
Compiler Construction Using Scheme

Erik Hilsdale J. Michael Ashley
R. Kent Dybvig Daniel P. Friedman

Indiana University Computer Science Department
Lindley Hall 215

Bloomington, Indiana 47405
{ehilsdal,jashley,dyb,dfried}@cs.indiana.edu

Abstract

This paper describes a course in compiler design that focuses on the Scheme implementation
of a Scheme compiler that generates native assembly code for a real architecture. The course
is suitable for advanced undergraduate and beginning graduate students. It is intended both
to provide a general knowledge about compiler design and implementation and to serve as a
springboard to more advanced courses. Although this paper concentrates on the implementation
of a compiler, an outline for an advanced topics course that builds upon the compiler is also
presented.

1 Introduction

A good course in compiler construction is hard to design. The main problem is time. Many courses
assume C or some similarly low-level language as both the source and implementation language.
This assumption leads in one of two directions. Either a rich source language is defined and the
compiler is not completed, or the source and target languages are drastically simplified in order to
finish the compiler.

Neither solution is particularly satisfying. If the compiler is not completed, the course cannot
be considered a success: some topics are left untaught, and the students are left unsatisfied. If
the compiler is completed with an oversimplified source language, the compiler is unrealistic on
theoretical grounds since the semantics of the language are weak, and if the compiler generates
code for a simplified target language, the compiler is unrealistic on practical grounds since the
emitted code does not run on real hardware.

An alternative approach is to abandon the assumption that a low-level language be used and
switch to a high-level language. Switching to a high-level language as the implementation language
has the benefit that the compiler takes less time to implement and debug. Furthermore, using a
simple high-level language as the source confers the benefits of a small language without a loss of
semantic power. The combination makes it possible to generate code for a real architecture and to
complete the compiler within the bounds of a one-semester course.

Scheme is a good choice for both a high-level implementation and source language. It is an
extremely expressive language, and the core language is very small.

Title Compilers I

Goal To provide a general knowledge of compiler
design and implementation and to serve as a
springboard to more advanced courses.

Students Advanced undergraduates and beginning grad-
uate students in Computer Science.

Duration One fifteen-week semester with two 75-minute
lectures per week.

Grading Five projects, one midterm exam, and one final
exam.

Figure 1: Course information

This paper presents a one-semester course in which a Scheme compiler is constructed using
Scheme as the implementation language (see Figure 1). While the paper focuses on the compiler
constructed during the course, an advanced course in language implementation is outlined that uses
the constructed compiler as a testbed.

The paper is organized as follows. Section 2 describes the compiler. Section 3 discusses issues
affecting the design of the compiler and the course. Section 4 outlines an advanced topics course
that uses the compiler. Section 5 gives our conclusions.

2 The Compiler

The compiler accepts a subset of legal Scheme programs as defined in the Revised4 Report [7], a
subset strong enough to compile itself.

• the language is syntactically restricted so that the only numbers accepted are integers in a
bounded range,

• all lambda expressions have a fixed arity, i.e., no rest arguments.

• programs cannot have free variables other than references to primitives in operator position,

• symbols cannot be interned at runtime,

• first-class continuations and I/O are not supported,

• derived syntax is not directly supported,

• garbage-collection is not provided, and

• the runtime library is minimal.

2

These omissions are not detrimental. A primitive can be treated as a value through an inverse-
eta transformation [5, page 63] by putting it in a lambda expression that accepts arguments that
are in turn passed to the primitive. Derived syntax is not supported directly, but the compiler can
macro expand its input as a first step because the compiler is itself written in Scheme and the host
programming environment makes a macro expander available. First-class continuations, I/O, and
the ability to intern symbols dynamically are important (and are covered in lectures), but they are
not pedagogically essential.

The compiler is described below, back to front. The run-time execution model is described first.
The representation of the environment and control fixes the target of the compiler and motivates the
structure of the compiler’s intermediate language. The code generator generates its assembly code
from the intermediate language, and the front end translates core Scheme programs to intermediate
programs.

