
LISP AND SYMBOLIC COMPUTATION: An International Journal, 7, 83–110, 1994
c© 1994 Kluwer Academic Publishers – Manufactured in The Netherlands

Subcontinuations∗

ROBERT HIEB†

R. KENT DYBVIG (dyb@cs.indiana.edu)

Indiana University Computer Science Department
Bloomington, IN 47405

CLAUDE W. ANDERSON, III (anderson@cs.rose-hulman.edu)

Rose-Hulman Institute of Technology Computer Science Department
Terre Haute, Indiana 47803

(Received: November, 1992)

(Revised: June, 1993)

Keywords: Continuations, Control Structure, Control Delimiters, Concurrency, En-
gines, Scheme

Abstract. Continuations have proven to be useful for implementing a variety of control
structures, including exception handling facilities and breadth-first searching algorithms.
However, traditional continuations are not useful in the presence of concurrency, because
the notion of the rest of the computation represented by a continuation does not in gen-
eral make sense. Traditional continuations can also be difficult to use in nonconcurrent
settings, since their global nature is sometimes problematic. This article presents a new
type of continuation, called a subcontinuation. Just as a traditional continuation repre-
sents the rest of a computation from a given point in the computation, a subcontinuation
represents the rest of a subcomputation from a given point in the subcomputation. Sub-
continuations may be used to control tree-structured concurrency by allowing nonlocal
exits to arbitrary points in a process tree and allowing the capture of a subtree of a
computation as a composable continuation for later use. In the absence of concurrency
the localized control achievable with subcontinuations makes them more useful than tra-
ditional continuations.

1. Introduction

A continuation is an abstract entity that represents the rest of the computa-
tion from a given point in the computation. A language such as Scheme [4]
that provides access to continuations as first-class values need not directly

∗This material is based on work supported by the National Science Foundation under
grant number CCR-88-03432 and by Sandia National Laboratories under contract number
06-06211. This article is a revised and extended version of a paper presented at the 1990
ACM Conference on Principles and Practice of Parallel Programming.

†Robert Hieb died in an automobile accident in April 1992.

84 HIEB, DYBVIG, AND ANDERSON

support many traditional imperative control structures such as loops, “go-
tos,” exception handlers, and coroutines. This simplifies the language and
allows the programmer to create new control structures not anticipated by
the language designer.

Traditional continuations, however, do not work well in the presence of
concurrency, since the notion of the rest of the computation represented by
a continuation does not in general make sense. If we use traditional contin-
uations in the presence of tree-structured concurrent operators, such as a
parallel call operator, we must decide whether the “current continuation”
includes the rest of the computation back to the root of the process tree or
whether it includes only the rest of the computation of the current (leaf)
process. Neither approach is adequate in all cases. Restricting continua-
tions to use within the leaves of a process tree makes exception handling
difficult, since exceptions may need to propagate all of the way to the root
process. On the other hand, if control is not localized to a leaf process,
it is difficult to use nonlocal exits or other continuation-based control fea-
tures within the leaf process. Furthermore, neither approach allows us to
consider an intermediate portion of the process tree as a single unit; that
is, we cannot exit from an arbitrary subtree of the process tree, nor can we
use continuations to save the state of an arbitrary subtree. We must have
some way to specify how far back in a process tree a continuation extends.

Traditional continuations can also be difficult to use even in the absence
of concurrency, since their global nature sometimes results in undesirable
nonlocal effects. For example, it is difficult to suspend a subcomputation
and later restart it in a different continuation and still ensure that control
returns to the new continuation when the subcomputation completes. Do-
ing so typically requires a seemingly redundant continuation capture and
an additional continuation invocation to go along with it (and several ad-
ditional lines of comments). Again, we would like to have some way to
specify how much of a computation is included in a continuation.

In this article we present a new type of continuation, called a subcontin-
uation, that allows us to do exactly that. Just as a traditional continuation
represents the rest of a computation from a given point in the compu-
tation, a subcontinuation represents the rest of a subcomputation from a
given point in the subcomputation. Because of this, subcontinuations are
more useful than traditional continuations both in the presence and ab-
sence of concurrency. Subcontinuations provide complete control over trees
of processes, allowing nonlocal exits to arbitrary points in a process tree
and allowing the capture of a subtree of a computation as a composable
continuation for later use. In the absence of concurrency, subcontinuations
offer the ability to localize the effects of control operations.

Not all concurrency is tree-based. A good example of the distinction be-

SUBCONTINUATIONS 85

tween tree-based and other forms of concurrency can be found in Halstead’s
Multilisp [1], which supports both parallel calls (with pcall) and futures
(with future). pcall introduces tree-based concurrency, since it evaluates
its arguments in parallel and then applies the value of the first argument
to the values of the remaining arguments as in a normal procedure call.
On the other hand, future initiates an independent parallel process that
does not “return” a value; instead, the value is requested when needed,
which may not be until after the parent process has returned from the code
that created the future. It is the notion of returning, with or without val-
ues, to the point of creation that distinguishes tree-based concurrency from
other forms of concurrency. Other examples of tree-based concurrency are
McCarthy’s amb operator [20] and related constructs such as parallel and
and or operators. Although our mechanism does not apply to nontree-
structured concurrency, we do discuss how our mechanism can be used in
languages that allow both forms of concurrency.

The remainder of the article is organized as follows. In Section 2, we
describe traditional continuation control strategies along with a few newer
continuation control mechanisms, and we discuss some of the shortcomings
of these strategies that subcontinuations are designed to solve. In Sections 3
and 4, we introduce subcontinuations and show how they can be used to
control subcomputations, both concurrent and sequential, in a simple, con-
sistent manner. In Section 5, we describe control filters, which allow us
to specify entry and exit handlers similar to those established by Common
Lisp’s unwind-protect and Scheme’s dynamic-wind control structures. In
Section 6, we describe an implementation of engines, which provide mul-
titasking capability, in terms of subcontinuations and control filters. In
Section 7, we present a simple operational semantics for a call-by-value
variant of the λ-calculus extended with subcontinuations, assignments, and
control filters. In Section 8, we describe how subcontinuations are imple-
mented. Finally, in Section 9, we make some concluding remarks.

