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Abstract. A style for programming problems from matrix algebra is
developed with a familiar example and new tools, yielding high perfor-
mance with a couple of surprising exceptions. The underlying philosophy
is to use block recursion as the exclusive control structure, down to a
2p

× 2p base case anyway, where hardware favors iterative style to fill its
pipe. Use of Morton-ordered matrices yields excellent locality within the
memory hierarchy—including block sharing among distributed comput-
ers. The recursion generalizes nicely to an SPMD program where such
sharing is the only communication.
Cholesky factorization of an n × n SPD matrix is used as a simple non-
trivial example to expose the paradigm. The program amounts to four
functions, two of which are finalizers for the other two. This insight al-
lows final blocks to be shared with inter-node communication ∈ Θ(n2)
for this algorithm ∈ Θ(n3) flops.
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processors—Single-program, multiple-data-stream processors (SPMD); D.1.m [Program-

ming Techniques]: Miscellaneous; E.1 [Data Structures]: Arrays; E.2 [Data Storage Rep-

resentations]: contiguous representations; F.2.1 [Analysis of Algorithms and Problem

Complexity]: Numerical algorithms and problems–computations on matrices.

General Term: Design, Languages, Performance
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1 Introduction

A methodology for portable, scalable algorithms for linear algebra is developed
on divide-and-conquer paradigm. Performance for Cholesky factorization on a
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Fig. 1. Morton-order indexing of a 16×
16 matrix.
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Fig. 2. Ahnentafel indexing of an
order-4 matrix.

cluster of eight Xeon-powered nodes is presented; it is remarkable for a couple
of reasons beyond the clean coding. First, the performance answers direct chal-
lenges to the performance of Morton-order representation [1, 2]. This paradigm
brings C-coded performance on those matrices very close to that of Intel’s hand-
coded BLAS library [3]. Second, the recursive style does so well with locality of
reference in MPI multiprocessing that the burden of interprocessor communica-
tion disappears—with cheap ol’ Ethernet, that is. This eight-node multiprocessor
also has Infiniband, Myrinet, and Quadrics interconnects, where the tests per-
form surprisingly irregularly.

Recursion is the essential tool for divide-and-conquer. The paradigm uses
recursive data structures for locality, recursive programming to develop a parti-
tioned algorithm, and SPMD recursion to balance runtime parallelism without
any extra communication. The only communication for this Θ(n3) algorithm is
the Θ(n2) sharing of blocks as they are finalized.

The underlying motivation for this paper is this straightforward paradigm of
programming, yielding an understandable, portable code. We show how excellent
performance arises from good locality on a uniprocessor, and demonstrate its
support for distributed multiprocessing.

Three tools are developed as part of this paradigm. The first is Morton
ordering for matrix representation [4, 2, 5, 1], with Ahnentafel indexing for the
control of block-recursive programs [6, 7]. Figure 1 illustrates how it can represent
a dense, two-dimensional array of any size in a contiguous block of address space.
The properties of Morton ordering provide simple bounds checking, allow for
several indexing schemes—including Cartesian indices via dilated integers [8,
9]—and guarantee that (for all p) any block of order 2p at an address which is a
multiple of 4p resides in a block of contiguous addresses. Rectangular matrices
are handled easily because Morton indices are monotonic across a row and down
a column. Importantly, the matrix may occupy address space that is much bigger
than the minimum to hold dense data. Just as importantly, however, blocks of
unused addresses reside permanently in the most remote levels of the memory
hierarchy—for the largest matrices as unallocated sectors on swapping disk.

A close relative of Morton-ordered arrays is Ahnentafel indexing, illustrated
in Figure 2. Their difference amounts to two high-order bits that make all block
indices unique, and still allow masking off the even or odd bits into dilated



integers that are cartesian indices. Thereby, bounds checking at all levels of
the tree becomes straightforward. Instead of one pair of bounds, a vector of
precomputed bounds is indexed by the level of the quadtree.

The second tool is recursive divide-and-conquer for the matrix operations [10,
1, 7, 11]. Section 2 illustrates the development of one for Cholesky factorization.
An early lesson from such algorithms is to attenuate recursion above the 1×1 base
cases because the last few levels are exponentially expensive, as Spieß observed
long ago for Straßen’s algorithm [12]. The base cases are expanded in Section 3.

