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ABSTRACT
The Opie Project aims to develop a compiler to transform
C codes written for row-major matrix representation into
equivalent codes for Morton-order matrix representation,
and to apply its techniques to other languages. Accepting
a possible reduction in performance we seek to compile a
library of usable code to support future development of new
algorithms better suited to Morton-ordered matrices.

This paper reports the formalism behind the Opie com-
piler for C, its status: now compiling several standard Level-
2 and Level-3 linear algebra operations, and a demonstra-
tion of a breakthrough reflected in a huge reduction of L1,
L2, TLB misses. Overall perforamnce improves on the Intel
Xeon architecture.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—compil-
ers, preprocessors.; E.1 [Data Structures]: Arrays.; E.2
[Data Storage Representations]: contiguous representa-
tions.; D.3.2 [Programming Languages]: Language Clas-
sifications—concurrent, distributed and parallel languages;
applicative (functional) languages.; F.2.1 [Analysis of Al-

gorithms and Problem Complexity]: Numerical algo-
rithms and problems—computations on matrices.
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Figure 1: Performance of block-recursive Cholesky

on Morton-order representation.
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1. INTRODUCTION
Traditionally matrices are laid out in memory as rows or

columns forming a row- or column-major ordering respec-
tively. This corresponds to a natural understanding of a
matrix however it does not do a good job of taking into ac-
count properties of the memory hierarchy in modern com-
puters. For reasons related to memory usage, most modern
matrix algorithms do not operate over rows or columns but
rather over matrix subblocks. With row- or column-major
matrices any given matrix subblock from a large matrix will
contain several disjoint portions of rows or columns and will
be likely to contain data residing in several pages of mem-
ory. This property of traditional matrix layout schemas pro-
vides inherent difficulties with locality that cause contention
for, and inefficient use of, the computer’s memory hierarchy.
A solution for this is to rearrange the matrix layout such
that subblocks are actually contained in contiguous memory.
This paper discusses Morton-ordering, a recursive ordering
of matrix elements that accomplishes this goal.



As a sample of the impact of the inherent locality of
Morton-ordering, Figure 1 exhibits the performance from
this representation . This plot shows the leading coefficient
from the asymptoticly cubic time of Cholesky factorizations
of dense SIMD matrices whose orders ranging from 500 to
14,000. These times are derived from algorithms written en-
tirely in C and running without hyperthreading on a single
2.8GHz Intel Xeon. The algorithm uses Morton-ordering
and a block-recursive style of programming that utilizes the
recursive layout of Morton-ordering that will be discussed
in this paper. Flat lines indicate algorithms that scale well;
Atlas’s dpotrf does not [23]. Intel’s assembly-coded BLAS
dpotf is fast, indeed [16, 17], but within reach of our pure-C
code that uses Morton-order for locality. The figure shows
big improvements from using block recursion and Morton
ordering together; improvements from Morton order alone
appear later in this paper. The block-recursive algorithm,
as well as its supporting paradigm, is reported in another
paper [25].

Morton ordering of matrices is a single representation that
simultaneously supports three different indexing schemes for
both dense and sparse matrices. (Figure 3). Tersely intro-
duced here, Morton order is used to lay out the elements
of a matrix in any address space. Ahnentafel indices are
used as control variables in block-recursive algorithms, while
conventional cartesian indexing is yet available for local
access within base blocks, or globally from classic codes.

The block-recursive programming style mentioned above
follows the recursive layout of the Morton-ordered code to
full effect. However it is possible to use the Cartesian in-
dexing scheme to translate code written with indexing for
a row- and column-major matrix into code that will oper-
ate over an isomorphic Morton-ordered matrix. With this it
is possible circumvent some of the difficulty of switching to
a new mindset in writing matrix codes for a Morton-order
style of memory layout.

This paper discusses the Opie compiler which uses these
translation methods to convert code written for row- and
column- major matrices into code that executes on Morton-
order matrices. The Opie compiler has three goals: first
to make existing program libraries available for Morton-
ordered matrices, second to erode social resistance to change
by presenting users’ code already running on Morton-ordered
codes, and third to use an automated method for translating
codes as a platform from which to demonstrate the success
of this technique in yielding performance gains.1

This paper is organized into six sections. This introduc-
tion is followed by one on basic definitions of Morton or-
der and the algebra of dilated integers. The third section
discusses reinterpretation of matrix indices, which is used
by the Opie compiler, described in the fourth. The fifth
presents performance results and the last reviews related
literature and foresees future work.

