One can even register one guardian with another:

define G (make-guardian))
define H (make-guardian))
deﬁne z (cons 'a’b))

> (
> (
> (
> (G
> (H )
> (set! z #f)
> (set! H #f)
> (@)
(a.b)

(Of course, the last expression is dangerous, since there
is no guarantee that (G) will not return #f.)

At what point does an inaccessible object become
available for retrieval from a guardian? In general, the
storage management system responsible for reclaiming
the storage from inaccessible objects is also responsi-
ble for moving otherwise inaccessible objects from the
accessible group to the inaccessible group. In a system
such as ours that employs a garbage collector to reclaim
inaccessible objects, the garbage collector maintains a
list of registered objects with their associated guardians.
This list is traversed after collection and any objects
that have not been marked or forwarded are forwarded
at that time (saved from destruction) and placed into
the inaccessible group.

The example below demonstrates how guardians may
be used in Scheme to ensure that dropped ports are
closed. New “guarded” open operations are defined
in terms of the existing operations (open-input-file and
open-output-file), and a new exit procedure is defined
in terms of the existing exit procedure.

(define port-guardian (make-guardian))

(define close-dropped-ports
(lambda ()
(let ([p (port-guardian)])
(if p
(begin (if (output-port? p)

(begin (flush-output-port p)
(close-output-port p))

(close-input-port p))

(close-dropped-ports))))))

(define guarded-open-input-file
(lambda (pathname)
(close-dropped-ports)
(let ([p (open-input-file pathname)])
(port-guardian p)

p)))

(define guarded-open-output-file
(lambda (pathname)
(close-dropped-ports)
(let ([p (open-output-file pathname)])
(port-guardian p)

?)))

(define guarded-exit
(lambda ()
(close-dropped-ports)

(exit)))

In this implementation, dropped ports are closed when-
ever an open operation is performed or upon exit from
the system. In many Scheme and Lisp systems it is pos-
sible to cause the garbage collection handler to perform
arbitrary actions after collection completes (with the
caveats mentioned in Section 1); in such systems it may
make sense to cause close-dropped-ports to be invoked
after collection instead. In Chez Scheme, a program
does this by installing a new “collect-request” handler:

(collect-request-handler
(lambda ()
(collect)
(close-dropped-ports)))

Guardians are also useful in conjunction with weak
pairs. Weak pairs are like normal pairs except that the
car field of a weak pair is a weak pointer, as described
in Section 2. Weak pairs are created using weak-cons
and manipulated using normal list processing opera-
tions, car, cdr, pair?, map, etc.* The existence of a
weak pointer to an object in the car field of a weak pair
does not prevent the object from being transferred from
the accessible list of a guardian to the inaccessible list,
and the weak pointer is not broken when such a transfer
is made.

Figure 1 contains a simple hash table implementation
that demonstrates how guardians and weak pairs can be
used together to allow removal of useless entries. Sup-
port for removing useless entries is entirely contained
within the shaded areas of the figure. When a key/value
pair is added to the table, key is registered with a
guardian associated with the hash table. This guardian
is checked for keys to remove each time the hash-table
access procedure is called. Since the key/value pair is
a weak pair, the pointer to key is weak and does not
prevent key from being transferred to the inaccessible
list of the guardian.

Many Scheme and Lisp systems provide “eq” hash ta-
bles. Eq hash tables permit arbitrary objects to be used
as keys with fast hashing based on the virtual memory
address (the name “eq” comes from the name of the ad-
dress equality predicate eq?). Since an object may be

4Some Scheme and Lisp systems have a distinct weak-pair type
and related operations such as weak-car and weak-cdr.



(define make-guarded-hash-table

(lambda (hash size)

(let ([g (make-guardian)] [v (make-vector size ’())])

(lambda (key value)

(let loop ([z (9)])
(if =

(let ([h (hash key size)])
(let ([bucket (vector-ref v h)])
(vector-set! v h (remq (assq z bucket) bucket))

(loop (9))))))
(let ([h (hash key size)])

(let ([bucket (vector-ref v h)])
(let ([a (assq key bucket)])

(if a
(cdr a)

(let ([a (weak-cons key value)])

(g key)

(vector-set! v h (cons a bucket))

value)))))))))

Figure 1. make-guarded-hash-table accepts a hash procedure and a table size and returns a
hash-table access procedure. The access procedure accepts a key and a value. If the key is
already present in the table, the existing value is returned; otherwise, the key is added to the
table along with the value provided. Sometime after a key becomes inaccessible it is returned by
the guardian g, and the corresponding key-value pair is removed from the table. The definition
of an “unguarded” hash table is obtained by deleting the shaded areas.

moved during a garbage collection, however, its address
and hence its hash value may change. This problem is
often solved by rehashing such tables after a collection
or, more commonly, after a lookup has failed following a
collection. In a generation-based collector much of this
work is wasted for keys that are no longer forwarded
during every collection because they have survived long
enough to have advanced to older generations.