2.1 The Run-time Model

The run-time execution model is given in Figure 2. Control is stack-based, with the fp register
pointing to the base of the current frame. A frame consists of a return address, the arguments
to the active procedure, and temporary values. The cp register points to the closure of the active
procedure, and the closure holds the values of the procedure’s free variables. The ap register points
to the next free location in the heap. An accumulator register ac0 and three temporary registers
t0, t1, and t2 are used for intermediate values.

The procedure call convention for non-tail calls is as follows. The caller first saves the closure
pointer at the top of its frame. The callee’s frame is then built by pushing a return address and
then evaluating each argument and pushing its value. The operator is evaluated last, and its value
is placed in the cp register. Finally, the frame pointer is incremented to point to the base of the
callee’s frame and control is transferred by a jump indirect through the closure pointer. On return,
the callee places the return value in the accumulator ac0 and jumps to the return address at the
base of its frame. The caller restores the frame pointer to its old position and reloads the cp register
with its old value.

The calling convention is simpler for tail calls. The arguments are evaluated and pushed, and
the operator is then evaluated and stored in the cp register. The arguments are moved downwards
to overwrite arguments of the caller’s frame, and control is transferred to the callee. The frame
pointer does not move.

Values are represented using 64-bit tagged pointers with the low three bits used for tag infor-
mation [23]. Four of the nine data-types, booleans, characters, fixnums, and the empty list, are
immediate data-types and are encoded directly in the pointer. Vectors, pairs, closures, strings, and
symbols are allocated in the heap. Since the low three bits are used for the tag, allocation must
proceed on eight-byte boundaries. A heap allocated object is tagged by subtracting eight from the
pointer to the object and then adding the tag. Fields of the object can be referenced efficiently
using a displacement operand. A type check is also efficient, requiring at worst a mask, compare,
and branch.

2.2 Code Generation

The code generator produces code for the run-time model from the intermediate language of Fig-
ure 3. The language is similar to core Scheme despite several syntactic differences. The principal

3

frame
pointer (fp)

tempm

...

temp0
argn

...

arg0

return addr

saved cp

callee’s frame

caller’s frame

allocation pointer (ap)

Heap

code entry free val0 free valn...

closure
pointer (cp)

closure

Stack

Figure 2: The run-time model is stack based, and a display closure is used to access variables free in
the active procedure. Heap allocation is performed by incrementing a dedicated allocation pointer.

4

E = i | R | (begin E E) | (if E E E) | (E E . . .) |
(P E . . .) | (closure (v . . .) (R . . .) E) |
(let ((v E) . . .) E)

R = (free n v) | (bound n v) | (local v)
P ∈ Primitives
i ∈ Immediates
v ∈ Variables
n ∈ N

Figure 3: The intermediate language

difference is that variable references are subsumed by the free, bound, and local forms.
The free and bound forms each include an index indicating the offset from the cp or fp register

at which the variable’s value can be found, while the local form includes only the name of a
variable. Offsets from the fp for local are determined by the code generator. The closure form is
like lambda, but the locations of the free variables are made explicit. Constants are restricted to
immediate values.

As an example, the following Scheme program

(let ((f (lambda (x)
(let ((y (+ x 1)))

(lambda (z)
(cons y (cons z (quote (1 2)))))))))

((f 4) 5))

is written as follows in the intermediate language.

(let ((t (cons 1 (cons 2 ’()))))
(let ((f (closure (x) ((local t))

(let ((y (+ (bound 0 x) 1)))
(closure (z) ((local y) (free 0 t))

(cons (free 0 y)
(cons (bound 0 z)

(free 1 t))))))))
(((local f) 4) 5)))

Assignment is not part of the intermediate language, since variable assignment cannot be directly
supported using the chosen run-time model. Closure formation copies the values of the free variables
into the closure data structure. Therefore, a variable’s value can occupy more than one location.
For example, in the above program the value of y occupies a local location in a stack frame and
a free location in a closure. Allowing multiple locations precludes direct assignment to those
locations. Because variable assignment cannot be directly supported, variable assignments in the
source language are converted to structure mutations by a source-to-source transformation discussed
in Section 2.3.2.

5

Assembly code can be generated from intermediate programs in one pass. Code is generated
bottom-up with the invariant that the result of evaluating a subexpression is left in the accumulator
ac0. Arguments to primitives are stored in temporary locations on the stack, and code for primitives
is generated inline. The code generated for primitives is unsafe, i.e., no type checking is performed.

