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1 Introduction

A general problem is posed to implementers of lazy functional languages: How can
arrays be efficiently and cleanly implemented without compromising the purity of
the language? This is, indeed, a difficult question because functional languages seem
better suited to incremental lists than arrays. It is, nevertheless, essential to perfor-
mance for programming applications, e.g., in scientific computing, to have in-place
array structures. The utility of a language comes into question without efficient
array support. There are many proposed solutions for arrays in lazy functional lan-
guages, discussed in Section 5. Only a few are used in practice. Furthermore, there
seems to be no single accepted way to support arrays.

This paper is concerned with embedding quadtree matrices into lazy functional
languages. An inherited benefit of using them is the block recursive decomposition
they support fits naturally into divide-and-conquer functional style.

The underlying structure of quadtree matrices is an array. So, providing this
structure in a lazy functional language remains a tricky problem. The methods and
techniques for quadtree matrices are made specific here; they are only intended for
two-dimensional arrays.

There are three goals to make quadtree matrices into a valuable functional pro-
gramming tool:

• The indexing schemes for quadtree matrices can be seamlessly utilized with
Haskell’s type system. Structured libraries are thus provided to exploit the
benefits of this higher-order, typed language.

• Matrix algorithms should be efficient. In-place updates are necessary to be
competitive, but functional purity must be enforced. The tools presented here
address performance and style using other research on quadtree matrices.
Quadtree matrices are known for their excellent patterns of memory access
at all levels of the hierarchy (Frens & Wise, 1997). Thus, they fulfill an im-
portant goal for programming-language research: Quadtree matrices address
efficiency in a high-level, machine-independent style. For reasons of style and
performance, functional languages deserve support for quadtree matrices.

• This method for providing safe side effects should not be specific to any
lazy functional language. Haskell is used for this implementation because of
the Glasgow Haskell Compiler’s rich feature set. Other languages will work as
well.

The rest of the paper is structured as follows. To make matrix algorithms efficient,
a method for safely side-effecting must be available, and Section 2 describes a
method for them. Section 3 gives a review of definitions for quadtree matrices
and their various indexing schemes. These are used for building the indexing and
matrix tools. Section 4 presents the quadtree matrices for Haskell, and the block
recursive style of programming them. Section 5 gives a history of previous solutions
to functional arrays, and comparisons to the solution provided in Section 2. Finally,
Section 6 draws conclusions and suggests future research.
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2 Safe Side Effects

A contribution of this paper is to provide safe side effects for quadtree matrices
in a freewheeling functional style. The underlying array to be side-effected should
be named and duplicated safely, as well.1 This is not a straightforward task, how-
ever, due to Haskell’s lazy semantics. The major hurdle is guaranteeing the array
is single-threaded. C and Fortran are implicitly single-threaded, and so millions of
programmers take single threading for granted. But in a lazy language it is crucial
to define this property clearly.

Definition 1
(Anderson & Hudak, 1990) An array is single-threaded if, at each in-place update,
no reference to the previous version of the array is available.

Single threading an array implies that it is uniquely referenced along a thread.
It imposes a far weaker requirement than a monad.

2.1 Operational description

The approach proposed here allows safe mutable arrays. Compile-time analyses of
single-threadedness remains future work. Indeed, some measure must ensure side
effects are single-threaded; this property is too important to leave to the program-
mer. Therefore, a lightweight, runtime solution enforces it. The workhorse can be
thought of as a vague analog of a cons box, dubbed an array box (Dybvig, 1996).
The array box is an opaque data type. That is, the array box’s internals are inacces-
sible from user code. These internals contain a reference to the array, and possibly
a small stub of information about the array, for instance, bounds. To guarantee
single-threadedness, the array box is poisoned after each in-place update. A fresh
array box is then generated for the next access. This process is described later in
more detail.

There are three functions permitted to access the array box’s internals, namely
setMtx, getMtx, and safeGetMtx. To preserve single-threadedness, it is important
to concentrate on setMtx because it performs the in-place update. It is expressed
as follows: Given an array x mutate the location of ix with value v.

let x’ = setMtx x ix v in

...