One solution to this problem is to use a “transport
guardian” that returns an object when it has been
moved (transported) rather than when it has become
inaccessible. The system could then rehash only those
objects that have been moved since the last rehash.

A useful conservative form of transport guardian may
be implemented in terms of ordinary guardians and
weak pairs. A conservative transport guardian returns
all objects that have moved but may also return some
objects that have not moved.

The code for implementing conservative transport
guardians is given below. The approach is to allocate a
fresh “marker” that is guaranteed to be no older than
the object to be guarded (since the marker is newly al-
located), register the marker with a guardian, and drop
the reference to the marker so that it will be returned by
the guardian after any collection to which the marker
has been subjected. When the marker is returned by

the guardian, the object may also have been subject to
the same collection and thus is returned by the trans-
port guardian. Since the same marker is re-registered
with the guardian each time it is returned, it will grad-
ually “age” along with the object providing the desired
“generation-friendly” behavior. In order to prevent the
transport guardian from holding onto an otherwise in-
accessible object, the marker is a weak-pair whose car
field contains the object.

(define make-transport-guardian
(lambda ()
(let ([g (make-guardian)])
(case-lambda
[(z) (g (weak-cons x 'x))]
() (et Toop ([m (9)))
(and m
(if (car m)
(begin (g m) (car m))
(loop (9)))]))))

4 Implementation

Adding guardians and weak pointers to our generation-
based garbage collector was surprisingly straightfor-
ward. This section describes briefly the basic collection



empty tconc

v

tconc with one element

;o

| N

|

Object

Figure 2. An empty tconc and a tconc with one element are shown above. Empty cells represent
“don’t care” values; neither collector nor mutator references such cells.

algorithm and the modifications necessary to incorpo-
rate guardians and weak pointers.

The number of generations and the promotion and
tenure strategies supported by the collector are under
programmer control. In order to simplify the discussion,
however, we assume a fixed number of generations 0
through n (0 being youngest) with the following simple
promotion and tenure strategy:

e New objects are placed in generation 0.

e Objects in generations less than or equal to g that
survive a collection of generation g, ¢ < n are
placed in generation g + 1.

e Objects that survive a collection of generation n
are placed in generation n.

e Generation 0 is collected each time there is a collec-
tion; older generations are collected less frequently
(the older the generation, the less frequently it is
collected).

e When a generation is collected, all younger gener-
ations are collected as well.

The generation into which objects are copied during a
particular collection is referred to as the target genera-
tion. The collector performs a stop-and-copy collection
from the generations being collected into the target gen-
eration.

The actual guardian interface described in Section 3
is a packaging of a lower-level interface. In the low-level
interface, the garbage collector maintains a protected list
of object/guardian pairs for each generation. Each time
an object is registered with a guardian, a new pair (of
the object and guardian) is added to the protected list
for generation 0. After a collection of generation g, each
element in the protected list of each generation i, i < g is
visited (the protected lists themselves are not forwarded

during collection). If the object has been forwarded,
it must be accessible (via a nonweak pointer) outside
of the protected list, and the object/guardian pair is
placed in the protected list of the target generation. If
not, it is placed in the inaccessible group of the guardian
and dropped from the protected list. In either case, both
the element and the guardian are forwarded.

Although guardians are procedures at the user level,
internally they are represented as a form of queue called
a tconc (the name comes from an old Lisp construct of
the same name). A tconc consists of a list and a header;
the header is an ordinary pair whose car field points to
the first cell in the list and whose cdr field points to the
last cell in the list (see Figure 2). In our mechanism,
the tconc representing a guardian holds the list of inac-
cessible objects; the garbage collector adds elements to
the end of this list while the mutator removes elements
from the front of the list.

We have chosen to use the tconc representation and
designed the protocols for manipulating the tconc so
that critical sections are unnecessary in both the mu-
tator and collector (see Figures 3 and 4). Since the
collector cannot be interrupted by the mutator in our
current implementation, we do not presently rely on the
fact that the collector does not require critical sections;
however, since the collector can interrupt the mutator
at any point, we do avoid the need for a critical section
in the guardian code that returns inaccessible objects
to the mutator.