The third tool, developed directly from the recursive algorithm, is the single-
program–multiple-data (SPMD) recursion for multiprocessing. All processors ex-
ecute exactly the same program—in this case, four recursive functions—that
seem to synchronize their recursions even though most remain idle relative to
work high in the process tree. The processors, themselves, are arranged as a bi-
nary tree (Figure 7) that restricts communication to parent-child links, and the
control amounts to a parallel descent into this tree by each of the 2p processors.
One can envision each descending a different path p levels into the computation
tree, to the level where each node has a singleton processor executing uniproces-
sor code.

Significantly, the algorithm is arranged so that the processor tree is an overlay
of the quadtree that is the data structure, so that each of those singletons finds
its work in a local chunk of memory. Interestingly, the bulk of the work (rank-k
updates) can be performed in local memories without any communication at all.
The aggregate Θ(n3) processing on an order-n matrix can be carried out without
any communication. Only after these results are finalized need they be shared,
and so that sharing is deferred—but then that finalization and communication
is only ∈ Θ(n2). The sharing is explained in Section 4.

A few definitions are necessary for context, but lots of the details are available
in citations.

Definition 1. [6] The base of a matrix has Morton-order index 0. A submatrix
(block) at Morton-order index i is either an element (scalar), or it is composed
of 4 submatrices, with indices 4i + 0, 4i + 1, 4i + 2, 4i + 3, labeled northwest,
southwest, northeast, and southeast.

Definition 2. [6] An entire matrix has Ahnentafel index 3. A submatrix (block)
at Ahnentafel index i is either an element (scalar), or it is composed of 4 sub-
matrices, with Ahnentafel indices 4i + 0, 4i + 1, 4i + 2, 4i + 3.

Morton order is used to represent an entire matrix, whether it is rectangular
or square, and regardless of its order. Ahnentafel indices are used for control;
conversion to or from Morton order is easy, and simple bounds checking is avail-
able with either one [6]. In rectangular graphics that are wider than tall Morton
order is often rendered in Z order. Because matrices tend to be taller than they
are wide, we use I order. They are equivalent; both allow dilated integers to be
used for cartesian indices and bounds checking.



#define evenBits (((unsigned int)-1) /3)

#define oddBits (evenBits<<1)

#define diag(a) (3*((a) & evenBits))

#define nw(a) ( (a)*4 )

#define sw(a) ( (a)*4 +1)

#define ne(a) ( (a)*4 +2)

#define se(a) ( (a)*4 +3)

#define we(a) (((a)<<2)+0)

#define ea(a) (((a)<<2)+2)

#define no(a) ( (a) +0)

#define so(a) ( (a) +1)

#define e2w(a) ((a) -2)

#define prnt(a) ((a)>>2)

#define quadBd(soloBound) (soloBound)

#define rectBd(soloBound) (4*(soloBound))

#define square 1

#define rectangle 2

#define amLeftChild(me,lgProcs) \
(((me)&(1<<(lgProcResource-(lgProcs)-1))) ==0)

/* Is "me" a left child at this level of the tree?

Root 0 is understood leftChild by default. */

#define child(procRank,lgProcs) \
( (procRank)+(1<<(lgProcResource-(lgProcs) )) )

#define parent(procRank,lgProcs) \
( (procRank)-(1<<(lgProcResource-(lgProcs)-1)) )

Fig. 3. Helpful macros for Morton indexing.

Theorem 1. [4, 13] The Morton index into a matrix (2-dimensional array) is
∑w−1

`=0
q`4

` = 2
∑w−1

`=0
i`4

` +
∑w−1

`=0
j`4

` corresponds to the cartesian index for

row i =
∑w−1

`=0
i`2

` and column j =
∑w−1

`=0
jk2`.

The three strengths of such indexing, as in real estate, is their inherent lo-
cality, locality, locality. Base cases, caches, RAM load, disk pages, and inter-
processor communication all take advantage of the sequential storage of blocks
of all sizes. And any block can be sent as an unbuffered stream.

The remainder of this paper is in five parts. The next section develops the
outline of a recursive Cholesky factorization. Section 3 visits fast base cases for
the recurrence. Then Section 4 expands that code toward the parallel implemen-
tation. Section 5 describes the times for the resulting algorithm with different
MPI and interconnects. Finally, Section 6 offers conclusions.