An overly safe, conventional implementation for this update, namely pass-by-value
(Hudak, 1986), dictates that the original array x is copied to a new location x′. Thus,
pass-by-value has n2 worst case time on an n × n matrix. But if x is known to be
single-threaded, pass-by-reference (Hudak, 1986) suffices. With pass-by-reference,
only the pointer to the old array needs to be copied. This is preferred because it
has constant time access. Therefore, setMtx only generates an array box for future
accesses. What remains to be shown is how setMtx can safely pass-by-reference.

1 “Side-effect” is hereby a transitive verb.
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class Mtx a b where

setMtx :: (MatIx d) =>

Matrix a b -> -- a matrix A

d -> -- an index

b -> -- a value

Matrix a b -- A’

getMtx :: (MatIx d) =>

Matrix a b -> -- a matrix A

d -> -- an index

b -- a value

safeGetMtx :: (MatIx d) =>

Matrix a b -- a matrix A

d -> -- an index

(b,Matrix a b)

Fig. 1. Functions that access the array.

Four operations are performed when setMtx is executed. First, the incoming
reference is stored temporarily. The following step is the key to enforcing single-
threadedness: A poisoning nil is written to the incoming array box. It prevents
access to obsolete array boxes like x. So, the physical array can be mutated only
once. Finally, the temporary reference is boxed and returned as a new array box.
In a nutshell, setMtx’s job is to poison an obsolete path and to mutate the array.
Figure 2 shows a possible single-threaded evaluation sequence on an array to make
this more tangible. Notice setMtx always ends operations on the array box, and
destroys its internal reference. Also, these in-place updates need not be restricted
to 1×1 leaves; 32×32 blocks can be updated at a stroke.

To make this process more concrete, consider the following example where an
array is is mutated with multiple threads. The function dupSetMtx generates a
pair of in-place updates on mtx. This is a perfectly legal definition by itself. But
an attempt to access both side effects of the pair would violate Definition 1. The
violation happens because the array has been split across separate threads. Eval-
uating one of the threads side-effects the array, thus destroying mtx’s reference.
When both threads are evaluated, as in illegalOp, the latter thread fails because
a nil was baited in the reference. The result of illegalOp is a single-threadedness
error message. It should be apparent now that in-place updates must always be
single-threaded; an attempt to access a poisoned copy of an array always signals an
error at run time.

-- Duplicate in-place updates to mtx at

-- location ix.

dupSetMtx = let mtx = allocMtx n in

(setMtx mtx ix v, setMtx mtx ix v)

-- Only one of the threads is evaluated.

-- There is no single-threadedness violation in

-- legalOp.
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Haskell
Array Box

C

Time

A

A = allocMtx getMtx A’’

setMtx A’’setMtx A’

getMtx A’setMtx A getMtx A’’’

Large array of primitives

A A’ A’’ A’’’

Fig. 2. An example evaluation of array operations.

legalOp = let (mtx1,mtx2) = dupSetMtx in

(getMtx mtx1 ix)

-- This code forces evaluation of mtx1 and mtx2,

-- thus violating the single threadedness of

-- the array.

illegalOp = let (mtx1,mtx2) = dupSetMtx in

(getMtx mtx1 ix) + (getMtx mtx2 ix)

There are a few obvious weaknesses of this approach. First, single-threadedness
errors are only signaled at run-time. Debugging an algorithm might be exacerbated
by the lack of compile-time warnings.

Another disadvantage of this method is the need to generate a new handle (iden-
tifier) after each setMtx. Since most block recursive matrix algorithms require only
eight or less recursive calls per environment, these weaknesses should not overbur-
den the programmer (Frens & Wise, 1997; Wise, 1999; Wise et al., 2001; Wise,
1987; Wise, 2000).