2. DEFINITIONS
Definition 1. The base of a matrix has Morton-order

index 0. A submatrix (block) at Morton-order index i is ei-
ther an element (scalar), or it is composed of 4 submatrices,
with indices 4i + 0, 4i + 1, 4i + 2, 4i + 3. [24].
1The Opie project, whose goal is to transform source code,
was named by Greg Alexander after Optimus Prime. O.P.
was, of course, the most powerful TransformerTM the world
has ever known.
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Figure 2: Column-major indexing of a 16×16 matrix.
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Figure 3: Morton-order indexing of a 16×16 matrix.

In I order in Figure 4 the four submatrices are oriented
northwest, southwest, northeast, and southeast, respectively.

Definition 2. A complete matrix has Ahnentafel index
3. A submatrix (block) at Ahnentafel index i is either a
scalar, or it is composed of 4 submatrices, with indices 4i +
0, 4i + 1, 4i + 2, 4i + 3 [24, 8].

Conversion between these types is free at run time: sub-
tract (4` − 1)/3 at level `. Both definitions share the im-
portant properties, illustrated in Figure 3, that all indices
increase monotonically across rows or columns, and that the
nested blocks of size 4p at address k4p are accessed by 4p

consecutive indices for all p. These blocks, therefore, are the
ones used in decomposing matrix problems because their el-
ements share optimum locality with one another.

Theorem 1. The Morton indices on the elements of a
matrix, or Ahnentafel indices on blocks of any single size,
increase monotonically to the east and south.
So bounds checking is easy with either indexing.

Notation 1. When subscripted, variables i, j denote bits
in a binary representation of an integer.

Notation 2. A quaternary digit, q, in Definitions 1, 2
selects a northwest/southwest/northeast/southeast quadrant.

Notation 3. Let w number the bits of a short integer.
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Figure 4: Ahnentafel indexing of the order-4 quad-
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Theorem 2. [18] The Morton index
x =

Pw−1

k=0
qk4k =

Pw−1

k=0
ik4k + 2

Pw−1

k=0
jk4k corresponds to

the cartesian indices: row
Pw−1

k=0
ik2k and column

Pw−1

k=0
jk2k.

The set of bits {ik} are the even-numbered bits in the Mor-
ton index, and the {jk} are the odd-numbered bits. This is
Morton’s bit interleaving of cartesian indices [18]. Masking
a Morton index with 0x55555555 or 0xaaaaaaaa extracts
the bits of the row and column cartesian indices, introduced
next as dilated integers.

Notation 4. The integer
−→
b =

Pw−1

k=0
4k, called evenBits

in C, is 0x55555555. Similarly, 0xaaaaaaaa =
←−
b .

These basic properties of Morton ordering have been inde-
pendently reintroduced over the years [22, 18, 19, 13]. Samet
gives an excellent history [20]. The elegant, additive algebra
of dilated integers is surprisingly old [22, 21, 24]. Cartesian
indices are represented as dilated integers (with information
stored only in every other bit). Their algebra is really a
classic type [24, 26]. The Java or C++ programmer should
envision it as a class, whose methods each reduce to a couple
of processor cycles. The C programmer will implement it as
a library of #defined macros.

Definition 3. The even-dilated representation of x =
Pw−1

k=0
ik2k is

Pw−1

k=0
ik22k, denoted −→x . The odd-dilated rep-

resentation of y =
Pw−1

k=0
jk2k is

Pw−1

k=0
jk22k+1, denoted ←−y .

[24].

Theorem 3 gives evidence of the fast, additive methods avail-
able in this class. Let the infix operators

−→
+,
−→
− , and −→· , for

example, be the addition, subtraction, and multiplication
methods of the class of even-delated integers.