Offsets for free and bound references are provided. Computing frame offsets for local refer-
ences requires a lexical environment to be passed downwards. The environment maps local variable
names to frame offsets. The environment is necessary since temporary locations used for primitive
and procedure applications can be interspersed with local bindings.

After code generation, the resulting assembly code is assembled using the system assembler
as and linked against a C and assembly code stub using ld. The C stub obtains memory from
the operating system for the stack and heap. The assembly code stub initializes the registers and
places a return address back to C at the base of the stack. Upon return to C, the value left in the
accumulator ac0 is printed by a simple C-coded printer.

2.3 Compiling to Intermediate Code

The front-end of the compiler consists conceptually of three parts: a scanner and parser, a sequence
of source-to-source translations, and a transformation that assigns locations to variables.

2.3.1 Scanning and Parsing

The scanner is specified as a Deterministic Finite Automaton (DFA). Most Scheme tokens are
recognized. The exception is that the only legal numbers are exact integers without base prefixes,
i.e., the nonterminal <number> is redefined to be <sign><digit>+. The scanner also incorporates a
symbol table by forgoing the host system’s implementation of string−>symbol and uses a private
implementation instead.

The parser uses a recursive descent algorithm. It takes a sequence of Scheme tokens and returns
a Scheme datum.

2.3.2 Code Transformation

Three source-to-source transformations are performed on the forms the parser produces. The first
transformation invokes the host system macro expander to expand the input program and then
regularizes the expanded program. The second transformation eliminates set! forms. The third
transformation eliminates complex quoted data.

Regularization. The first transformation is a one-pass traversal over the input form. The pass

• checks for syntax errors and flags unbound variables, i.e., variables that are neither lambda-
bound nor the name of an inlined primitive,

• ensures that primitives are used only in operator position,

• wraps unquoted constants in quote expressions,

• transforms the bodies of multiple-bodied lambda expressions into begin expressions, and

• makes begin expressions take two sub-expressions.

6

E = (quote c) | v | (set! v E) | (begin E E) |
(if E E E) | (E E . . .) | (P E . . .) |
(lambda (v . . .) E)

c ∈ Constants
v ∈ Variables
P ∈ Primitives

Figure 4: Grammar for regularized Scheme

The output of this pass is a Scheme program in the language defined by the grammar given in
Figure 4.

Assignment Elimination. Scheme’s variable assignment form, set!, is eliminated from the lan-
guage in the second transformation. A variable x that is the subject of a set! expression is shadowed
by another variable x that is bound to a vector whose single element is the value of the first x. A
reference to x then becomes a vector reference, and an assignment to x becomes a vector update.
As an example, the following program

(lambda (x y)
(begin

(set! x (quote 3))
(+ x y)))

is transformed into

(lambda (x y)
((lambda (x)

(begin
(vector-set! x (quote 0) (quote 3))
(+ (vector-ref x (quote 0)) y)))

(vector x)))

Complex Quote Elimination. The third transformation eliminates complex quoted constants
from the program. A complex quoted constant is a quoted symbol, vector, string, or list. An
instance of such a constant is replaced by a reference to a fresh variable, and the variable is bound
in a lexical scope surrounding the whole program. Symbols are treated specially since multiple
occurrences of the same symbol must be commonized. Since symbols can occur in other complex
quoted constants, symbols are created and bound in a lexical scope outside the scope in which
other quoted data is created. For example,

(vector (quote (3 ab)) (quote ab))

becomes

7

E = i | v | (begin E E) | (if E E E) |
(E E . . .) | (P E . . .) |
(lambda (v . . .) E)

i ∈ Immediates
v ∈ Variables
P ∈ Primitives

Figure 5: Grammar for simplified Scheme

((lambda (t0)
((lambda (t1)

(vector t1 t0))
(cons 3 (cons t0 ’()))))

(make-symbol (string #\a #\b)))

The output of this pass is a Scheme program in the language defined by the grammar given in
Figure 5.