2.2 Performance Issues

The next potential problem is performance. Chakravarty and Keller identify several
factors that can make Haskell arrays slow (Chakravarty & Keller, 2003). One big
performance penalty comes from storing array elements lazily. Lazy arrays require
heap allocated boxes for elements, which are likely to have poor locality of reference.
Another source of inefficiency is nesting, for example, when blocks are independently
heap allocated. Quadtree arrays are therefore flat stores of primitives. Consequently,
quadtree arrays are strict. Chakravarty and Keller call this a parallel array because
all elements of the array are computed at the first time an element is needed. These
guidelines provide a framework for fast arrays. Yet, there are further hurdles to
jump before arrays can truly be fast.
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2.2.1 Base cases

For resource intensive matrix algorithms, such as matrix-matrix multiplication and
various matrix factorizations, optimized base case blocks are crucial for perfor-
mance. There are several techniques that could optimize the base case. Unfolding
of the base cases(Burstall & Darlington, 1977) can be automated with something
like Template Haskell (Lynagh, 2003).

This paper demonstrates a manual technique for block recursive matrix-matrix
multiply: unfolding the base case (with rerolling). The implementation of this al-
gorithm is described in Section 4.3. Recursions are stopped above 32×32 blocks.
Machine-generated C code (Figure 17) iteratively multiplies within the base block.
The following section contains time comparisons based on this technique.

The tuned base case block used in time tests is 32×32. Two considerations influ-
ence the block size:

• A major motivation for using Morton-ordered matrices is cache reuse. In-
troducing a new array box for each write would spoil any chance for efficient
cache reuse.2 A 16×16 base case is decent for most modern cache architectures
(Wise et al., 2001).
• In addition to improving cache reuse, the array box allocation cost is amor-

tized by using larger base cases. Say, for example, some code writes to each
element of an n× n array. Recurring down to the 1×1 base case requires n2

array box allocations. But recurring down to 32×32 blocks requires n2/1024
array box allocations.

2.2.2 Experimental Results

Results are presented from an Intel Pentium IV with 20kB on-chip cache, 256KB
L2 cache, and 256MB RAM, and also from an Intel Xeon with 12kB on-chip cache,
512KB L2 cache, and 2GB RAM. Tests are compiled with the Glasgow Haskell

Compiler and the GNU C Compiler. Haskell code is compiled with optimization -O2

-fnumbers-strict -fvia-c; C is compiled with -O2 -mcpu=pentium4.
Three possible matrix multiply bases cases (Figures 14, 15, and 17) are plugged

into the recursive algorithm in Figure 16. Time comparisons are presented in Figure
3. The bottom graph is a normalization of time by dividing it by its 2n3 flops
for an order-n matrix multiply (Johnson, 2002). Doing this extracts the leading
coefficient from this O(n3) algorithm. These plots indicate the substantial impact
bases cases have on performance. The expanded base case outperforms standard
triple-loop algorithms because of its in-line code. Thus, subsequent Haskell times
use the expanded base case to 32×32 blocks. This block size is useful for eliminating
array-box allocations, and exhibits decent cache reuse.

Time tests show Haskell to be only 33% slower than C for matrix-matrix multiply

2 Recurring down to a 1×1 base case has never been recommended for high performance (Frens
& Wise, 1997).
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Fig. 4. Comparison of Haskell and C matrix multiplication on a 1.6GHz Intel Pentium
IV.

on the Pentium. Figure 4 plots running times from the algorithm in Figure 16 and
its C equivalent. The results show that, despite the array box overhead, Haskell,
with the tuned base case, is not far behind C code. The C code is already known to
scale nicely (Frens & Wise, 1997). The ratios in the bottom graph show the Haskell

version can scale without too much overhead penalty; it remains constant, although
slightly slower than C. Figure 6, however, shows Haskell has a larger penalty than
33% on the Xeon.

Cholesky factorization is a more substantial example for Haskell quadtree ma-
trix libraries. Elmroth, Gustavson, Jonsson, and K̊agstroöm use this algorithm to
demonstrate block recursion (Elmroth et al., 2004). Thus, Cholesky factorization is
used here as a non-trivial comparison of Haskell and C. The technique for coding
Cholesky is the same as multiplication. Timing results are provided in Figures 5
and 7. Similar to matrix-matrix multiply, the Haskell code is roughly 33% slower C

on the Pentium. Haskell Cholesky is also close to 33% slower on the Xeon.