2. Background

Continuations are commonly used in denotational semantics as a basis for
deriving the meaning of control operations in imperative languages [25].
Many programming languages provide control operations such as jumps and
exits that modify a program’s continuation. Scheme makes continuations
available as procedures via the procedure call-with-current-continuation,
commonly abbreviated call/cc [4, 24]. The argument to call/cc is a proce-
dure of one argument. The application (call/cc p) causes p to be applied
to a procedure representing the current continuation. When a continuation
created by call/cc is applied to a value, execution of the program continues

86 HIEB, DYBVIG, AND ANDERSON

from the point at which the call to call/cc occurred, with the value returned
as the result of the call to call/cc. For example,

(call/cc (lambda (k) (+ (k 0) 1)))

evaluates to 0.
Suppose we wish to compute the product of a list of numbers, avoiding

any multiplications if one or more elements of the list are zero. We can do
this by traversing the list recursively, performing the multiplications only
after the end of the list has been found, and exiting if we find zero before
we find the end of the list:

(define product0

(lambda (ls exit)
(cond

((null? ls) 1)
((= (car ls) 0) (exit 0))
(else (∗ (car ls) (product0 (cdr ls) exit))))))

Using call/cc, we can provide product0 with an appropriate continuation
that can be used as the value of exit:

(define product
(lambda (ls)

(call/cc
(lambda (exit)

(product0 ls exit)))))

In the presence of concurrent processing, the simplest uses of continua-
tions can present difficulties. Suppose we wish to add the products of two
lists:

(+ (product list1) (product list2))

The fact that product is defined using call/cc need not concern the program-
mer who uses it. However, in a concurrent system, it is no longer clear what
is meant by a given call/cc or continuation application. Suppose pcall is
used to allow the products of the lists to be computed concurrently:

SUBCONTINUATIONS 87

(pcall + (product list1) (product list2))

In order for this to work properly, the effects of obtaining and invoking the
current continuation within product must be local to the corresponding arm
of the pcall expression.

But suppose we wish to multiply rather than sum the products of the
two lists. If the product of one list is zero the combined product will be
zero, so the entire calculation may as well be aborted. This can be achieved
by passing a suitable escape continuation to product0:

(call/cc
(lambda (k)

(∗ (product0 list1 k)
(product0 list2 k))))

However, if we attempt to compute the product of the two lists concurrently
using the same approach we find that we can no longer restrict the effects
of continuations to a single branch of the process tree:

(call/cc
(lambda (k)

(pcall ∗
(product0 list1 k)
(product0 list2 k))))

The intent here is to abort all branches of the pcall, whereas before we
wished to affect only a single branch. There is, however, no way to make
such distinctions with call/cc. Continuation operations must affect either
the entire process tree or single branches of the process tree; there is no
way to designate subtrees.

Problems also arise when continuations are used for modeling process
abstractions, such as coroutines [13] and engines [8, 6]. In such cases,
continuations must be saved so that processes can be resumed. Again, it
is difficult to specify how much of the process tree is to be affected, but
another problem also arises. Such applications typically involve a two-part
operation: first, the current continuation is captured, and second, another
continuation is invoked. Once concurrency is introduced, the delay between
the capture of one continuation and the invocation of the other continuation
becomes significant and may result unexpectedly in repeated side effects.
For example,

88 HIEB, DYBVIG, AND ANDERSON

(call/cc (lambda (k) (k e)))

may no longer be equivalent to e in all contexts. If it occurs while other
processes are executing, side effects might occur between the capture of the
continuation and its subsequent invocation, and these side effects might be
repeated when the continuation is later invoked. Although this problem
can be alleviated by introducing concurrency control operators to give a
process exclusive control by suspending other processes, the use of such
operators is likely to be expensive and error-prone.

Some of the problems inherent in abortive continuations can be solved
by using “functional” continuations. Felleisen, et al. [11], introduced a
new control operator, F, that is similar to call/cc in that it captures the
current continuation and passes it to its argument. However, F differs
from call/cc in two ways. One difference is that the captured continuation
is compositional rather than abortive. When a functional continuation is
invoked, it does not replace the current continuation; instead, the value of
the computation originally captured by F is returned to the continuation
in which the functional continuation was invoked. The other difference is
that, although the continuation created by F does not abort the current
continuation, F does. That is, the current continuation is aborted at the
same time it is captured, rather than when another continuation is invoked.
Consequently, none of the functionality of call/cc is lost.

The abortive nature of F solves one of the concurrency problems. Since
F, rather than the invoked continuation itself, aborts the current continu-
ation, we no longer have to protect against changes to the computational
state during the interval between the capturing of the continuation and the
installation of a new continuation. Instead, we can require that F, in the
presence of concurrency, halt all computation before it captures the current
continuation and passes it to its argument. However, since F always aborts
the complete computation, it still suffers from some of the same problems
as traditional continuations.

In a later paper Felleisen introduced the notion of a “prompt” operator
(written “#”) to provide finer control over F [9]. The prompt establishes
the base of a computation for subsequent calls to F. The continuation cap-
tured by F extends only to the last prompt, and the current continuation is
aborted only to the last prompt. When a value finally returns to a prompt
application, it simply falls through to the continuation of the prompt appli-
cation. Unfortunately, prompts replace the problem of capturing too much
of a continuation with the problem of capturing too little of a continuation.
Since the continuation captured and aborted by F extends only to the last
prompt, we have control only over the subtree with the last prompt as its
base. Achieving control over larger portions of a process tree requires ei-

SUBCONTINUATIONS 89

ther complete knowledge of all prompts in the process tree or complicated
protocols for recognizing when a control operation arrives at the desired
point in the process tree.

3. Subcontinuations

What we lack is a mechanism that allows the program to request the cur-
rent continuation back to any given point. Prompts allow us to request
only the continuation back to a single point, the one established by the
last prompt, since all other prompts are “shadowed.” It is as if we were
programming in a block-structured language that restricts us to one vari-
able name. In order to allow a program finer control over continuations, we
introduce the notion of a subcomputation. Abstractly, a subcomputation
represents a partial computation that can be controlled independently of
the computation as a whole. A subcontinuation is simply the continuation
of that subcomputation, i.e., an abstract entity representing the rest of the
subcomputation from a given point in the subcomputation.