Theorem 3. Register-local algorithms for subtraction, ad-
dition, constant-addition, and the rare multiplication of di-
lated integers [21, 24]:

(−→x −−→z ) &
−→
b = −→x

−→
− −→z ; ←−y

←−
−←−z = (←−y −←−z ) &

←−
b ;

(−→x +−→z +
←−
b ) &

−→
b = −→x

−→
+ −→z ; ←−y

←−
+←−z = (←−y +←−z +

−→
b ) &

←−
b ;

(−→x −
−−→
(−c)) &

−→
b = −→x

−→
+ −→c ; ←−y

←−
+←−c = (←−y −

←−−
(−c))&

←−
b ;

−→x −→· −→y = (

w−1
X

k=0

ik4k)−→· −→y =
−→
X

w−1

k=0 ik(−→y � (2k)).

Multiplication is almost never necessary because dilated in-
tegers shadow cartesian indices whose products occur mostly
inside loops, where strength reduction compiles them to
additions. [Note added in proof: Unfortunately, the Opie
transformation occurs in the front end, before the C com-
piler can reduce them.]

The largest index into the vector containing a zero-based

Morton m × n matrix is s =
−−−→
m− 1 +

←−−−
n− 1. The matrix

occupies s + 1 consecutive locations, not all of which are
within bounds and, when touched, migrate from slow, cheap
memory to fast, dear cache. Figure 5 distinguishes between
address space and active space in a sample of the worst cases.

It is quite important for bounds checking that Morton/Ah-
nentafel indexing is monotonic across any row or column;
contrast [2]. The value of s suffices as a coarse, improper
bound on the entire matrix, but its even (respectively, odd)
bits finely bound those in the dilation of any cartesian row
(column) index. Moreover, adding two high-order bits to s
yields similarly fine bounds on Ahnentafel indices.

3. REINTERPRETING MATRIX INDICES
Although Morton indices seem to increment wildly through

a matrix, the path they trace is not at all crazy. Each in-
dex contains its cartesian indices just beneath its surface,
a fact that allows Opie’s transform to work. It allows the
direct translation of row- or column-major codes into codes
that instead use dilated integers. This section describes a
useful isomorphism that has been used in our compiler for
automatic translation of such codes. This isomorphism is
presented in terms of row-major representations although
it generalizes to column-major. (The role of odd and even
dilations is simply reversed.)

Typically a matrix is dereferenced by an vector-index value
that is the result of several other computations. Individual
integers used to dereference into a matrix often play identi-
fiable roles. Some refer to a specific row or to a column of
the matrix, or to the stride of the matrix. Others may refer
to a combination of row and column indices, such as a block
reference that is the sum of a row index and the product of
a column index with the stride. When dilated integers are
used to index into a Morton-ordered matrix, these roles are
more strongly reflected. Even-dilated integers always refer
to a row and odd-dilated integers always refer to a column.
In order to convert from cartesian indices we distinguish in-
teger values that are involved exclusively in row indexing
from those that are involved in column indexing from those
that play both roles. These are mapped, respectively, into
even-, and odd-, and even-dilated integer values. Definition
3 yields the simple casts between the two dilations.

Four relevant types of integers are treated as if they were
types in C or C++

• int: An integer value in the traditional sense. With
respect to any matrix it may contain a row or a column
index or some combination of these.

• oddDilatedInt: An odd-dilated integer semantically
is a column index to a matrix.

• evenDilatedInt: An even-dilated integer semantically
is a row index to a Morton-ordered matrix.

• mixedDilatedInt: This might also be called a Morton
index. It contains information from both row and col-
umn indices. Similarly to the int type, it may contain
both row and column data although in this case, the
two are easily separated (by masking off the odd or
even bits). It is also the type used to index an element
in a Morton-ordered matrix.

Next, define methods for casting between these types,
using traditional integer operations. For e, o, and m of
evenDilatedInt, oddDilatedInt and mixedDilatedInt types
respectively

(oddDilatedInt) e = e << 1;

(mixedDilatedInt) e = e;

(evenDilatedInt) o = o >> 1;

(mixedDilatedInt) o = o;

(oddDilatedInt) m = m & 0xaaaaaaaa;

(evenDilatedInt) m = m & 0x55555555.

The last two casts involve some loss of information. The
addition of an evenDilatedInt and an oddDilatedInt has



type mixedDilatedInt. Compare Theorem 2; this is how
row and column indices are combined to form a Morton in-
dex. More computation is involved for casting between the
int type and the the even- and odd-dilated integer types.
Through a lookup table or in some other manner, functions
oddDilate, evenDilate, oddUndilate and evenUndilate can
be provided such that for r, an int:

(int) e = evenUndilate(e);

(int) o = oddUndilate(o);

(evenDilatedInt) r = evenDilate(r);

(oddDilatedInt) r = oddDilate(r).