2.3 Uniprocessing vs. Multi-processing

This technique for enforcing single-threadedness is monad-neutral. That is, the
programmer can use monads to code-in linearity for her algorithms. Or, alteratively,
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Fig. 6. Comparison of Haskell and C matrix multiplication on a 2.8GHz Intel Xeon.

the programmer can be responsible for linearity without using monads. In both
cases, the scheme for single-threadedness fits. Data dependencies enforce linearity
in the latter case. Furthermore, splitting data dependencies allows for parallelism.
Thus, this non-monadic approach emphasizes opportunities for parallel dispatch.
Previous work investigates parallelism over quadtree matrices (Frens & Wise, 1997).

For convenience, both monadic and non-monadic libraries are provided for quadtree
arrays. Marketing quadtree array libraries to Fortran and C programmers is another
motive for providing the non-monadic version. Fortran programmers, for example,
might be more likely to use Haskell for scientific computing without the burden of
honoring the restrictions of a the monad.

3 Definitions

The following implements a 2-dimensional array, a matrix.

Definition 2
(Wise, 2000) The base of a matrix has Morton-order index 0. A sub-matrix (block)
at Morton-order index i is either an element (scalar), or it is composed of 4 sub-
matrices indexed 4i+ 0, 4i+ 1, 4i+ 2, 4i+ 3.
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These sub-matrices are identified as northwest, southwest, northeast, and south-
east respectively. Figure 8 shows the Morton-order indexing of a 16× 16 matrix.

Definition 3
(Wise, 2000) A complete matrix has Ahnentafel index 3. A sub-matrix (block) at
Ahnentafel index i is either a scalar, or it is composed of 4 submatrices, with indices
4i+ 0, 4i+ 1, 4i+ 2, 4i+ 3.

Definition 4
(Wise, 2000) A complete matrix has Level-order index 0. A sub-matrix (block) at
Level-order index i is either a scalar, or it is composed of 4 submatrices, with indices
4i+ 1, 4i+ 2, 4i+ 3, 4i+ 4.

Operators for Morton-order, Ahnentafel, and Level-order are later defined by the
QdIx class in Section 4.1.

Theorem 1
(Wise, 2000) The difference between Ahnentafel index of a matrix block at level l
and its Morton-order index is 3 · 4l
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Theorem 2
(Wise, 2000) The difference between Level-order index of a matrix block at level
l and its Morton-order index is (4l − 1)/3

Conversions between Morton-order, Ahnentafel, and Level-order indexing schemes
are therefore cheap, only a few processor cycles.

Theorem 3
(Wise, 2000) The Morton-indices on the elements of a matrix, or Ahnentafel or
Level-order indices on blocks of any single size, increase monotonically to the east
and south.

Thus, bounds checking is available for these indexing schemes; it is made exact
with dilated integers, introduced below. Also, because Level-order, Morton-order,
and Ahnentafel indices increase monotonically to the east and south, the universal
index class MatIx a in Section 4.1 is consistent with Ord a.

The algebra of dilated integers is presented tersely here. In Haskell the dilated
Int is an instance of Num. All dilated Ints are stored internally as “even dilated”
by default.

Notation 1
The integer

−→
b =

∑w−1
k=0 4k is called evenBits in C, and is 0x55555555. Similarly,←−

b = 2
−→
b is called oddBits, 0xaaaaaaaa.

Definition 5
(Wise, 2000) The even-dilated representation of
i =

∑w−1
k=0 ik2k is

∑w−1
k=0 ik4k, denoted −→ı .

The odd-dilated representation of j =
∑w−1
k=0 jk2k is 2−→ and is denoted ←− .

The arrows suggest the justification of the meaningful bits in either dilated rep-
resentation.

Theorem 4
(Wise, 2000) A matrix of m rows and n columns is allocated as a sequential block
of
−−−→
m− 1 +

←−−−
n− 1 + 1 scalar addresses.

Theorem 5
(Schrack, 1992) With “≡” read as semantic equivalence and with “==” denoting
equality on integer representations, then for unsigned integers

(−→ı ==−→ ) ≡ (i==j) ≡ (←−ı ==←− );

(−→ı <−→ ) ≡ (i<j) ≡ (←−ı <←− ).