2.3.3 Variable Addressing

The last transformation before code generation assigns locations to variables and transforms the
simplified Scheme program into the intermediate language. One analysis pass determines the free
variables of each lambda expression. A second pass rewrites the program. Each bound and free
variable reference is converted into a bound and free form respectively, and lambda expressions
are converted into closure expressions. Also, expressions of the form

((lambda (v0 . . . vn) E)
E 0 . . . En)

are rewritten as let expressions, and let-bound variables are converted into local forms. The
output is in the language defined by the grammar in Figure 3.

3 The Course

Each student implements the compiler in one semester. The implementation is divided into five
projects, most requiring close to three weeks of class-time (see Figure 6).

For the first project the students implement the scanner and parser for Scheme syntax de-
scribed in Section 2.3.1. They specify a DFA for the scanner and use one of two macro packages,
declare-table or state-case, to convert the DFA into a runnable scanner. The declare-table and
state-case macros are supplied so that students can spend time learning enough theory to write
a DFA rather than spending all their time on the scanner’s implementation details. Extra time
is devoted to this fairly simple project to allow those without prior Scheme experience to become
more familiar with the language.

Because parsing Scheme data is a trivial exercise, a second project is assigned to write a parser
for an Algol-like language with complex precedence and associativity rules for its prefix, suffix, and

8

Project Weeks
Scanning and Parsing Scheme 3
Parsing Algol-like Syntax 3
Code Transformation 3
Allocation of Variable Locations 2
Code Generation 4

15

Figure 6: Projects

〈expression〉 = proc (〈formals〉) 〈expression〉
| let 〈variable〉 〈bindings〉 in 〈expression〉
| let 〈bindings〉 in 〈expression〉
| if 〈expression〉 then 〈expression〉 else 〈expression〉
| if 〈expression〉 then 〈expression〉
| 〈variable〉 ! 〈expression〉
| 〈expression〉 ? 〈expression〉
| 〈expression〉 . 〈expression〉
| ? 〈expression〉
| 〈expression〉 hd
| 〈expression〉 tl
| 〈expression〉 (〈actuals〉)
| (〈expression list〉)
| 〈variable〉
| 〈literal〉

〈formals〉 = ε | 〈variable list〉
〈variable list〉 = 〈variable〉 | 〈variable〉 , 〈variable list〉
〈bindings〉 = ε | 〈binding list〉

〈binding list〉 = 〈binding〉 | 〈binding〉 , 〈binding list〉
〈binding〉 = 〈variable〉 <- 〈expression〉
〈actuals〉 = ε | 〈expression〉

〈expression list〉 = 〈expression〉 | 〈expression〉 , 〈expression list〉
〈literal〉 = 〈boolean〉 | 〈number〉 | 〈character〉 | 〈string〉

Figure 7: Grammar for an Algol-like language

9

infix operators. The students write an LL(1) grammar for the new syntax and implement a parser
that recognizes expressions in the language specified in Figure 7. The parser returns an equivalent
Scheme datum that can be fed to the rest of the compiler. Although traditional parsing techniques
are taught [1], a more functional approach [21] might be an attractive alternative.

The third and fourth assignments involve implementing the transformations described in Sec-
tions 2.3.2 and 2.3.3. In order to ease the handling of such forms as the let form of the intermediate
language, a macro package, synlambda, is made available to the students that extends Scheme
with pattern-matching capabilities. Pattern matching over S-expressions does cause some execution
overhead that can be avoided by first transforming the input into records. The source-to-source
nature of the transformations can be obscured, however, if performed on records.

The last project is the implementation of the code generator described in Section 2.2. Stu-
dents use the Alpha Architecture Reference Manual [20] for information on the general form of
the assembly code generated. Object code for a working code generator is also made available for
comparison.

The compiler is designed to balance pedagogy and reality. On one hand, the compiler should
be straightforward so that it can be fully implemented by an undergraduate in one semester. On
the other hand, it should not be a toy compiler; it should generate reasonably efficient code in a
native assembly language. The compiler presented in Section 2 is well balanced between these two
goals.

If necessary, the compiler could be simplified by macro expanding begin forms and not recog-
nizing let expressions when assigning locations to variables. The generated code would be much less
efficient, however. begin expressions can be macro expanded into let expressions. For example,
(begin E 0 E 1) would become (let ((t E 0)) E 1), where t does not occur free in E1. The cost of
such an expansion is that a frame location is used unnecessarily to store the unreferenced variable
t. If let expressions were not recognized, then a let expression would be treated as a full procedure
call, which clearly has a higher run-time cost than binding the variables locally in the current stack
frame.