2 Block-Recursive Cholesky

2.1 Some Macros

Macros that are used to orient the quadtrees and their processes appear in
Figure 3. The reader is referred to the literature for basic operations on Morton
indices and the important role of dilated integers [8, 9, 6]. Masking the even or
odd bits from a Morton or Ahnentafel index yields an (even or odd) dilated
integer to the row or column, respectively. Higher in the quadtree, those identify
stripes of contiguous rows for bounds checking [6].

After cleaving a square block into quadrants, they are labeled by points of
the compass (nw, sw, ne, se). The binary tree of processes follows this cleaving,
as well. Results of processes are first split west/east into rectangles and then
north/south into quadrants again.

The last few macros answer questions controlling parallelism in the processor
tree:

– Is this process (rank) a left child at this level?
– What is the right child of a process at this level?
– Which is the parent of a process at this level?



static void doCholeskyBlk(int quad)

{
if ( quad >= soloBound ) doCholeskyUniproc(quad);

else

{
doCholeskyBlk( nw(quad));

triSolveBlk ( sw(quad), nw(quad));

schurTri (/*se(quad),*/ sw(quad) );

doCholeskyBlk( se(quad) );

}
return;

}

static void triSolveBlk(int sQuad, int nQuad)

{
if ( sQuad>=soloBound ) triSolveUniproc(sQuad, nQuad);

else

{
triSolveBlk(so( we(sQuad)), no(we(nQuad)) ); /*D*/

triSolveBlk( no(we(sQuad)), no(we(nQuad)) ); /*A*/

schurBlk (so( ea(sQuad)), so(we(sQuad)) ); /*E*/

triSolveBlk(so( ea(sQuad)), so(ea(nQuad)) ); /*F*/

schurBlk ( no(ea(sQuad)), no (we(sQuad)) ); /*B*/

triSolveBlk( no(ea(sQuad)), so(ea(nQuad)) ); /*C*/

}
return;

}

static void schurBlk(int eQuad, int wQuad)

{
if ( eQuad >= soloBound ) schurBlkUniproc(eQuad, wQuad);

else

{
schurBlk( so(we(eQuad)), e2w(so(ea(wQuad))) );

schurBlk( so(we(eQuad)), so(ea(wQuad)) );

schurBlk( no(we(eQuad)), e2w(no(ea(wQuad))) );

schurBlk( no(we(eQuad)), no(ea(wQuad)) );

schurBlk( so(ea(eQuad)), e2w(so(ea(wQuad))) );

schurBlk( so(ea(eQuad)), so(ea(wQuad)) );

schurBlk( no(ea(eQuad)), e2w(no(ea(wQuad))) );

schurBlk( no(ea(eQuad)), no(ea(wQuad)) );

}
return;

}
static void schurTri( int wQuad)

{
if ( wQuad >= soloBound ) schurTriUniproc(wQuad);

else

{
schurBlk( sw(diag(prnt(ea(wQuad)))), e2w(so(ea(wQuad))) );

schurBlk( sw(diag(prnt(ea(wQuad)))), so(ea(wQuad)) );

schurTri( e2w(no(ea(wQuad))) );

schurTri( no(ea(wQuad)) );

schurTri( e2w(so(ea(wQuad))) );

schurTri( so(ea(wQuad)) );

}
return;

}

Fig. 4. C code for the rudimentary four functions.
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2.2 The Algorithm

One finds iterative codes in textbooks covering Cholesky factorization. The sim-
plicity of three nested loops is intoxicating, but it doesn’t help much in balanc-
ing and scheduling processes. Good recursions can be found by abstracting the
problem to be of size 2p

× 2p. With that approach one arrives at the recursive
algorithm in Figure 4.

Figure 5 sketches the recursion for two of the four functions presented in
Figure 4. The other two are rank-k updates called schurBlk for a square result,
and schurTri when the result lands on the diagonal of the symmetric matrix;
it’s half the work of schurBlk.

In most cases, the first parameter identifies the quadrant receiving an update
(or side-effect) by the named code. Similarly, the left of Figure 5 identifies the



blocks of the top-level matrix by the functions that update them. The compu-
tationally intensive schurBlk, however, does not yet appear.