Theorem 6
(Wise, 2000) The Morton index for the 〈i, j〉th element of a matrix is −→ı ∨←− , or−→ı +
←−

Addition and subtraction of dilated integers can be performed with a couple of
minor instructions.
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Definition 6
(Wise, 2000) Addition (

→
+,
←
+) and subtraction (

→−,←−) of dilated integers:

−→ı →−−→n =
−−−→
i− n; ←− ←−←−n =

←−−−
j − n.

−→ı →+−→n =
−−−→
i+ n; ←− ←+←−n =

←−−−
j + n.

Theorem 7
(Wise, 2000) Register-local implementations of subtraction, addition, constant ad-
dition, and constant shifts of twos-complement dilated integers:

−→ı →−−→n = (−→ı −−→n )&
−→
b ; (Schrack, 1992)

←− ←−←−n = (←− −←−n )&
←−
b ; (Schrack, 1992)

−→ı →+−→n = (−→ı +
←−
b +−→n )&

−→
b ; (Schrack, 1992)

←− ←+←−n = (←− +
−→
b +←−n )&

←−
b ; (Schrack, 1992)

−→ı →+−→c = −→ı →−−−→(−c); ←− ←+←−c =←− ←−←−−(−c); (Wise, 2000)
−→
b =

−→−1;
←−
b =

←−−1; (Wise, 2000)
−−→
i<<k = −→ı <<(2k);

←−−
j<<k =←− <<(2k); (Wise, 2000)

−−−→
i>>>k = −→ı >>>(2k);

←−−−
j>>>k =←− >>>(2k). (Wise, 2000)

4 Quadtree Matrix Libraries

The previous section provides mutable arrays. Now it is possible to build a practical
framework for quadtree matrices on top of it. Types and functions for indexing
matrices are provided. Then the underlying matrix representation is examined.
Finally, a style for programming quadtree matrices is presented with examples.

4.1 Universal Indexing

Another contribution of this paper is to provide a method for using various in-
dexing schemes interchangeably. Haskell’s polymorphic type system simplifies this
by seamlessly applying defined coercions (Hall et al., 1996). The class structure to
support these coercions (Figure 9) is defined as follows: MatIx is the superclass
for all indices. It defines the essential coercions toMorton and toRowMajor, which
take an index closer to a hardware address. Higher level indices, such as AhnenIx
and CartesianIx, determine the style of recursions and bounds checking.

Indexing operations and coercions must be fast. Thus, index types are built from
the Glasgow Haskell Compiler’s 32-bit Word. Because Word is unsigned, bounds
checking is supported by Theorem 3. All coercions are done in unit time as they
are invoked frequently.

Finally, the QdIx class (Figure 10) is defined for indices that support quadtree
decomposition. Quadtree decomposition is particularly relevant to Haskell because
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class (Ord a) => MatIx a where

toMorton :: a ->

Word -> -- Row major stride

MortonIx

toRowMajor :: a ->

Word -> -- Row major stride

RowMajorIx

toWord :: a -> Word

newtype MortonIx = MkM Word

newtype RowMajorIx = MkRM Word

newtype AhnenIx = MkAhnen Word

newtype LevelIx = MkLevel Word

newtype CartesianIx = MkCart (Word,Word)

Fig. 9. Indexing class.

class (MatIx a) => QdIx a where

root :: a

nw,ne,sw,se :: a -> a

instance QdIx MortonIx where

...

instance QdIx AhnenIx where

...

instance QdIx LevelIx where

...

Fig. 10. Class for indices that support quadtree decomposition.

it leads to block recursion, a style arguably more in the spirit of functional pro-
gramming (Wise, 1987). The block recursive style is described in Section 4.3.

There are several good reasons to use each of the QdIx block indices. For in-
stance, an Ahnentafel index is useful for recursive control (Wise, 2000). Because it
avoids constant conversions and has good locality of reference, MortonIx should
be typically used only in a base case block.

4.2 Matrix Representation

Morton-ordered and row-major matrix representations are provided in the Quadtree
Matrix libraries.3 Both can accept an index of type MatIx because any instance
of this class is coercible to Morton-order or row-major. As seen in Figure 1, matrix
operations take any kind of index, which need not be the same type of index as the
matrix’s internal representation.