If time is a premium, e.g., in a ten-week quarter system, The Scheme 48 compiler [17] may
be simpler to implement, though it sacrifices our goal of targeting genuine hardware. For another
exploration of a simple Scheme compiler see Clinger and Hansen [8]. Additional background reading
emphasizing proof of correctness of a Scheme compiler, with an extensive bibliography, can be found
in [13].

It is notable that our compiler does not convert its input to continuation-passing style (CPS).
Such a transformation simplifies the regularized language and is a transformation employed by some
compilers for (mostly) functional languages [2, 18, 22]. While simplifying the regularized language
is appealing, converting to CPS would not simplify the compiler used in this course. Pedagogically,
converting to CPS requires an extra pass and obscures the correlation between the intermediate
program and its source-level counterpart. This hinders debugging.

An alternative to converting to CPS is to A-normalize [12] the source program. An A-normalized
program names all complex intermediate expressions and fixes the order of evaluation. It is similar
to CPS, but the representation of control is not made explicit at the source level. Like conversion to
CPS, A-normalization simplifies the source language and is an appropriate move in some contexts,
e.g., for the static analysis of programs [11]. It is inappropriate, however, for a one-semester course
in compiler construction. Assigning a temporary location to every intermediate value, e.g., the test
part of a conditional, is unnecessary and results in the generation of poor code unless the pass that

10

assigns locations to variables is made more sophisticated. Assigning locations and generating code
can be done more simply and more directly when the program is in direct style.

We have chosen to use a stack rather than a heap model. While abandoning a stack discipline
and using closures to represent continuations makes call-with-current-continuation trivial to im-
plement, procedure calls are more expensive [3] unless some effort is taken to share continuation
closures [19]. In addition, because heap allocation of continuation frames obviates many traditional
problems of stack management, a compiler based around a heap discipline would not be appropriate
for a course on general compiler design and implementation.

4 Advanced Coursework

Topics courses in advanced language implementation have been built on top of the first course.
Such courses are intended for graduate students who have completed the first semester course.
The students use their compilers from the first semester to implement the compiler optimizations,
run-time system extensions, and language features discussed in lecture. The topics can be broadly
classified as either compile-time or run-time.

4.1 Compile-time Topics

The following compile-time topics have been successfully covered in a follow-up course:

• macro expansion [9],

• destination-driven code generation [10],

• copy propagation and constant folding [1],

• register allocation [6], and

• type check elimination by abstract interpretation [16, 4].

With the exception of macro expansion, the compile-time topics are about compiler optimiza-
tions. To motivate them, an assignment is given early in which the students are told to hand-
optimize a program that solves the eight queens problem. There is no constraint on the opti-
mizations that may be applied, and optimizations to both the source and target code are allowed.
Students typically perform procedure integration, constant folding, peephole optimization, and
register allocation.

Some of the optimizations done by hand are covered in class and then implemented. The com-
piler’s code generator is rewritten to use destination-driven code generation, which is a one-pass
code generation technique that achieves most of the benefits of peephole optimization. For reg-
ister allocation, traditional techniques are covered in lecture, including register assignment and
save/restore placement. The students implement a three-pass algorithm that uses caller-save reg-
isters and does a good job of save/restore placement. The algorithm does not, however, try to
optimize register assignment. The discussion of copy propagation, procedure integration, and con-
stant folding leads to (on-line) partial evaluation. The students implement their own compiler
passes to perform these transformations with the constraint that the passes must terminate.

11

4.2 Run-time Topics

Run-time topics are treated like their compile-time counterparts: theory and possible implemen-
tation strategies for each topic are discussed in class and a particular strategy is chosen for imple-
mentation. Some of the topics covered in a past course have been:

• separate compilation,

• buffered I/O,

• first-class continuations [14], and

• garbage collection.