An empty tconc is one in which both fields of the
header point to the same pair; what the fields of this
pair contain is unimportant. The mutator is permit-
ted to manipulate the car field of the header; it is also
allowed to compare the car field with the cdr field to
determine if the tconc contains any elements. The col-
lector is permitted to manipulate the cdr field of the
header and the pair to which the cdr field points. In
order to avoid the need for critical sections, the collec-



before

N

‘ R

v

Object

after

/ ~
~
~
~
N

R T

'

Object

Object

Figure 3. The collector adds new elements to the tconc by modifying the car field of the old last
pair in the list to point to the new element and the cdr fields of both the old last pair and the
header to point to a new last pair. Emboldened objects and pointers represent updated or new
pieces, and the dashed pointer represents the final update.

before

T

—

/

LT L

| v

Object Object

— P e e

after

S

—

‘ — e

'

Object

Object

Figure 4. The mutator retrieves elements from the tconc by modifying the car field of the header

to point to the second pair in the list.

tor adjusts the cdr field of the header last so that the
mutator does not see that there is a new element until
the element is fully installed.

In Figure 4, the pair that had been pointing to the
first element is shown (after the operation) with “don’t
care” values in its car and cdr fields. Semantically,
it is not necessary to remove the pointers that had
been contained there. However, since the pair is some-
times in an older generation than the objects to which
it points, maintaining these pointers after they are no
longer needed may result in unnecessary storage reten-
tion.

The Scheme code that packages up the tconc struc-
ture is shown below. The syntactic form case-lambda,
a multi-interface, multi-body version of lambda [5],
is used to comnstruct the procedure representing the
guardian. The tconc structure is created outside of the
case-lambda and is visible inside via the name tc. The
procedure install-guardian, which is an internal routine

provided by the collector module, simply adds its argu-
ment to the protected list for generation 0.

(define make-guardian
(lambda ()
(let ([tc (let ([z (cons #f’())]) (cons z x))])
(case-lambda
[() (and (not (eq? (car tc) (cdr te)))
(let ([z (car tc)])
(let ([y (car 2)])
(set-car! tc (cdr z))
(set-car! z #f)
(set-cdr! z #f)
)]
[(0bj) (install-guardian (cons obj tc))]))))

The portion of the collection algorithm that handles
protected lists is described in pseudo-code below. It
follows the algorithm as sketched above, but is compli-
cated somewhat by the need to discard pairs from the



protected lists when the corresponding guardian (tconc)
is itself no longer accessible. Otherwise, all objects reg-
istered at the time the guardian is dropped can be re-
claimed only after they have all become inaccessible.

pend-hold-list := pend-final-list := empty
For each generation ¢ from 0 to g
For each (obj . tconc) pair in protected]i]

If forwarded?(obj)
move (obj . tconc) to pend-hold-list
Else

move (obj . tconc) to pend- final-list
End For
protected[i] := empty
End For

Loop
final-list := empty
For each (obj . tconc) pair in pend- final-list
If forwarded?(tconc)
move (obj . teconc) to final-list
End For
If empty?(final-list) Exit Loop
For each (obj . tconc) pair in final-list
forward(obj)
teconc = get-fwd-addr(tconc)
add obj to the tconc
End For
kleene-sweep(g)
End Loop

For each (obj . tconc) pair in pend-hold-list
If forwarded?(tconc)
teconc = get-fwd-addr(tconc)
obj := get-fwd-addr(obj)
move (obj . teconc) to protected[target-generation)
End If
End For

In the code above the predicate forwarded?(obj) is true
when obj has been forwarded during this collection or
when it resides in a generation older than those being
collected. Similarly, get-fwd-addr(obj) returns either
the forwarding address of obj or the address of obj it-
self. The procedure kleene-sweep(g) iteratively sweeps
copied objects until there are no newly copied objects
to sweep.

The first block of code separates accessible objects
from inaccessible objects, placing the former (along with
their tconcs) onto the pend-hold-list and the latter onto
the pend-final-list. The second block of code iterates
over the obj/tconc pairs in pend-final-list; if the tconc
is accessible, obj is forwarded and added to the tconc.
If the tconc is not accessible, it may become accessible
during the sweeping phase (if pointed to from within one
of the objs) and is therefore left on pend-final-list for the

next iteration. The third block moves each obj/tconc
pair whose tconc has survived from pend-hold-list to the
protected list of the target generation.