The operator spawn is used to establish the root of a subcomputation.
When applied to a procedural argument, spawn invokes (spawns) the pro-
cedure as a subcomputation. spawn passes the procedure one argument, a
subcomputation controller. If the controller is never used, the spawn has no
effect other than to evaluate the body of the procedure. For example, the
following evaluates to #t:

(spawn (lambda (c) #t))

If the controller is invoked, it captures and aborts the current continuation
back to and including the root established by the spawn invocation. In
this manner, the spawn invocation and subsequent controller invocation
delimit the subcontinuation. If the controller is invoked but the captured
continuation is not, the only effect is to abort the part of the continuation
between the calls to spawn and the controller. For example:

(cons 1 (spawn (lambda (c)
(cons 2 (c (lambda (k)

(cons 3 ’())))))))

evaluates to the list (1 3), since the cons of 2 is aborted. The cons of 1
remains, since it is outside of the call to spawn and therefore not a part of
the subcomputation controlled by c.

Invocation of a subcontinuation does not replace (abort) the current con-
tinuation; instead, the subcontinuation is composed with the current con-
tinuation, as with F.

90 HIEB, DYBVIG, AND ANDERSON

Consider the following similar expression, which evaluates to the list
(1 3 2):

(cons 1 (spawn (lambda (c)
(cons 2 (c (lambda (k)

(cons 3 (k ’()))))))))

When the controller c is invoked, the current continuation includes the cons
of 1, which is outside of the spawn, and the cons of 2, which is inside of
the spawn. The continuation k, therefore, represents the cons of 2, and this
much of the current continuation is aborted. Thus, the current continuation
at the cons of 3 is just the cons of 1. When k is invoked, the current
continuation includes the cons of 1 and the cons of 3. The value of the
call to k is the list (2), which is returned to the cons of 3, whose value
is returned, finally, to the cons of 1. As above, the cons of 1 is neither
included in the continuation k nor aborted by the controller, since it is not
within the subcomputation.

The root of a subcontinuation is removed either by a normal return from
the subcomputation or by the application of the corresponding controller.
As implied above, application of a controller is valid only when the corre-
sponding root is in the continuation of the application. Once the root has
been removed, further invocations of the controller are invalid. However,
since a subcontinuation includes, at its base, the root of the suspended
subcomputation, the controller is again valid when the continuation is re-
instated. For instance, in the following example the controller is returned
as the result of the call to spawn and then applied:

((spawn (lambda (c) c))
(lambda (k) k))

Since the controller’s root no longer exists, its application is invalid. The
following example is also invalid, but for a different reason:

(spawn (lambda (c)
(c (lambda (k)

(c (lambda (k) k))))))

Here the controller is applied twice. The first application (in the second
line) is valid. The second application (in the third line) is not valid, since
the controller’s root has been removed from the current continuation by
the first application. On the other hand, in the following example both
controller applications are valid, since the subcontinuation, including its
root, is reinstated before the outermost application occurs:

SUBCONTINUATIONS 91

(spawn (lambda (c)
(c (c (lambda (k)

(k (lambda (k) k)))))))

The result of this expression is a procedure that returns its argument, since
after the second call to the controller nothing remains to be done in the
continuation except to return. Several more interesting and useful examples
are given in the following section.

In the presence of concurrency, the effect of a control operation must
be defined in terms of the branches of a process tree. By “process tree,”
we mean simply a tree-structured continuation record. Since traditional
continuation control operators are derived from the notion of representing
continuations as stacks, it is not surprising that such operators are inade-
quate for controlling concurrency. The spawn operator, on the other hand,
is designed specifically for the control of tree-structured concurrency.

Each spawn application establishes the root of a new subtree, logically
representing a subcomputation, and each application of a concurrent oper-
ator adds two or more branches to the tree. The application of a controller
is valid only if the application occurs in a subtree of the controller’s root.
Similarly, the continuation created (and aborted) by a controller consists
of the entire subtree of its root.

Since subcontinuations can be applied more than once, more than one
instance of the same root can occur in a process tree. It is even possible
for the subcomputation resumed by a subcontinuation to invoke the sub-
continuation itself. (This is true even in the absence of concurrency.) Con-
sequently, we add one more rule: the continuation captured (and aborted)
by a controller consists of the smallest complete subtree containing both
the controller’s root and the controller’s application.

One can think of spawn as a version of # that creates a new F each time
it is used; the new F recognizes only the root established by this use of #,
and the new root is recognized only by the new F. If we had an indefinite
supply of matched # and F operators, we could define spawn approximately
as (λp.#i(pFi)). However, this definition does not accurately reflect when
application of the controller Fi is valid. F captures a continuation only up
to a # application; the # application itself is left as part of the contin-
uation of the F application. If, instead, F captured a continuation up to
and including a # application, the approximate definition would be more
accurate.

92 HIEB, DYBVIG, AND ANDERSON

4. Examples

Using spawn, nonlocal exits can be established that do not suffer from
defects inherent in the use of call/cc or # and F. Unlike call/cc, spawn
can be constrained easily to ensure that the continuation used to exit from
a computation cannot also be used to resume the parent computation.
Furthermore, since spawn does not need to capture the continuation of its
invocation, establishing an exit point with spawn does not affect concurrent
processes. Also, there is no restriction to a single level of exits as there is
with # and F. The following example shows how spawn can be used to
provide a general-purpose nonlocal exit capability:

(define spawn/exit
(lambda (proc)

(spawn (lambda (c)
(proc (lambda (exit-value)

(c (lambda (p)
exit-value))))))))

Here proc is spawned as a subcomputation that is not given complete access
to its controller. Instead, it is given a modified controller that it can use
only to abort its computation and return a value. The modified controller
invokes the original controller with a procedure that throws away the sub-
continuation and returns exit-value as the value of the spawned process.
Using spawn/exit, a computation may exit from any level, since spawn op-
erations may be nested arbitrarily. Furthermore, once a computation has
returned or has been suspended, use of the exit procedure is invalid.