The bulk of the run-time support code is written in Scheme using a set of low-level primitives
supported by the compiler’s code generator. One strategy for including the support code with user
code is to simply wrap the support code (such as a definition of string−>symbol or a garbage-
collection routine) around the user code using a let expression and input the combination to the
compiler as one monolithic program. While simple, this approach has the drawback that it is
difficult to debug the compiler since even small programs are combined with a substantial amount
of run-time support code.

An alternative strategy is to use a separate compilation facility. Run-time support code is
separately compiled to produce a library. User code input to the compiler is then compiled and
linked against the library to produce stand-alone assembly code as before. An early project in
the semester is to implement a simple separate compilation facility that supports this model of
program development. The details of the implementation can be found in the extended version of
this paper [15].

With a separate compilation facility in hand, it is possible to implement substantial projects
to enhance the run-time system. One possible set of topics is first-class continuations, garbage
collection, and input/output. While others are possible, this choice allows students to bootstrap
their compiler by the end of the semester.

To support first-class continuations, the stack model is generalized to a series of linked stack
segments. The model supports stack overflow gracefully by treating overflow as an implicit contin-
uation capture in which a new stack is allocated and linked to the overflowed segment.

First-class continuations simplify memory management techniques. In lecture, various types
of memory management are presented, including mark-sweep, reference counting, copying, and
generational. The students implement a copying collector in Scheme as a procedure of no arguments
that immediately reifies its current continuation. Since registers are caller-save and the collector
is a procedure of no arguments, the continuation is the root of the collection. The collector is an
iterative Scheme program that performs a bounded amount of allocation. To detect when a garbage
collection must occur, heap overflow checks are inserted by the compiler before each allocation.

Buffered I/O is a straightforward topic. The implementation requires code in the C stub to
interface to the operating system as well as primitives supported by the code generator that call
the C routines in the stub.

12

4.3 Discussion

The second semester can be taught with varying degrees of depth and breadth. If many topics are
covered, the course has a “concepts” feel to it. For such a course, the time needed to implement
the projects limits the number of topics that can be covered. Six or seven serious projects can be
completed in a semester, but there is enough lecture time to cover more topics.

Regardless, six or seven projects is an ambitious undertaking for one semester. The fact that the
students can complete this many projects is due to the framework developed in the first semester:
the compiler is simple but realistic, and it is written in Scheme and developed in an incremental
programming environment. The projects would take much longer if the compiler or any of the
run-time support code, e.g., the garbage collector, were implemented in a lower-level language like
C.

As an experiment to further reduce debugging time, a simulator for an appropriate subset of
symbolic Alpha assembly code has been recently introduced. The simulator is embedded in Scheme
and thus allows for the intermixing of Scheme expressions and Alpha code to provide a more robust
debugging environment than gdb. Whether the simulator actually reduced debugging time, however,
has not been studied.

In the past, compile-time topics have been discussed first, followed by run-time topics. Perhaps
a better organization would be to address run-time topics first, particularly if a goal is to have the
students bootstrap their compilers.

When compilers are bootstrapped, students can use their own compilers as a non-trivial test
of their systems. This makes the benefits of compiler optimizations later in the course much more
dramatic. Furthermore, students learn first-hand the tradeoffs between the cost of compile-time
optimizations versus their benefits. For example, adding a register allocator might add three passes
to the compiler, but it still speeds up the bootstrapped compiler since it is compiled using register
allocation.

5 Conclusions

This paper outlines a course in compiler construction. The implementation and source language is
Scheme, and the target language is assembly code. This choice of languages allows a direct-style,
stack-based compiler to be implemented by an undergraduate in one semester that touches on
more aspects of compilation than a student is likely to see in a compiler course for more traditional
languages. Furthermore, expressiveness is barely sacrificed; the compiler can be bootstrapped
provided there is enough run-time support.

Besides covering basic compilation issues, the course yields an implemented compiler that can
serve as a testbed for advanced coursework in language implementation. The compiler has been
used, for example, to study advanced topics such as the implementation of first-class continuations
and register allocation.

A technical report [15] giving more details is in preparation. The report describes the implemen-
tation of the compiler in considerably more detail. Furthermore, curricular materials such as the
Alpha simulator and the synlambda, declare-table, and state-case macros are also described.