The right of Figure 5 illustrates the source of all its Θ(n3) calls: triSolve.
There, lowercase letters indicate arguments to the six calls identified by right-
margin comments in Figure 4; upper case indicates their in-place effects. Not all
three arguments to, say, schurBlk are required as its parameters—because two
Ahnentafel indices suffice to compute the third. That is also true of triSolve, it-
self; the Ahnentafel index, a, of a block labeled A, D, C, or F is sufficient to deter-
mine the index of the diagonal block immediately above it (e.g.(a&oddBits)/2*3)
—so the latter does not appear later in Figure 15. Similarly, schurTri in Fig-
ure 4 only has one parameter that does not index the side-effected block, whose
index is calculated from that of the block A, D, C, or F in Figure 5 using diag(a)

from Figure 3. We have found that deriving such dependent indices with dilated
integers avoids a lot of incompatibility errors.

3 Base Cases

Excellence performance at the base cases is essential for high performance of
recursive programs; anything less has an explosive cost. Three steps are necessary
to achieve that performance: analysis, optimization, and tuning.

Theorem 2. While factoring an n×n matrix (measured in base blocks—whether
1 × 1 or 32 × 32) the base case is invoked exactly

•

(

n

1

)

times for doCholesky; flops ∈ Θ(n).
•

(

n

2

)

times for triSolve; flops ∈ Θ(n2).
•

(

n

2

)

times for schurTri; flops ∈ Θ(n2).
•

(

n
3

)

times for schurBlk; flops ∈ Θ(n3).

The analysis of Theorem 2 focuses optimization on the base case of schurBlk.
C and Fortran optimizers, however, are not set up for Morton order, so we
wrote a macro for that Schur complement to generate code for RISC technology.
With f and p as integer tuning parameters, it generates iterative C code for a
2p

× 2p base block with 2f in-line flops; choice of p depends on data cache, and
of f on instruction cache, decoding, and the pipeline. Experiments a range of
values for a large problem select a 32 × 32 base block and 256 inline flops. All
source code is in C; the only assemply code was used to gain SSE2 performance
over the compiler’s scalar code.

Figure 6 presents the uniprocessor timings that result from this tuning on
the coding techniques described elsewhere [6, 7]. Consistently with presentations
of other cache-oblivious algorithms [10], it plots time to perform an order-n
Cholesky factorization divided by the 1

3
n3 flops necessary for the algorithm.

In other words, it normalizes to a hypothetical leading coefficient for the cubic
equation that would express the time as a function of n [14], which ought to be
constant with good scaling.1 Read from top-to-bottom, Figure 6 plots the quad-
tree divide-and-conquer C-codes extended from Figure 5 running on the usual

1 This plot is valuable also because it exposes relative performance on small tests.
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Fig. 7. A tree labeled for 16 processors,
each communicating only with its parent
and right child.

row-major implementation (almost flat), and ATLAS-optimized BLAS3 dpotrf

[15] (not flat) whose performance degrades as it bleeds into outer caches. Below
order 4000 it improves slightly on Morton-ordered recursions2 (very flat) even
though they do not compile to SSE2 instructions. Substituting eight SSE2/MMX
packed-double instructions (instead of double) into schurBlkBase’s symbolic
code gives the next plot. Only slightly better is Intel’s hand-coded dpotrf [16,
3] (flat) and the idealized maximum flops for our Xeon processor.2

4 Developing the Code

This section offers a terse description of the expansion of the recursive algorithm
in Figure 5 to the SPMD version that offers perfectly balanced and scalable
parallelism. This description is again written as if matrices were of order 2p,
which is an unnecessary constraint. Without it, however, another derivative of
the code in Figure 5 with bounds checking is necessary to peel the unbalanced
southeast perimeter from the matrix.

Three observations take us to the parallel code. First is the processor tree
of Figure 7. The root is identified as the processor with MPI rank 0. Beneath
it is a tree of processors indexed by a bit-reversal of level ordering: every pro-
cessor is its own left child and its right child is easily computed from the level.
This indexing expands to 2p processors (for any p), and localizes communication
within subtrees. Each processor communicates only with its parent and right
child. With MPI ranks assigned cyclically, processors at the leaves (the open
circles) can even share RAM on a single node.