Conversion between the int and mixedDilatedInt types is
trickier. The mixedDilatedInt is intrinsically a combina-
tion of two indices. To convert to an isomorphic int index
more information about the matrix that the value indexes is
needed: the stride for that matrix. If that is available then
casting between these two types can be done

(mixedDilatedInt) r

= oddDilate(r%stride)

+ evenDilate(r ÷ stride);

(int) m = evenUndilate((evenDilatedInt) m)

+ oddUndilate((oddDilatedInt) m).

This last cast is expensive in real time. For each portion
of a code where a matrix a with stride aStride is derefer-
enced by an int index this int might be cast in place into
a mixedDilatedInt. This translation is inefficient, however,
as it involves significant computation to dilate an integer. It
might still be used where there are no alternatives, or where
it can be amortized against many cycles to follow, such as
at a function call.

Our compiler instead attempts to identify row and col-
umn indexing in the original code, and then add additional
variables and arithmetic to construct corresponding dilated
integers. These replace the computation needed for in-place
dilation with cheap integer arithmetic from Theorem 3.

It is necessary to construct an algorithm that, given stride
information, attempts to dissect an integer expression into
row- and column-indexing portions. This is done for general
expressions relative to a declared stride using the following
recursive algorithm. The result of the algorithm is a pair
of expressions for row and column indexing as the respec-
tive elements. The algorithm recurs over the parse tree of
the integer expression and at the lowest level of recursion it
generates the mapping:

var v 7→ 〈v, 0〉 when v is not stride;

var v 7→ 〈0, 1〉 when v is equal to stride;

constant c 7→ 〈c, 0〉.

At higher levels it distributes over several arithmetic opera-

tors:

〈x1, x2〉+ 〈y1, y2〉 7→ 〈x1 + y1, x2 + y2〉

〈x1, x2〉&〈y1, y2〉 7→ 〈x1&y1, x2&y2〉

〈x1, x2〉|〈y1, y2〉 7→ 〈x1|y1, x2|y2〉

〈x1, 0〉 ∗ 〈0, 1〉 7→ 〈x1, 0〉

〈0, 1〉 ∗ 〈x1, 0〉 7→ 〈x1, 0〉

〈x1, x2〉 ∗ 〈y1, y2〉 7→ 〈x1 ∗ y1,

x2 ∗ y2 ∗ stride + x1 ∗ y2 + x2 ∗ y1〉

Any expression that was not recognized by any of the rules
above is handled by the inelegant cast:

expression e 7→ 〈e%stride, e/stride〉
This corresponds to our casting rule for casting an int to

a mixedDilatedInt.
The expressions within these pairs are still of type int

and all relevant algebraic properties (commutativity, iden-
tity, annihilation, etc.) still apply. For an initial expression
expr and its pair 〈expr1, expr2〉 resulting from the algorithm
above, we have expr = expr1 + expr2 ∗ stride, verifying that
no information was lost; it is only moved around. This al-
gorithm also incorrectly handles variables that contain both
column and row indexing. The problem can be caught in
most instances with an analysis of all all side-effects, notic-
ing any that modify a variable by a multiple of stride.

4. COMPILING TO MORTON ORDER
This section describes the Opie compiler, which has been

implemented using the ideas in Section 3 to convert existing
row-major or column-major codes into Morton order codes.
The compiler is implemented in Scheme using the Edison
Design Group’s C/C++ parsing engine as a front end [1].
It is a C to C compiler, generating code that will then be
compiled by the machine-specific C compiler.

4.1 Shadowing Matrix Indices
The compiler operates by identifying row and column

indexes in a traditional code and shadowing these with
evenDilatedInt and oddDilatedInt values. Our C-to-C
transformer operates only on syntax and still depends on
the ordinary C optimizer as a back end.