3 Column major would also be possible.
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data Matrix a b =

MkMMtx { -- Morton-order

mb :: ArrayBox,

order :: Word } |

MkRMMtx { -- row-major

mb :: ArrayBox,

m :: Word,

n :: Word }

Fig. 11. The Matrix data constructor.

instance Mtx MortonIx Double where

setMtx (MkMMtx mb order) ix v =

if mb == null

then error "Single-threadedness violation"

else

-- Create the fresh ‘‘array box’’ mb’

-- and plant a null in mb.

let mix = (toMorton ix order) in

case writePrimMtx mb mix v of

() -> MkMMtx mb’ order

getMtx (MkMMtx mb order) ix =

if mb == null

then error "Single-threadedness violation"

else readPrimMtx mb (toMorton ix order)

safeGetMtx mtx@(MkMMtx mb order) ix =

if mb == null

then error "Single-threadedness violation"

else

-- Create the fresh ‘‘array box’’

-- and plant a null in mb.

let mix = (toMorton ix order) in

(readPrimMtx mb mix, mtx)

Fig. 12. Pseudocode for setMtx, getMtx, and safeGetMtx.

The Matrix data constructor, shown in Figure 11, determines the two properties
of the matrix: the matrix representation, e.g., Morton order or row major, and the
type of stored values. The minimal fields, as in MkMMtx and MkRMMtx, consist
of the array box and matrix’s order or dimensions. For efficiency, the number of the
matrix’s data fields should be minimized, as the fields are copied at each in-place
update.

The internals of the Matrix data constructor are held private to the module.
Open access to the ArrayBox would allow duplicating the pointer, thereby under-
mining the enforcement of single-threadedness.

There are a few situations where the ability to sequence read operations is nec-
essary. Most of these can be avoided in practice, but safeGetMtx is provided for
sequencing reads anyway. The in-place transpose of two matrix elements (Figure
13) demonstrates the need for safeGetMtx. The reason is that the first read must
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let mtx’ =

-- xi = transpose of index ix

let xi = combine (getCol ix) (getRow ix)

-- read value at ix

(tmp1,m1) = safeGetMtx m0 ix

-- tread value at xi

tmp2 = getMtx m1 xi

-- set value at ix

m2 = setMtx m1 ix tmp2 in

-- set value at xi

setMtx m2 xi tmp1

Fig. 13. In-place transpose of two elements.

be evaluated before the first write. In the transpose, the matrix m1 must be used
to reflect the state of the matrix when the read takes place. Luckily, situations like
this, where an in-place swap is necessary, are rare.

4.3 Block Recursion

This section introduces matrix-matrix multiplication as a working example of the
Haskell quadtree matrix. Figures 14, 15, and 16 show very different possible styles
for solving this problem. The first two use C-style dot products 1.1.12. Row major
is represented by Figure 14; Morton order is represented by 15. The block-recursive
algorithm in Figure 16 is a simplified version of one from Frens and Wise (Frens &
Wise, 1997). A more cache efficient ordering of recursions, called dovetailing, is left
out for brevity (Frens & Wise, 1997).

There are a few important things to note about the recursive code. The result
of a ∗ b is accumulated in c. Parameters to matrixMult follow the order of an
assignment statement. The first argument is c, the matrix to be side-effected. Sub-
sequent arguments are read-only. Also, this code uses Ahnentafel indices to control
its eight recursions. Fast translation from Ahnentafel to Morton-order indices hap-
pens transparently at the base block. As Section 2.2 mentions, the base case is
optimized using a simple transformation that exploits super-scalar processing and
retains block recursive style.

The technique of unfolding (with rerolling) the base case is described briefly. Start
by examining the base case in the example code. Recursions stop at 1×1 blocks to
call setMtx. A modification to the bounds checking allows for recursions to stop
above 32×32 blocks instead. Now the setMtx call is replaced with iterative code
from Figure 15. A further optimization to the iterative code is possible because the
base block size is known. The code in Figure 15 is unrolled to a 32×32 in-line code
of Figure 17. Now the processor can pipeline this unrolled base case. In practice
the in-line base case is generated by a macro.
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for(int i = 0; i < n; i++) {

for(int j = 0; j < m; j++) {

for(int k = 0; k < p; k++) {

c[i * cStride + j] += a[i * aStride + k]

* b[k * bStride + j];

}

}

}

Fig. 14. Inner-product row-major Matrix Multiplication (in C) 1.1.12.

for(int i = 0; i < evenDilate(n); evenInc(i)) {

for(int j = 0; j < oddDilate(m); oddInc(j)) {

for(int k = 0; k < oddDilate(p); oddInc(k)) {

c[i + j] += a[i + k] * b[oddToEven(k) + j];

}

}

}

Fig. 15. Inner-product Morton-order Matrix Multiplication (in C) 1.1.12.