Second is the recognition that the four functions are paired with respect
to a locality operation. That is, the blocks that result from schurTri are not
needed by any processes until they are finalized by an application of doCholesky
there. These functions, however, are not applied very often (Theorem 2) and so
are computed by the root (Rank 0) processor. Far more interesting are the
results of schurBlk that are not shared by other processes until finalized by an
application of triSolve. They are distributed out to RAM on remote processors

2 These two plots appear as referents in later graphs.



in a pattern that will receive all the updates to these blocks, up to an including
the finalization. As part of that triSolve finalization the results are assembled
up and down the tree—so that all other processors immediately become aware
of them. Theorem 2 shows that that communication is only time Θ(n2) after the
Θ(n3) Schur complements.

The third observation is that all processors are always executing the same
recursion, descending the processor tree and the quadtree level-by-level. The crit-
ical parameter whereAmI indicates which processor is designated to be “active,”
in the sense of actually carrying out computations and side-effects to blocks of
the matrix. Base steps in the parallel code (uniprocessing calls), therefore, are
always protected by a conditional comparison with it and the local processor’s
rank. Even non-base steps use it as if to “fork” work to two children, effected by
locally computing that argument.

That is, in the SPMD recursion all processors are always executing the same
code at the same level, with whereAmI identifying an ancestor and the local pro-
cessor idle—aside from the synchronized recursion. Alternatively, it identifies the
rank of the local processor, and it is actively computing on the blocks identified
by the Ahnentafel indices. There is no need for interprocess communication to
fork and join since all control is implicit in the recursion.

The necessary MPI sends and MPI receives of data are embedded in the
same recursion and similarly synchronized. Two functions are used locally to
share information:

– sendDownAll sends a square or rectangle block down to all descendants of
the local processor. It is invoked after receiving a finalized block from one’s
parent.

– assembleBottomUpDown is invoked immediately before a finalizing call to
assemble distributed data onto all the local RAMs in the subtree. Typically,
it happens just before triSolve.

This provides the only communication necessary to the SPMD parallelism.
Figure 4 then expands first into Figure 8 with provision to assemble dis-

tributed Schur complements. The rest of the parallel code appears as Figures 14
and 15, which are formatted to be read side-by-side. That way the control is seen
to be identical, and the absence of any communication in Figure 14 is apparent.
The rank-k updates are accumulated in distributed memory in sequential blocks,
each of which exists on a unique machine in the cluster; the programmer can
be oblivious as to just which one—recursion determines it. No sharing occurs
until just before such blocks are finalized by the code in Figure 15, and after
finalization the block is implicitly shared by all processors in the subtree of the
finalizing one.

Figure 14 presents the rank-k updates without any interprocess communica-
tion either for control (the SPMD recursion suffices) or for sharing. There again
appear the guards on the base cases, performed only by the process selected by
the parameter whereAmI, selecting the active processor. Here also is seen how
the recursion forks within schurBlk, based on a bit masked from every proces-
sor’s rank. Half the processors recur to the left subtree and half to the right,



static void doCholeskyBlk(int quad)

{
if ( lgProcResource==0 || quad >= quadBd(soloBound) )

{
if (me != 0 /*whereAmI*/) {} else

doCholeskyUniproc(quad);

sendDownAll(square, quad, 0, lgProcResource);

/* assuring that all processors have the factorization */

}
else

{
doCholeskyBlk(nw(quad));

/* All processors have the partial result. */

/* Upon arriving here (except at topmost call) we must assume

that rank-k updates (shurBlk calls) have scattered the current

information in sw(quad) across remote memories, quad-by-quad.

The first task is to assemble current information in all memories.

*/

assembleBottomUpDown( sw(quad), 0, lgProcResource);

triSolveBlk ( sw(quad), 0, lgProcResource);

/* All processors have the partial result. */

schurTri ( sw(quad) );

/* Not all processors have the rank-k updates. They are local to... */

doCholeskyBlk(se(quad) );

/* All processors have the partial result. */

}
return;

}

Fig. 8. The top level of parallelism.
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one of which is newly invigorated as second argument for whereAmI; it allows
computation when it arrives at the processor identified locally as me.