13

Acknowledgments

Carl Bruggeman, Robert Hieb and Suresh Srinivas helped design the Scheme subset used in this
course. Chris Haynes provided useful feedback on various aspects of the course.

References

[1] Alfred D. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers Principles, Techniques and Tools.
Addison-Wesley, 1986.

[2] Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[3] Andrew W. Appell and Zhong Shao. An empirical and analytic study of stack vs. heap cost
for languages with closures. To appear in Journal of Functional Programming.

[4] J. Michael Ashley. A practical and flexible flow analysis for higher-order languages. To appear
in Proceedings of the ACM Symposium on Principles of Programming Languages, 1996.

[5] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Number 103 in Studies
in Logic and the Foundations of Mathematics. North-Holland, 1984.

[6] Robert G. Burger, Oscar Waddell, and R. Kent Dybvig. Register allocation using lazy saves,
eager restores, and greedy shuffling. In Proceedings of the ACM SIGPLAN ’95 Conference on
Programming Language Design and Implementation, pages 130–138, 1995.

[7] William Clinger and Jonathan Rees (editors). Revised4 report on the algorithmic language
Scheme. Lisp Pointers, 5(3):1–55, July-September 1991.

[8] William D. Clinger and Lars Thomas Hansen. Lambda, the ultimate label, or a simple optimiz-
ing compiler for scheme. In Proceedings of the 1994 ACM Conference on LISP and Functional
Programming, pages 128–139, 1994.

[9] R. Kent Dybvig, Daniel P. Friedman, and Christopher T. Haynes. Expansion-passing style: A
general macro mechanism. Lisp and Symbolic Computation, 1(1):53–75, 1988.

[10] R. Kent Dybvig, Robert Hieb, and Tom Butler. Destination-driven code generation. Technical
Report 302, Indiana University, February 1990.

[11] Cormac Flanagan and Matthias Felleisen. The semantics of future and its use in program
optimization. In Proceedings of the ACM Symposium on Principles of Programming Languages,
pages 209–220, 1995.

[12] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of compil-
ing with continuations. In Proceedings of the ACM SIGPLAN ’93 Conference on Programming
Language Design and Implementation, pages 237–247, 1993.

[13] Joshua D. Guttman and Mitchell Wand, editors. VLISP: A Verified Implementation of Scheme.
Kluwer, Boston, 1995. Originally published as a special double issue of the journal Lisp and
Symbolic Computation (Volume 8, Issue 1/2).

14

[14] Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing control in the presence of
first-class continuations. In Proceedings of the ACM SIGPLAN ’90 Conference on Programming
Language Design and Implementation, pages 66–77, 1990.

[15] Erik Hilsdale and Daniel P. Friedman. A Scheme-based course on compiler construction. In
Preparation.

[16] Suresh Jagannathan and Andrew Wright. Effective flow analysis for avoiding runtime checks.
In Proceedings of the 1995 International Static Analysis Symposium, 1995.

[17] Richard A. Kelsey and Jonathan A. Rees. A tractable Scheme implementation. Lisp and
Symbolic Computation, 7(4):315–335, 1994.

[18] David A. Kranz, Richard Kelsey, Jonathan A. Rees, Paul Hudak, J. Philbin, and Norman I.
Adams. Orbit: an optimizing compiler for Scheme. SIGPLAN Notices, ACM Symposium on
Compiler Construction, 21(7):219–233, 1986.

[19] Zhong Shao and Andrew W. Appel. Space-efficient closure representations. In Proceedings of
the 1994 ACM Conference on LISP and Functional Programming, pages 130–161, 1994.

[20] Richard L. Sites, editor. Alpha Architecture Reference Manual. Digital Press, 1992.

[21] Michael Sperber and Peter Thiemann. The essence of LR parsing. In Proceedings of the
Symposium on Partial Evaluation and Semantics-Based Program Manipulation, PEPM ’95,
pages 146–155, 1995.

[22] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Master’s thesis, M.I.T (A.I. LAB.), Mas-
sachusetts, U.S.A, 1978. Also available as MIT AI Memo 474.

[23] Peter A. Steenkiste. The implementation of tags and run-time type checking. In Peter Lee,
editor, Topics in Advanced Language Implementation, pages 3–24. MIT Press, 1991.

15