One possible optimization would be to displace the orig-
inal integer arithmetic leaving only shadows behind. The
original design anticipated such a reduction but experience
with early prototypes exposed a severe problem: conven-
tional optimizers cannot optimize loops that use dilated in-
tegers for control, because they are yet unenlightened about
the simple algebra of dilated integers. Without knowledge
of what the + and & operators are doing, the optimizer
could not alter any control that depended on dilated in-
tegers. Therefore the underlying integers are retained for
iteration counts and bounds checking, and are augmented
with shadows for dereferencing arrays.

All side-effects on the original values are also shadowed
in the arithmetic of dilated integers. As an example of this
process, consider this matrix multiplication:

int i,j,k;

for( i=0; i<m; i++)

for( j=0; j<n; j++)

for(k=0; k<p; k++)

c[i+k*cStride] += a[i+j*aStride]

* b[j+k*bStride];



The variables i, j and k are involved in matrix deref-
erences. With prior identification of variables cStride,

aStride, bStride as strides, it can be deduced that k is
being used as a row index for referencing c and similarly
that i is being used as a column index. Similar deductions
are performed for the indexing of a and b. As a result, i, j,
and k are all shadowed and dilated assignments and incre-
ments are inserted to match the assignments and increments
on the original variables. The resulting code in this case is:

int i,j,k;

evenDilatedInt i_even;

oddDilatedInt j_odd, k_odd;

for( i=0, i_even=0; i<m; i++, evenInc(i_even))

for( j=0, j_odd=0; j<n; j++, oddInc(j_odd))

for(k=0, k_odd=0; k<p; k++, oddInc(k_odd))

c[i_even+k_odd] += a[i_even+j_odd]

* b[((evenDilatedInt) j_odd)+k_odd];

The compiled code that works when the original code
works, as long as a, b and c aree pointers to proper Morton
matrices.

Information matching strides to matrices is given by the
programmer in the form of a pragma
#pragma mortonMatrix(c,cStride).

When all variables are shadowed, we apply the algorithm
from Section 3 to each matrix dereference and to the right
hand side of each assignment between shadowed variables.
With this information, all matrix dereferences can be con-
verted to the addition of dilated integers, and all side-effects
can be shadowed so that they also occur for all shadowing
dilated integers (this process is covered in the next subsec-
tion).

The effect is reduction of the multiplication of a cartesian
column index by its stride to the accumulation of a shadow-
ing odd-dilated index, just as any C compiler uses strength
reduction within a loop to reduce that multiplication to re-
peated addition [3].

The characterization of traditional matrix indexing and
Morton indexing here and the resulting compiler are more
robust than prior efforts. In addition the compiler has been
expanded to cover several additional ways of expressing ma-
trix indexing, most of which stem from possible consequences
of assignment which is covered in the next section.

4.2 Handling Assignments
When an assignment is encountered with the left-hand

side an integer that is to be shadowed, the entire assignment
must be shadowed. The right-hand side must be translated
into an even or odd value. The algorithm for translating
matrix indices is reused here. However it is also important
that this shadowing of the assignment may in turn lead to
shadowing of new variables. For example, consider a snippet
of code:

i = n;

A[i+j*stride] = 5;

If A is a matrix being converted to Morton order, then it will
be necessary to shadow the three variables: i, j, n. Due to
the fact that i’s value depends upon it, n must be shadowed.
This may spark a whole chain of further shadowing.

Thus far, this discussion has been primarily concerned
with variables that are used in traditional indexing. That
is, each integer index is used specifically as a row or column
index and will be separate from a stride (and indexing a

column will always require multiplying by stride). Indices
used in such a manner will be called “simple”. It is not
uncommon, however, for a programmer to mix notions of
indices together and to create variables that refer not to a
row or a column but rather a specific location in a matrix.
Most instances of this programming style will be expressed
in terms of an assignment. For example, consider the fol-
lowing assignment:

i = i + stride;

It is possible to use the existing framework presented here
to capture this notion and understand that i should be seen
now as an explicitly even value. Handling such a variable
will require adding a new base case to our translation algo-
rithm:

var v 7→ 〈0, v〉 when v is explicitly even

Furthermore, the right-hand side of an assignment may con-
tain values whose roles are partially even and partially odd.
An example of this would be the following algorithm for
setting a matrix diagonal to all 1:

i = 0;

while(j<n) {

A[i] = 1;

i += stride + 1;

j++;