5 Experimental Results

The codes were tested on an Aspen Systems cluster of eight, dual-processor
2.8GHz Intel Xeons, each with 2GB of memory and 8KB L1, 512KB L2 cache.
All the uniprocessing code was compiled using the native icc compiler with -O3

optimization for the Xeon. Section 3’s hand conversion of scalar instructions
introduced SSE2 packed-doubles into the symbolic code for schurBlkBase.

The multiprocessing code was written using MPI [17] to distribute computa-
tion via four different interconnects. (The codes are identical, but there is room
for only two plots here.) Since this work is motivated by programming style, we
only sought confirmation of performance. The differences in performance among
the interconnects were completely unexpected.
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– TCP via on-board gigabit Ethernet.
– Infiniband [18] through InfiniCon infiniIO 2000 [19].
– Myrinet M3-E64 [20].
– Quadrics AsNet II [21].

Multiprocessing code for the last was compiled with Quadrics’s release of MPI
[22]. The other three were compiled with LAM/MPI, 7.0.1 here [17]. All tests
were run twice, most of them thrice. There were minor variances, therefore, that
are not shown here; the shapes of these plots are all faithful and reproducible.

Times are presented here in units of seconds-per-flop as above [14].
Each of the plots offers a surprise. Figure 9 indicates excellent performance.

Although Ethernet is the cheapest interconnect and presumably the slowest,
its plots land at 1

2
, 1

4
, and 1

8
of Figure 6’s baseline: perfect scaling for 2, 4, 8

processors. With the timings obtained, this figure alone demonstrates the success
of the paradigm and its resulting code.

Infiniband in Figure 11 does almost as well, but its eight-processor perfor-
mance is poor on smaller matrices. Most notably both it and Myrinet have
memory pegged in RAM before startup for resident buffers. That consumes ad-

dress space that Morton order requires for any test above order 8192. That is,



the test for 8224 requires a malloc of just over 1.5GB, even though only 1/6 of
that migrates through RAM to cache. So there are no tests above that order.

The dual-processor Infiniband tests in Figure 12 are more puzzling. One can
see results for 16 processors, but they are little better than for 8 uniprocessor
nodes. Performance degrades for dual processors on large matrices, above order
9000, as RAM prematurely fills. Because this MPI cannot share memory on a
single node, pegged buffers and individual copies of the matrix are necessary for
each of the dual processors. As memory fills, they both revert to virtual memory,
although their locality under paging is also very good.

Quadrics, the most expensive, scales as perfectly for 2 uniprocessor nodes
in Figure 10. Normalized times for 4 and 8 nodes tend toward a nicely scaled
asymptote, but leap raggedly above it. The strange leaps indicate MPI/system
troubles. The 8-processor leaps consistently double those for 4 processors, and
this pattern has been confirmed in repeated runs.

The most surprising is Myrinet in Figure 13. Not only does it also suffer from
pegging, but all multinode tests are ragged. Although the 8-node test seems
more stable, all of them trend towards times that we would expect from just
two processors. One suspects difficulties between the network controllers and
the operating system.

6 Conclusions

It was already known how to obtain scalable parallelism from algorithms for
Cholesky factorization. The point of this paper is the paradigm to obtain both
excellent performance from hierarchical memory and excellent parallel scaling.

We illustrate an algorithm that yields cache-oblivious behavior in hierar-
chical memory, and similarly delivers scalable and balanced parallelism on dis-
tributed multiprocessors. We obtain both locality in hierarchical memory and ex-
cellent parallel scaling from the same style, using quadtree recursion on Morton-
ordered matrices. We delivered excellent performance in moving from shared-
memory parallel dpotrf to a SPMD a distributed-memory parallel implementa-
tion. Along the way we expose some strange behavior from current Linux/MPI
implementations. The best behavior is achieved on the cheapest interconnection.