We can use spawn/exit with the product0 procedure defined in Section 2
to add the concurrently-computed products of two lists:

(pcall +
(spawn/exit (lambda (exit)

(product0 list1 exit)))
(spawn/exit (lambda (exit)

(product0 list2 exit))))

By placing the spawn/exit outside of the pcall, we can also use it to com-
pute the product of the concurrently-computed products of two lists, abort-
ing both intermediate computations if a zero element is found in either list:

SUBCONTINUATIONS 93

(spawn/exit
(lambda (exit)

(pcall ∗
(product0 list1 exit)
(product0 list2 exit))))

By the placement of spawn, or in this case spawn/exit, we specify exactly
how much of the computation is aborted, avoiding the problems with tra-
ditional continuations described in Section 2.

As was the case with the inclusion of call/cc in Scheme, including spawn
in a concurrent programming language reduces the number of control op-
erators that must be supplied as primitives. We can start with a simple
forking operator and use it with spawn to create sophisticated concurrency
operators. For example, it is straightforward to derive parallel-or using
spawn and pcall. The semantics of parallel-or resemble the semantics of
the regular Scheme or. The distinction is that or evaluates its arguments
from left to right, returning the first nonfalse value without evaluating the
rest of its arguments, whereas parallel-or evaluates its arguments concur-
rently, returning the value of the first argument to complete with a nonfalse
value (and abandoning evaluation of any remaining arguments).

First we define first-true using pcall and the spawn/exit procedure de-
fined above. The first-true procedure invokes two zero-arity procedures
concurrently and returns either the value of the first procedure to return
with a true value, or false if both procedures return false.

(define first-true
(lambda (proc1 proc2)

(spawn/exit
(lambda (return)

(let ((return-if-true (lambda (x) (if x (return x)))))
(pcall (lambda (x1 x2) #f)

(return-if-true (proc1))
(return-if-true (proc2))))))))

first-true spawns a subcomputation that uses pcall to invoke the procedures
proc1 and proc2 concurrently. If either procedure returns a true value,
the controller is used to abort the subcomputation and return that value.
Otherwise, if both procedures return, their values are discarded and #f is
returned. It is now straightforward to define parallel-or as a syntactic
extension:

94 HIEB, DYBVIG, AND ANDERSON

(define-syntax parallel-or
(syntax-rules ()

((e1 e2)
(first-true (lambda () e1) (lambda () e2)))))

Because the examples above use the controller for nonlocal exits, the
subcontinuation created by the controller has not been used. The next
example shows how subcontinuations can be used to allow processes to be
suspended and resumed:

(define parallel-search
(lambda (tree predicate?)

(spawn
(lambda (c)

(letrec ((search
(lambda (tree)

(if (not (empty? tree))
(pcall

(lambda (x y z) #f)
(if (predicate? (node tree))

(c (lambda (k)
(list (node tree)

(lambda () (k #f))))))
(search (left tree))
(search (right tree)))))))

(search tree)
#f)))))

The parallel-search procedure takes a tree and a predicate as arguments.
Before initiating the search it uses spawn to set up a controller that it can
use to suspend the search whenever a suitable node is found. pcall is used
to allow the branches of the tree to be searched concurrently. Since the
real results are returned through the controller, the procedure applied by
pcall ignores the values of its arguments. When predicate? is satisfied for a
node, the controller is invoked to suspend the search and return a tentative
answer along with a procedure that can be used to resume the search. False
is returned when there are no more nodes in the tree.

The following procedure uses parallel-search to return (in some order) all
of the nodes of a tree that satisfy a given predicate:

SUBCONTINUATIONS 95

(define find-all
(lambda (tree predicate?)

(letrec ((next
(lambda (result)

(if result
(cons (car result)

(next ((cadr result))))
’()))))

(next (parallel-search tree predicate?)))))

Since we have argued that spawn is more useful than call/cc even in the
absence of concurrency, it is natural to wonder whether spawn can be used
to implement call/cc. It can, but in order to do so, we need to have some
way to wrap the evaluation of all top-level Scheme expressions with a call
to spawn to establish the root of the entire computation. The following
assumes that we can do so by redefining the top-level read-eval-print loop
by altering the value of the variable top-level-repl:

(let ((old-repl top-level-repl))
(set! top-level-repl

(lambda ()
(spawn (lambda (c)

(set! call/cc (controller->call/cc c))
(old-repl))))))

(define controller->call/cc
(lambda (c)

(lambda (p)
((c (lambda (k)

(k (lambda ()
(p (lambda (v)

(c (lambda (kk)
(k (lambda () v))))))))))))))

Most of the complexity in this code stems from the fact that call/cc does
not abort the current continuation, whereas spawn does, and from the fact
that the continuations created by call/cc abort the current continuation,
whereas those created by spawn do not. The call to c on the fourth line
of the definition of controller->call/cc captures and aborts the continua-
tion; the call to k on the following line puts it back, then calls p (the
call/cc argument) with an aborting version of the continuation. The abort-
ing version of the continuation uses c to abort the current continuation,

96 HIEB, DYBVIG, AND ANDERSON

then reinstates the saved continuation k. The seemingly redundant addi-
tional zero-arity lambda expressions and the corresponding invocation on
line four are present to ensure that k is invoked to restore the root of the
controller before any attempt is made to invoke the controller.

5. Control Filters

The Scheme procedure dynamic-wind [15, 6] may be used to perform set-
up and clean-up actions on entry to or exit from a given computation,
even if exit or entry occurs as the result of a continuation invocation. This
procedure accepts three arguments, each of which is a zero-arity procedure:
entry, body, and exit. In the absence of continuation operations, the effect
of dynamic-wind is to invoke first entry, then body, then exit, returning the
value returned by body. The entry and exit procedures are invoked only for
the side effects they perform, since the values they return are ignored.

When a continuation is used to exit from the computation performed by
body, exit is invoked; when a continuation created during the evaluation of
body is used to reenter the computation, entry is invoked. Thus, whenever
body is active, entry has been invoked most recently, and whenever body is
not active, exit has been invoked most recently. Thus, entry and exit provide
a “barrier” between the computation performed by body and computations
performed outside body. This barrier may be used to set up state variables
or objects external to the Scheme system that are needed only within body.