}

This situation is handled by treating i as a mixed index.
One simple method for implementing this is to create an
even and odd shadow of i and to then shadow assignments
to these twice. Using this methodology, the preceding algo-
rithm could be compiled to:

i_odd = 0;

i_even = 0;

while(j<n) {

A[i_even+i_odd] = 1;

i_even = evenAdd(i_even,1);

i_odd = oddAdd(i_odd,1);

j++;

}

The current version of the compiler partially supports us-
age of such mixed indices. In practice it is very difficult
to support such programming techniques without obtaining
more information from the programmer. For example, a
variable may be used in an explicitly even manner for part
of a function and may then be reused later as a simple index.
One way to allow stronger guarantees about the compiler’s
correctness for such usage patterns would be to require the
programmer explicitly to type all integers that are involved
in matrix dereference calculations (as simple or mixed, odd
or even).

4.3 Linking Morton Functions
Shadowing of variables leads to the shadowing of function

parameters. This requires sending the correct value from the
caller to the callee. If the compiler knew that all incoming
nonlocals and arguments were simple variables then this is
not so troublesome: a copy of each variable can be made im-
mediately upon entering the function. With the possibility
of mixed variables, however, this conversion becomes uncer-
tain. The more general solution for this, available through
the compiler, is that parameter lists for functions may be ex-
tended to require shadowed copies of variables. Information
about the function signatures is stored during compilation
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Figure 5: A 1025 × 1025 Morton-ordered matrix of

doubles in 16kB pages, each 64 × 32. The address

space spans 1537 pages, of which only 561 are used.

and can be used to “link” files at a later point, updating
function calls from each call site to match the new signa-
ture. With stronger indexing typing, it would be possible to
remove the need for this and use the typing information to
generate a conversion of the original variable at entry into
the function.

5. PERFORMANCE RESULTS
The Opie compiler was tested with several “standard”

Level-2 and Level-3 linear-algebra operations, as defined
by Golub and Van Loan [15]. A test bed has been built
to launch these operations generating correctness tests and
timing double-precision data. The compiler was used to
generate a new testing apparatus and new versions of these
algorithms over Morton-order matrices.

The only change to usual testing apparatus is that mem-
ory allocation was modified to account for larger address-
space required for a Morton-order matrix. While Morton-
order matrices require more address space, most of the allo-
cated pages will never be used and will exist only in virtual-
memory tables, never as data i cache. The increase in the
working in actual working set of the matrix is only linear in
the matrix order as Figure 5 demonstrates

The resulting codes were tested on two platforms, a 2.8GHz
Intel Xeon, with 2GB of memory and 512KB cache, and
a 195MHz SGI Octane, an R10000 with 32KB each of L1
Icache and Dcache, 1MB L2 cache, and only 128MB RAM.
The latter was used n its memory hierarchy, as well as its
performance-tracking counters (in hardware) to get data on
caching and TLB performance. All files were compiled using
the native C compilers with the --O3 optimization flag.

All times here are presented in units of seconds-per-flop,
with a flat plot indicating good scaling. Morton order yields
flat plots. An immediate observation is that all resources

(time and cache-misses) for Morton order tend to be much
smoother than that for row-major source, and even that for
manufacturers’ BLAS routines. We have seen this pattern
repeatedly, suggesting better predictability here of both con-
ventional, looping codes and later for new, recursive codes
on this data structure.

Figures 6–9 show results using performance counters on
the Octane for an implementation of blocked multiplica-
tion. Using Morton order for a row/column algorithm, a
dramatic decrease in TLB misses—as well as in Level-1 and
Level-2 cache misses—already anticipates the locality from
algorithms that better use block-recursion [26, 14]. These re-
sults further corroborate the paradigm [25], even though the
time shows a significant slowdown. The performance gains
in using the memory hierarchy are not sufficient to over-
come the effects of additional integer operations and the im-
plicit handicap from a C optimizer designed for row/column
traversal.

Our tests on the Xeon do show significant performance
gains in Figures 10–13. For these implementations we use
algorithms straight out of Golub and Van Loan [15]. gaxpy

is an implementation of their Algorithm 1.1.4. Outer prod-
uct is an implmentation of the one of the first algorithm in
their Section 1.1.9. Our first multiplication algorithm is an
implementation of Algorithm 1.1.5 and the blocked version
is Equation 1.3.3. Gaussian is an implementation of Algo-
rithm 3.2.1. The compiler has been successfully used for
other versions of these algorithms as well as several other
Level-2 and Level-3 linear-algebra algorithms.