5 History of Functional Arrays

Lazy functional languages require special measures for clean, safe side effects. Many
solutions have appeared with varying degrees of success. One early method uses
a compile-time path analysis to determine single-threadedness of updates (Bloss,
1989). Hudak offers a reference counting scheme (Hudak, 1986). Single-threadedness
is guaranteed if the reference count for the aggregate is always one. Another pro-
posed run-time method is trailers. Instead of copying a whole array at each update,
trailers just copy the cell being updated. All of these schemes are too costly for
practical use (Anderson & Hudak, 1990). More efficient approaches are now used
in Haskell and Clean.

Monads are the common means by which Haskell programmers destructively up-
date data structures. The method for guaranteeing single-threadedness via mon-
ads has long been known (Peyton Jones & Wadler, 1993). But the ability to de-
structively update named references is not as straightforward, and not permitted
with the aforementioned method. The monadic way of dealing with references in-
volves state, a finite mapping from references to values (Launchbury & Peyton
Jones, 1994). When state is implemented naively, Chen and Hudak show a triv-
ial example of how it can be duplicated, thereby precluding the enforcement of
single-threadedness (Chen & Hudak, 1997). Launchbury and Peyton Jones solve
this problem using parametric polymorphism to encapsulate the state (Launchbury
& Peyton Jones, 1994). One benefit is support for named references. But their so-
lution requires something beyond the Hindley-Milner type system; either rank-2
polymorphic types must be supported, or a special type judgment must be hard-
coded. The popular Glasgow Haskell Compiler uses the former technique for in-place
updates.
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-- To be read as: Store the result of A * B in C.

matrixMult :: (Mtx a b) => Matrix a b -> -- C

a b -> -- A

a b -> -- B

a b -> -- C’

matrixMult c a b = mm c (root::AhnenIx)

(root::AhnenIx)

(root::AhnenIx) 0

where leafBound = mkLeafBound (getOrder c)

mm c0 cIx aIx bIx lvl

-- out of bounds

| (outOfBnds aIx) || (outOfBnds bIx) = c0

-- base case

| cIx >= leafBound =

setMtx c0 cIx ((getMtx a aIx) *

(getMtx b bIx) +

(getMtx c0 cIx))

-- block recursion

| otherwise =

let c1 = mm c0 (nw cIx) (nw aIx) (nw bIx)

c2 = mm c1 (nw cIx) (ne aIx) (sw bIx)

c3 = mm c2 (ne cIx) (nw aIx) (ne bIx)

c4 = mm c3 (ne cIx) (ne aIx) (se bIx)

c5 = mm c4 (sw cIx) (sw aIx) (nw bIx)

c6 = mm c5 (sw cIx) (se aIx) (sw bIx)

c7 = mm c6 (se cIx) (sw aIx) (ne bIx)

c8 = mm c7 (se cIx) (se aIx) (se bIx) in

c8

Fig. 16. Block decomposition Morton-order Matrix Multiplication (in Haskell).

Haskell’s close cousin, Clean, offers a similar approach to in-place updates (Barend-
sen & Smetsers, 1993). Clean has a special “unique type” for references. The type
system ensures that each side effect is given the sole reference to a value. It is in-
teresting to contrast this paper’s technique with Clean and Haskell. Clean shifts the
burden of analysis on the type system. The expense is that the programmer must
learn about unique types, something a C or Fortran programmer might consider
distracting. Haskell has a similar problem. The programmer must be familiar with
monads to use in-place updates. Even though monads support in-place updates,
the ability to name arrays only comes with something like the technique described
in (Launchbury & Peyton Jones, 1994). The array box technique does not depend
on monads or the type system. It will work for any lazy functional language. All
that is needed is a way to disable the incoming array box.