Common Lisp [2] provides a similar form, unwind-protect, which allows
an exit handler to be established within its body. There is no need for an
entry handler since Common Lisp continuations are not first-class and can
be used only for nonlocal exits.

Control filters provide similar capability in a system with subcontinu-
ations, although with more generality since they operate at a somewhat
lower level. Control filters are used to “filter” control operations. A control
filter can affect controller invocation, continuation invocation, or both.

A control filter is established by the procedure control-filter, which takes
takes two arguments. The first argument must be a procedure of one argu-
ment, representing the filter as described below. The second argument
is a procedure of no arguments representing the body. The procedure
control-filter arranges to invoke the body in a special continuation that
contains the filter.

If the body procedure returns a value, the value is returned to the con-
tinuation of the call to control-filter and the filter is discarded. If, however,
within the body an attempt is made to invoke a controller whose subcon-
tinuation contains the filter, the filter will be invoked in the process of

SUBCONTINUATIONS 97

aborting and saving the subcontinuation. The filter receives as an argu-
ment a procedure that determines the actual continuation used to resume
the suspended subcomputation. The filter must either return this argument
or return a new procedure defined in terms of the argument. If no other
filters appear within the subcomputation “closer” to the controller call, the
argument received by the filter is the identity procedure. Otherwise, it may
have been augmented by other filters closer to the controller call.

The control filter can return its argument after performing side effects to
restore the program state. This is a common programming paradigm, which
we formalize by defining the exit filter on-exit in terms of control-filter:

(define on-exit
(lambda (exit body)

(control-filter
(lambda (p) (exit) p)
body)))

The procedure on-exit expects two zero-arity procedures as arguments. The
first procedure is invoked only if there is an exit during the invocation of
the second procedure.

This is similar to unwind-protect, except that unwind-protect also invokes
the exit handler upon normal exit from the body. It is simple to build an
analogous form using on-exit:

(define spawn-unwind-protect
(lambda (exit body)

(on-exit
exit
(lambda ()

(let ((v (body)))
(exit)
v)))))

It is also common to want to control reentry to a subcomputation. This
can also be accomplished using control filters, although the mechanism is
slightly more complex since the filter’s return value must be modified to
ensure that the entry procedure is called before the continuation is invoked.
To illustrate the technique, we define an on-entry procedure that works
much like on-exit, except that the first argument is a zero-arity procedure
to be invoked on reentry into the body instead of on abnormal exit from
the body:

98 HIEB, DYBVIG, AND ANDERSON

(define on-entry
(lambda (entry body)

(control-filter
(lambda (p)

(lambda (k)
(p (lambda (x)

(entry)
(k x)))))

body)))

In place of the argument p, the return value is a shell wrapped around p
that ensures that the entry procedure is invoked before the continuation is
reinstated.

We are now ready to define spawn-dynamic-wind, which provides func-
tionality similar to that of the traditional dynamic-wind operator. Like
dynamic-wind, spawn-dynamic-wind accepts three zero-arity procedures:
entry, body, and exit. In the simplest case, entry is invoked, then body,
then exit. In addition, when a controller is used to create a subcontin-
uation that includes a spawn-dynamic-wind activation, the corresponding
exit procedure is invoked, and when the subcontinuation containing the
spawn-dynamic-wind activation is subsequently reinstated, the entry pro-
cedure is invoked.

The definition of spawn-dynamic-wind in terms of on-entry and on-exit
is straightforward:

(define spawn-dynamic-wind
(lambda (entry body exit)

(entry)
(let ((v (on-entry entry (on-exit exit body))))

(exit)
v)))

Since on-entry and on-exit do not themselves invoke the entry and exit
procedures, this is done explicitly. The let expression is used to capture
the value returned by body through the on-exit and on-entry calls, so that
this value can be returned from spawn-dynamic-wind after the call to exit.

6. Engines

This section demonstrates how control filters and subcontinuations can be
used to implement engines. Engines provide the means for a computation

SUBCONTINUATIONS 99

to be run for a limited period of time, interrupted if it does not complete
in that time, and later restarted from the point of interruption [14].

The procedure make-engine creates an engine from a thunk, a procedure
of no arguments specifying the computation to be performed by the engine.
The computation is run for a limited amount of time by providing the
engine with a nonnegative integer representing the number of ticks for
which the engine is permitted to run. A tick represents a small amount of
computation, but is not constrained to be any particular unit. The amount
of computation associated with a tick need not be consistent from one tick
to the next, although on average, a larger number of ticks results in a larger
amount of computation.

In addition to the ticks, an engine must be provided with complete and
expire continuations, represented as procedures. The complete continuation
must be a procedure of two arguments; it is invoked with the computation’s
result and the count of remaining ticks if the computation completes be-
fore the ticks expire. The expire continuation must be a procedure of one
arguments; it is invoked with a new engine capable of continuing the com-
putation if the ticks expire before the computation completes.

Engines may be used to implement multitasking. The following defines a
version of McCarthy’s amb operator [20] that multitasks two computations
and returns the value of the first to complete:

(define amb
(lambda (t0 t1)

(let loop ((e0 (make-engine t0)) (e1 (make-engine t1)))
(e0 1

(lambda (value ticks) value)
(lambda (new-e0) (loop e1 new-e0))))))

In an earlier article, we showed that engines may be implemented using
traditional continuations[8]. The article cites several problems inherent in
the interaction between engines and traditional continuations. These prob-
lems are exactly those present in the interaction between tree-structured
concurrency and traditional continuations. Subcontinuations solve these
problems and simplify the engine implementation, especially the imple-
mentation of nestable engines.