Weak pairs are supported as follows. Chez Scheme
employs a segmented memory system in which the heap
is structured as a set of segments (each currently 4K
bytes in size). Each segment belongs to a specific space
and generation; the space and generation to which each
segment belongs is maintained in a segment information
table with one entry per segment. The segments that
comprise a space or generation are generally not con-
tiguous. This arrangement has many benefits, including
the ability to segregate objects based on their charac-
teristics, such as whether they are mutable or whether
they contain pointers [4]. We use this ability in the im-
plementation of weak pairs, which are always placed in
a distinct “weak-pair” space. When pairs found in the
weak-pair space are traced during the normal garbage
collection, they are treated like normal pairs except that
the car field is not touched. A second pass through the
weak-pair space is made after garbage collection; dur-
ing this second pass, if the object pointed to by the car
field of a weak pair has been forwarded, the new address
is placed in the car field of the weak pair. Otherwise,
#f is placed in the car field. The second pass through
the weak-pair space occurs after the garbage collector
has handled the protected lists (including the forward-
ing which is done there), so if the car field of a weak pair
points to an object that has been salvaged, the object
will still be in the car field after collection. Only when
there are no pointers outside of the weak-pair space is
the car field set to #f.

5 Conclusions

In this paper we have described guardians, which are
entities that abstract the process of saving objects from
destruction by the garbage collector in order that clean-
up actions can be performed using the data stored
within the objects. The program retains full control
over when clean-up actions are performed, eliminating
the need for some critical sections, restrictions on the
use of allocation within the clean-up actions, and prob-
lems with the order in which pieces of shared or cyclic
structures are processed. Unlike many previous mech-
anisms, the guardian mechanism actually preserves the
object; most other mechanisms either discard the ob-
ject and leave behind a flag or discard the object and
automatically invoke some clean-up action associated
with the object. Several problems with other mecha-
nisms are avoided in this manner. The guardian mech-
anism, by itself or in combination with weak pairs, can
be used to solve a variety of problems, from closing
dropped ports to removing unused entries from hash
tables. Our implementation is “generation-friendly”



in the sense that the additional overhead within the
generation-based garbage collector is proportional to
the work already done there, and the overhead within
the mutator is proportional to the number of clean-up
actions actually performed.

We have considered a slightly more general guardian
interface, in which the guardian accepts an “agent”
in addition to the object when an object is registered
for preservation. Rather than returning the object
when it becomes inaccessible, the guardian returns the
agent. Since the agent can be the object itself, this
subsumes the simpler interface. The primary benefit of
this change is that it allows objects to be discarded if
something less than the object is needed to perform the
finalization, although the agent might actually contain
more than just what is contained within the object or
something altogether different. We have not yet deter-
mined the full impact of this change on the collector.

For the applications we have examined, we have found
that neither weak pairs nor guardians satisfactorily re-
places the other. On the contrary, we have found that
not only are both mechanisms useful but that they both
work well together, as evidenced by the ease with which
guarded hash tables and transport guardians are imple-
mented.

Although we have designed and implemented the
guardian mechanism for use in Scheme, there is nothing
about the mechanism that is particular to the Scheme
language. Adapting the mechanism to other languages
and collection strategies should be straightforward.

Acknowledgements: We wish to thank David Wise for
providing comments on an earlier draft of this paper
and Mike Ashley for an insight that led to a simpler
transport guardian implementation.

References

[1] Martin C. Atkins. Implementation Techniques for
Object-Oriented Systems. PhD thesis, University
of York, 1989.

[2] G. E. Collins. A method for overlapping and
erasure of lists. Communications of the ACM,
3(12):655-657, December 1960.

[3] Ken Dickey. private communication.

[4] R. Kent Dybvig, David Eby, and Carl Bruggeman.
Flexible and efficient storage management using a
segmented heap. in preparation.

[5] R. Kent Dybvig and Robert Hieb. A new approach
to procedures with variable arity. Lisp and Sym-
bolic Computation, 3(3):229-244, September 1990.

[6]

[7]

[10]

Daniel P. Friedman and David S. Wise. Garbage
collecting a heap which includes a scatter table. In-
formation Processing Letters, 5(6), December 1976.

Barry Hayes. Finalization in the collector interface.
In Proceedings of the International Workshop on
Memory Management IWMM92, pages 277298,
St. Malo, France, September 1992. Springer-Verlag.

Donald E. Knuth. The Art of Computer Pro-
gramming, Volume I: Fundamental Algorithms.
Addison-Wesley, Reading, Mass., second edition,
1973.

Henry Lieberman and Carl Hewitt. A real-time
garbage collector based on the lifetimes of objects.
Communications of the ACM, 26(6):419-429, June
1983.

James S. Miller. MultiScheme: A Parallel Process-
ing System Based on MIT Scheme. PhD thesis,
Massachusetts Institute of Technology, September
1987.

Jonathan A. Rees, Norman I. Adams, and James R.
Meehan. The T Manual, fourth edition, September
1988.