6 Conclusions

Since efficient use of the memory hierarchy increasingly dominates performance,
sound languages, like Haskell, must rise to the challenge of elegantly expressing
memory-efficient algorithms. This fact is a strong motive for embedding quadtree
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void baseCaseDoubleMult(

double* C, double* A, double* B,

int cIx, int aIx, int bIx,

int bcSize) {

int ij,k;

for (ij = 0; ij<(32*32); ij+=16)

{

double* restrict cBlock = C + cIx *(32*32) +ij;

for (k=0; k<(32*32); k+=128)

{

double* restrict aBlock = A + aIx *(32*32)

+ (ij & 0xa0) + k/2;

double* restrict bBlock = B + bIx *(32*32)

+ (ij & 0x50) + k;

cBlock[ 0]

+= aBlock[ 0] * bBlock[ 0] + aBlock[ 1] * bBlock[ 2]

+ aBlock[ 4] * bBlock[ 8] + aBlock[ 5] * bBlock[10]

+ aBlock[16] * bBlock[32] + aBlock[17] * bBlock[34]

+ aBlock[20] * bBlock[40] + aBlock[21] * bBlock[42];

cBlock[ 1]

+= aBlock[ 0] * bBlock[ 1] + aBlock[ 1] * bBlock[ 3]

+ aBlock[ 4] * bBlock[ 9] + aBlock[ 5] * bBlock[11]

+ aBlock[16] * bBlock[33] + aBlock[17] * bBlock[35]

+ aBlock[20] * bBlock[41] + aBlock[21] * bBlock[43];

cBlock[ 2]

+= aBlock[ 2] * bBlock[ 0] + aBlock[ 3] * bBlock[ 2]

+ aBlock[ 6] * bBlock[ 8] + aBlock[ 7] * bBlock[10]

+ aBlock[18] * bBlock[32] + aBlock[19] * bBlock[34]

+ aBlock[22] * bBlock[40] + aBlock[23] * bBlock[42];

cBlock[ 3]

+= aBlock[ 2] * bBlock[ 1] + aBlock[ 3] * bBlock[ 3]

+ aBlock[ 6] * bBlock[ 9] + aBlock[ 7] * bBlock[11]

+ aBlock[18] * bBlock[33] + aBlock[19] * bBlock[35]

+ aBlock[22] * bBlock[41] + aBlock[23] * bBlock[43];

...

cBlock[15]

+= aBlock[10] * bBlock[ 5] + aBlock[11] * bBlock[ 7]

+ aBlock[14] * bBlock[13] + aBlock[15] * bBlock[15]

+ aBlock[26] * bBlock[37] + aBlock[27] * bBlock[39]

+ aBlock[30] * bBlock[45] + aBlock[31] * bBlock[47];

}

}

}

Fig. 17. An in-line, 32×32 base case block for matrix multiplication (Frens & Wise,
1997).
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matrices in any functional language. They provide machine-independent perfor-
mance and allow for block-recursive decomposition (Wise et al., 2001). But laziness
makes quadtree matrices inefficient. The second problem that is tackled in this pa-
per is that of safe side effects. Performance hinges on being able to change values
in place without system overhead.

A general theme of this paper is to build a framework for making Haskell accessible
and competitive with scientific Fortran programming. The attack is therefore two-
pronged; allow for performance via side effects, and utilize a programming style
that exploits the benefits of functional languages.

There is much work to be done to improve support for quadtree matrices in lazy
languages. A stylistic improvement might be gained by adding some syntactic sugar
for quadtree decomposition. As can be seen in Figure 16, there is a good deal of
structure to be exploited. The question is how to do exploit the structure well.

Haskell has long offered elegant “array comprehensions”. There has been work to
optimize their performance (Anderson & Hudak, 1990; Chakravarty & Keller, 2001).
Another improvement would be to add compiler support for quadtree matrices. A
method for automatically unfolding recursions and rerolling a fast base case would
accelerate performance while keeping code clean. How feasible this may be remains
to be investigated.
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