To implement engines in terms of subcontinuations, we assume the ex-
istence of an independent timer mechanism. New timers are created using
make-timer, which takes no arguments and returns a new timer. A timer
is started by invoking it with two arguments: ticks and handler. The han-
dler is a thunk to be invoked after ticks units of computation have been
performed. A timer is stopped by invoking it without arguments; in this

100 HIEB, DYBVIG, AND ANDERSON

case, it returns the number of ticks remaining. Two timers running si-
multaneously are independent in the sense that starting or stopping one
does not affect the other, i.e., the other remains stopped or continues to
run. Independent timers may be implemented in terms of a single timer
provided by the host operating environment. It is also straightforward to
generalize the single-timer mechanism described in [8], which relies upon
a syntactic extension for lambda that causes one tick to be consumed for
each procedure call.

The following code implements nestable engines:

(define make-engine
(lambda (thunk)

(let ((timer (make-timer)) (ticks 0))
(spawn

(lambda (c)
(letrec ((new-engine

(lambda (k)
(lambda (t complete expire)

(set! ticks t)
((k #f) complete expire))))

(handler
(lambda ()

(c (lambda (k)
(lambda (complete expire)

(expire (new-engine k))))))))
(c new-engine)
(spawn-dynamic-wind

(lambda ()
(timer ticks handler))

(lambda ()
(let ((value (thunk)))

(lambda (complete expire)
(complete value ticks))))

(lambda ()
(set! ticks (timer))))))))))

Each call to make-engine creates a new timer, initializes a variable to hold
the count of ticks remaining while the engine is idle, and spawns a new
subcomputation. The controller for the subcomputation is immediately
invoked to return from make-engine with a new engine. When this engine
is invoked, ticks is set to the value of the first argument to the engine,
and the saved continuation is used to continue from the point where the
controller was invoked. spawn-dynamic-wind is used to start and stop the

SUBCONTINUATIONS 101

timer whenever control enters or leaves the engine. The timer handler
employs the controller to abort the computation and passes a new engine
created from the resulting continuation to the expire procedure. If the
computation completes before the ticks expire, the value and remaining
ticks are passed to the complete procedure.

Care is taken to invoke the complete and expire procedures in the proper
continuation, i.e., the continuation of the call to the engine. Otherwise, tail
recursion within the complete and expire procedures would not be treated
properly. This is done by returning to that continuation to invoke the
complete or expire argument. Furthermore, the value of ticks for the call to
complete is obtained within the continuation of the call to the engine rather
than from within the engine itself since only then will the timer be disabled
and the ticks variable set appropriately, by the “out” handler established
by the call to spawn-dynamic-wind.

An engine family consists of an engine created by make-engine and any
engines created as a result of invoking an engine in the same family with
insufficient ticks for the computation to complete. In the implementation
above, each engine shares a controller, timer, and ticks variable with other
engines in the same family. As a result, only one engine in an engine family
can be active at a time, i.e., an engine cannot invoke directly or indirectly
another engine in the same family. The need to nest engines in the same
family arises rarely, if ever, in practice, so the added complexity required
to relax this restriction does not seem warranted.

The style of nesting implemented by the code above is termed fair nest-
ing [14]. With fair nesting, each tick charged to an engine is charged as
well to each of its ancestors. Fair nesting results from leaving the timer of
a parent engine running while the timer of a child engine is running. Other
nesting styles can be implemented by altering the engine implementation
or the timer mechanism.

7. Operational Semantics

To clarify the semantics of spawn we provide an operational semantics for
a call-by-value variant of the λ-calculus extended with assignments and
control operators. Although such a language is unrealistically simple, a
semantic specification for it can be extended naturally to more complete
languages containing spawn and control-filter. We develop the semantics by
starting with a core language consisting of a set of expressions (e) defined
over sets of constants (c) and variables (x). Expressions are constants,
variable references, procedures, applications or assignments:

e→ c | x | λx . e | e e | x := e

102 HIEB, DYBVIG, AND ANDERSON

Since we wish to define a call-by-value variant of the λ-calculus we must
distinguish those expressions that denote values in the language; namely,
constants and procedures:

v → c | λx . e

We define a set of global rewrite rules over expression–store pairs. Eval-
uation proceeds by rewriting an expression–store pair until a value is ob-
tained. The rewrite rules are expressed in terms of evaluation contexts [10].
A context is an expression containing a “hole,” written . C[e] denotes the
expression formed by filling the context C with the expression e. Evaluation
contexts in the core language are defined as:

C → | C e | v C | x := C

Evaluation contexts serve to specify when a term may be evaluated. Here
we have specified left-to-right evaluation of applications, because the argu-
ment is in an evaluation context only when the procedure has been reduced
to a value.

To allow side effects, we include a store θ, which maps variables to values.
We avoid introducing a distinct set of locations by assuming α-conversion
when necessary to preserve hygiene. We also assume the existence of some
map:

δ : (constants × values)→ values

to evaluate primitive function applications. Following are the rules for
evaluating the core language:

〈C[x] , θ〉 ⇒ 〈C[θx] , θ〉 (1)
〈C[(λx . e)v] , θ〉 ⇒ 〈C[e] , θ[x← v]〉, x /∈ dom(θ) (2)
〈C[x := v] , θ〉 ⇒ 〈C[v] , θ[x← v]〉, x ∈ dom(θ) (3)
〈C[c v] , θ〉 ⇒ 〈C[δ(c, v)] , θ〉 (4)

In conjunction with the definition of an evaluation context, these rules
define a left-to-right, applicative order semantics. The distinction between
Rule 2 and Rule 3 is that in Rule 2 the store is being extended with a
fresh variable (consequently, α-substitution may be necessary), whereas
in Rule 3, the variable is assumed to already exist in the store and the
assignment merely maps it to a new value.

We now introduce a set of labels and a set of operations on labels and
expressions that allow us to define the semantics of subcontinuations. To
describe these operations, we add to our language labeled expressions and
control expressions:

e→ c | x | λx . e | e e | x := e | l : e | e ↑ l

SUBCONTINUATIONS 103

We also extend the definition of evaluation contexts to include the new
expressions:

C → | C e | v C | x := C | l : C | C ↑ l

Based on these extensions, we add two more rewrite rules:

〈C[l : v] , θ〉 ⇒ 〈C[v] , θ〉 (5)
〈C1[l : C2[v ↑ l]] , θ〉 ⇒ 〈C1[v (λx . l : C2[x])] , θ〉 (6)

where l does not label C2

Rule 5 states that a label is removed once the labeled expression has been
evaluated. Rule 6 shows how a subcontinuation is created. A control
expression is reducible only if it occurs within a labeled expression with a
matching label. If it does, the body of the control expression is applied
to an abstraction created from the context of the control expression up to
and including the matching label. The application itself occurs in a context
that does not include the abstracted context. Since a control operation can
occur in a context in which there is more than one matching label, the rule
specifies that the innermost label determines the applicable context. We
say that l labels a context C if C = C1[l : C2] for some contexts C1 and C2.