While the performance gains on the Xeon are impressive,
it is important that the overall performance still pales beside
hand-coded and manufacturer’s versions of these codes. In
order to match and surpass these codes it will be necessary
to take these ideas further and to implement hand-tuned
versions of each algorithm.

6. CONCLUSIONS

6.1 Related Work
There are many contemporary efforts to improve perfor-

mance of scientific codes running on hierarchical and shared
memories [9]. Most retain the problems of row- and column-
major ordering: as matrices grow, locality crumbles at one
level or another in the hierarchy.

Two groups have experimented with decompositions of
matrices that are close to the quadtrees implicit in Morton
order. Chatterjee et al. adopted a hybrid representation
tailored to fit base cases to BLAS3 dgemm as a primitive op-
eration, in order to take advantage of BLAS3 codes on row-
major base cases [6, 7], but using our recursive codes higher
in the tree [13, 26]. Using Morton order there, they obtained
good times but their cost to change between representations
was high. (In spite of his implications to the contrary [6],
we had always advocated the homogeneous representation
that is also our target here.)

Second, Gustavson’s work addresses the halving of quad-
trees, but he does not enforce powers of two [10]. Rather, he
cleaves matrices into roughly equal quarters, obtaining bal-
anced subproblems but, again, not the advantages of dilated
integers and bounds checking. More recently he introduced
recursive packed storage that still uses column-major base
blocks, presumably for their hand-written codes [4, 11].



The ATLAS project is also aimed at compiling optimal
block sizes into classic programming style [23], so that blocks
nicely fill L1 cache, but it addresses only a single level of
caching. L2 cache or page reuse is not included except
through disjoint analysis. Related work in the PHiPAC
project does address multiple levels of blocking, but only the
register file and L1 cache are targeted [5]. That work gener-
alizes to multiple levels, but it does not presume the square,
power-of-two restrictions of Morton order and, thus, does
not enjoy the advantages of bounds checking and dilated
indices. Pingali experimented with translation of iterative
codes to blockwise traversal, but the matrix representation
is unchanged and he ordered the blocks in a manner that
does not suit simple bounds control [2].

6.2 Past and Future Work
Our purpose is not to recompile all codes for high-perfor-

mance use. Indeed, our transformation may make some
codes run slower and will not beat hand-tuned codes. It is
to ease the path for programmers to migrate from iterative
row-major programs to block-recursive quadtree algorithms,
just as they migrated their Fortran codes to C [12]. We
want all their libraries to run under Morton order, so that
they can reprogram incrementally, and so that our demon-
strated gains from superlative locality can be compared and
appreciated. And we want to realize future performance
possibilities, like hyperthreading for Figure 1.

The Opie compiler opens a path to Morton-ordered matri-
ces from C on row-major and, by transitivity, from Fortran
on column-major The compiler also demonstrates significant
merit for using Morton-ording. Using an automated algo-
rithm for translating from one representation to another,
and no hand-coding, we do see significant performance gains
in the form of improved timings on the Xeon and better
cache and TLB usage on the Octane.

The Opie compiler is available for download from
http://www.cs.indiana.edu/~dswise/Opie/distribution.html.

Two themes continue: first to extend the Opie compiler to
work on more arbitrary styles of C code and to extend these
techniques to other source languages. The second theme is
the Arcee project to develop the paradigm of programming
using quadtree recursion, to take advantage of all the locality
and parallelism that this representation allows.
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Figure 6: Performance of compiled, blocked matrix

multiplication on SGI Octane.
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Figure 7: L1-cache misses from compiled, blocked

matrix multiplication on SGI Octane.
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Figure 8: L2-cache misses from compiled, blocked

matrix multiplication on SGI Octane.
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Figure 9: TLB misses from compiled, blocked ma-

trix multiplication on SGI Octane.
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Figure 10: Performance of compiled, unblocked ma-

trix multiplication on Intel Xeon.
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Figure 11: Performance of compiled, blocked matrix

multiplication on Intel Xeon.
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Figure 12: Performance of vector-matrix outer

product on Intel Xeon.
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