Using these label operations, we can define the action of the spawn op-
erator:

〈C[spawn v] , θ〉 ⇒ 〈C[l : v λx . x ↑ l] , θ〉 (7)
where l is a fresh label

A spawn operation installs a new label and invokes its argument with a
controller that can be used to capture a continuation up to the point at
which the subcomputation was spawned. The new label l must be distinct
from all other labels in C, v, and θ to prevent inadvertent “label capturing.”

We can now add control-filter operations to our semantics. Once again
we must extend the sets of expressions and evaluation contexts allowed in
our language:

e→ c | x | λx . e | e e | x := e | l : e | e ↑ l | cf e e

and

C → | C e | v C | x := C | l : C | C ↑ l | cf C e | cf v C

The rules for rewriting control-filter operations are rather complex:

〈C[cf v1 v2] , θ〉 ⇒ 〈C[v2] , θ〉 (8)
〈C1[cf v1 C2[v2 ↑ l]] , θ〉 ⇒ (9)

〈C1[((v1 λxk . v2 λxv . xk λx• . cf v1 C2[xv]) ↑ l) •] , θ〉
where l does not label C2

104 HIEB, DYBVIG, AND ANDERSON

Rule 8 is straightforward. It returns the value of the body (v2) as the result
of the control-filter operation. Note that, as indicated by the extended
evaluation contexts, the control filter is actually evaluated before the body.
It is invoked, however, only if the evaluation of the body results in a control
operation that attempts to capture a context that includes the control-filter
operation, as shown in Rule 9. The control filter v1 is passed a procedure
to be used to reinstate the continuation. The dummy parameter • is used
to force the evaluation of the body of the corresponding abstraction, which
must be delayed until the subcomputation is resumed.

8. Implementation

Continuations are usually represented as a stack of procedure activation
records. In the presence of continuations, this stack is often implemented
as a linked list to facilitate the capture and invocation of continuations as
objects. It is also possible to employ a true stack by copying continuations
that have been captured before they are modified [7, 5, 3]. With either
implementation, it is possible to place a constant bound on the amount of
work that must be performed by the continuation operations regardless of
the size of the current continuation[17].

Subcontinuations can be implemented in a similar manner with little
additional overhead. Instead of a single stack of activation records, the
system maintains a stack of labeled stacks1. A call to spawn results in the
addition of an empty stack to the stack of labeled stacks; this new stack
is assigned a unique label associated with the controller created by the
call to spawn. This label defines the root of the subcomputation. When a
controller is invoked, all stacks down to and including the stack with the
associated label are removed from the stack of labeled stacks and packaged
into a subcontinuation. It is an error if no stack with the appropriate label
exists.

When a subcontinuation is invoked, its saved stacks are pushed onto the
current stack of labeled stacks. Because the base of the saved stacks is the
stack with the label associated with the controller that created the subcon-
tinuation, invocation of the controller is again valid. As mentioned earlier,
it is possible to invoke a subcontinuation from within its own subcompu-
tation, resulting in more than one occurrence of the associated label. In
this case, the controller removes only the stacks down to and including the
topmost stack with the associated label.

A concurrent implementation of subcontinuations can be accomplished
1For efficiency, the stack of labeled stacks should be represented as a stack of label–

address pairs, where each address is a pointer to a stack segment stored elsewhere.

SUBCONTINUATIONS 105

by using a tree instead of a stack of labeled stacks. A call to spawn adds
an empty labeled stack to the branch of the tree corresponding to where
the call occurs. When the controller is subsequently invoked, the subtree
of stacks rooted at the corresponding labeled stack is pruned from the tree
and packaged into a continuation. This operation may require cooperation
from other processors to suspend concurrently executing branches of the
subtree. Some mechanism for mutual exclusion is needed to prevent more
than one processor from attempting to remove the same subtree at the
same time. When a continuation is invoked, the saved subtree is grafted
onto the current tree of stacks.

Because subcontinuations are represented as stacks or trees of stacks, op-
erations involving controllers and subcontinuations are linear with respect
to the number of control points (labels and forks) within the subcontinua-
tion rather than with respect to the total number of frames or words within
the subcontinuation.

Control filters are implemented straightforwardly using a mechanism sim-
ilar to that described by Haynes and Friedman for dynamic-wind [15]. A
list of currently active filters is maintained by the system, and each time
a controller is created or reestablished, a pointer to the topmost element
of the list of filters is saved with the controller. When a controller is in-
voked, the elements of the current list above the saved pointer are invoked,
topmost element first. Recall that filters receive and return a procedure
that may be used to modify the subcontinuation representing the rest of
the subcomputation. The first filter is passed the identity procedure; each
subsequent filter is passed the procedure returned by the preceding filter.
The resulting procedure is passed a representation of the subcontinuation,
and the resulting, possibly modified, continuation is used to resume the
subcomputation after its root is reestablished. The sublist of filters above
the controller’s saved pointer is also saved, so that these filters can be
reestablished when the root is reestablished.

9. Conclusions

This article has presented subcontinuations, which are based upon a no-
tion of subcomputations, and has demonstrated their usefulness in both
concurrent and nonconcurrent settings.

We have limited our discussions of concurrency to tree-structured con-
currency, where concurrent subcomputations eventually return (if they ter-
minate) to the parent process that initiates them. The spawn operator
provides a program with precise control over the tree-structured continu-
ations that result from programming with concurrent operators similar to
pcall. Using spawn, a program is able to achieve nonlocal exits without

106 HIEB, DYBVIG, AND ANDERSON

interfering unnecessarily with concurrent computations, and is also able to
suspend and resume selected subtrees of the program’s continuation. Some
programming languages also provide operations to create independent par-
allel processes, i.e., processes that do not return to a parent process. Since
both tree-structured and other forms of concurrency may coexist in the
same language, it is reasonable to define the meaning of spawn operations
in such situations. One possibility is to treat such combinations of de-
pendent and independent processes as a forest of trees, in which control
operations affect only the tree in which they occur.

Subcontinuations were first introduced by the authors in an earlier paper,
which referred to subcontinuations as process continuations [16]. A simi-
lar mechanism, developed independently, was described in a later paper by
Queinnec and Serpette [22]. Our work is based on work by Felleisen, et
al. [11, 9, 12]. Johnson and Duggan [18] have developed a notion of partial
continuations that also extends traditional continuation control in a similar
manner. In a related work, Sitaram and Felleisen [23] introduce techniques
to constrain the effects of prompts and functional continuations. They do
so, however, by developing complicated protocols on top of primitive con-
trol structures, and they do not address concurrency issues. Miller [21] does
address the issue of using continuations in a parallel Scheme implementa-
tion. In his implementation, concurrency is based on placeholders, which
are similar to Halstead’s futures, and thus he does not treat the problems
inherent in using continuations to control tree-based concurrency. Katz and
Weise [19] also address the relationship between continuations and futures,
but do not address control of tree-based concurrency.

Acknowledgements: The authors would like to thank the anonymous re-
viewers for their comments on an earlier version of this article.

References

1. Halstead, Jr., Robert H. Multilisp: A language for concurrent symbolic
computation. ACM Transactions on Programming Languages and Sys-
tems, 7, 4 (October 1985) 501–538.

2. Steele Jr., Guy L. Common Lisp, the Language. Digital Press, second
edition (1990).

3. Bartley, David H. and Jensen, John C. The implementation of PC
Scheme. In Proceedings of the 1986 ACM Conference on Lisp and
Functional Programming (August 1986) 86–93.

4. Clinger, William, Rees, Jonathan A., et al. The revised4 report on the

SUBCONTINUATIONS 107

algorithmic language Scheme. LISP Pointers, 4, 3 (1991).

5. Clinger, William D. and Ost, Eric M. Implementation strategies for
continuations. In Proceedings of the 1988 ACM Conference on Lisp
and Functional Programming (July 1988) 124–131.

6. Dybvig, R. Kent. The Scheme Programming Language. Prentice Hall
(1987).

7. Dybvig, R. Kent. Three Implementation Models for Scheme. PhD
thesis, University of North Carolina, Chapel Hill (April 1987).

8. Dybvig, R. Kent and Hieb, Robert. Engines from continuations. Com-
puter Languages, 14, 2 (1989) 109–123.

9. Felleisen, Matthias. The theory and practice of first-class prompts.
In Conference Record of the Fifteenth Annual ACM Symposium on
Principles of Programming Languages (January 1988) 180–190.

10. Felleisen, Matthias and Hieb, Robert. The revised report on the syn-
tactic theories of sequential control and state. Theoretical Computer
Science, 103 (1992) 235–271.

11. Felleisen, Matthias, Friedman, Daniel P., Duba, Bruce, and Merrill,
John. Beyond Continuations. Technical Report 216, Indiana University
Computer Science Department (1987).

12. Felleisen, Matthias, Wand, Mitchell, Friedman, Daniel P., and Duba,
Bruce F. Abstract continuations: A mathematical semantics for han-
dling full functional jumps. In Proceedings of the 1988 ACM Confer-
ence on Lisp and Functional Programming (July 1988) 52–62.

13. Friedman, Daniel P., Haynes, Christopher T., and Wand, Mitchell. Ob-
taining coroutines with continuations. Computer Languages, 11, 3/4
(1986) 143–153.

14. Haynes, Christopher T. and Friedman, Daniel P. Abstracting timed
preemption with engines. Computer Languages, 12, 2 (1987) 109–121.

15. Haynes, Christopher T. and Friedman, Daniel P. Embedding contin-
uations in procedural objects. ACM Transactions on Programming
Languages and Systems, 9, 4 (1987) 582–598.

16. Hieb, Robert and Dybvig, R. Kent. Continuations and concurrency. In
Proceedings of the Second ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (March 1990) 128–136.

108 HIEB, DYBVIG, AND ANDERSON

17. Hieb, Robert, Dybvig, R. Kent, and Bruggeman, Carl. Representing
control in the presence of first-class continuations. In Proceedings of
the SIGPLAN ’90 Conference on Programming Language Design and
Implementation (June 1990) 66–77.

18. Johnson, Gregory F. and Duggan, Dominic. Stores and partial con-
tinuations as first-class objects in a language and its environment. In
Conference Record of the Fifteenth Annual ACM Symposium on Prin-
ciples of Programming Languages (January 1988) 158–168.

19. Katz, Morry and Weise, Daniel. Continuing into the future: on the
interaction of futures and first-class continuations. In Proceedings of
the 1990 ACM Conference on Lisp and Functional Programming (June
1990) 176–184.

20. McCarthy, John. A basis for a mathematical theory of computation. In
Braffort, P. and Hirschberg, D., editors, Computer Programming and
Formal Systems, North Holland (1963) 33–70.

21. Miller, James S. MultiScheme: A Parallel Processing System Based
on MIT Scheme. PhD thesis, Massachusetts Institute of Technology
(September 1987).

22. Queinnec, Christian and Serpette, Bernard. A dynamic extent con-
trol operator for partial continuations. In Conference Record of the
Eighteenth Annual ACM Symposium on Principles of Programming
Languages (January 1991) 174–184.

23. Sitaram, Dorai and Felleisen, Matthias. Control delimiters and their
hierarchies. Lisp and Symbolic Computation, 3, 1 (January 1990) 67–
99.

24. Springer, George and Friedman, Daniel P. Scheme and the Art of
Computer Programming. MIT Press and McGraw-Hill (1989).

25. Stoy, Joseph E. Denotational Semantics: The Scott-Strachey Approach
to Programming Language Theory. MIT Press (1977).