The perfect scaling of Figure 9 demonstrates success for our recursive paradigm
for high-performance code. Single-recursion multiple-data (here dubbed SRMD),
Morton-ordered matrices, and good style are winners.
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//  It is a fact of life that the locally active process has    whereAmI==0 .
//  All processors are running identical code!
//  Passing schurTri down to be done locally at every child.

static void schurBlk(int eQuad, int wQuad, int whereAmI, int lgProcs)
{
  if ( lgProcs==0 || eQuad>=quadBd(soloBound) )
    if (me != whereAmI) {} else
      schurBlkUniproc(eQuad, wQuad);
  else
  {
    if ( amLeftChild(me,lgProcs-1) )              /* West on self.  */
      schurBlkWE(we(eQuad),   ea(wQuad),       whereAmI,           lgProcs-1);
    else                                          /* East on child. */
      schurBlkWE(  ea(eQuad), ea(wQuad), child(whereAmI, lgProcs), lgProcs-1);
  }
  return;
}

static void schurBlkWE(int eRect, int wRect, int whereAmI, int lgProcs)
{
  if ( lgProcs==0 || eRect>=rectBd(soloBound) )
    if (me != whereAmI) {} else
    {
      schurBlkUniproc(so(eRect),     so(wRect) );
      schurBlkUniproc(so(eRect), e2w(so(wRect)));
      schurBlkUniproc(no(eRect), e2w(no(wRect)));
      schurBlkUniproc(no(eRect),     no(wRect) );
    }
  else
    if ( amLeftChild(me,lgProcs-1) )              /* South on self. */
      schurBlkSN(so(eRect), so(wRect),         whereAmI,           lgProcs-1);
    else                                          /* North on child.*/
      schurBlkSN(  no(eRect), no(wRect), child(whereAmI, lgProcs), lgProcs-1);
  return;
}

static void schurBlkSN(int eQuad, int wQuad, int whereAmI, int lgProcs)
{ 
  schurBlk(eQuad, e2w(wQuad), whereAmI, lgProcs);
  schurBlk(eQuad,     wQuad , whereAmI, lgProcs);
  return;
}

static void schurTri(int wQuad)
{
  if ( lgProcResource==0 || wQuad >= quadBd(soloBound) )
    if (me != 0 /*whereAmI*/ ) {} else
      schurTriUniproc(wQuad);
  else
  { /*Parallelism possible here, but declined to set up for doCholesky finalizer. */
  
      schurTriW( ea(wQuad) );
      
      schurTriE( ea(wQuad) );
  }
  return;
}

static void schurTriW  (int wRect)
{
  if ( lgProcResource==0 || wRect >= rectBd(soloBound) )
    if (me != 0 /*whereAmI*/ ) {} else
    {
      schurBlkUniproc( sw(diag(prnt(wRect))),     so(wRect) );
      schurBlkUniproc( sw(diag(prnt(wRect))), e2w(so(wRect)));
      schurTriUniproc(           e2w(no(wRect)));
      schurTriUniproc(               no(wRect) );
    }
  else
  {/*Parallelism possible here, but declined to set up for doCholesky finalizer. */
      schurBlkSN(sw(diag(prnt(wRect))), so(wRect), 0, lgProcResource);
      schurTriSN(                       no(wRect)                   );
  }
  return;
}

static void schurTriE  (int wRect)
{
  if ( lgProcResource==0 || wRect >= rectBd(soloBound) )
    if (me != 0 /*whereAmI*/ ) {} else
    {
      schurTriUniproc ( e2w(so(wRect)));
      schurTriUniproc (     so(wRect) );
    }
  else
  {
    schurTriSN( so(wRect) );
  }
  return;
}

static void schurTriSN (int wQuad)
{
  schurTri( e2w(wQuad) );
  schurTri(     wQuad  );
  return;
}

Fig. 14. Aligned C code for schurBlk and schurTri. No communication at all occurs
among the highly parallel schurBlk recursions.

static void triSolveBlk(int quad, int whereAmI, int lgProcs)
{
  if ( lgProcs==0 || quad>=quadBd(soloBound) )
    if (me != whereAmI) {} else   triSolveUniproc(quad);
  else
  {
    triSolveW           (we  (quad),       whereAmI,         lgProcs);
    triSolveE           (  ea(quad),       whereAmI,         lgProcs);
  }
  return;
}

static void triSolveW(int rect, int whereAmI, int lgProcs)
{
  if ( lgProcs==0 || rect>=rectBd(soloBound) )
    if (me != whereAmI) {} else
    {

    
      triSolveUniproc( no(rect) );                                             /*A*/
      triSolveUniproc( so(rect) );                                             /*D*/
    }
  else
    if ( amLeftChild(me,lgProcs-1) )           /* South on self. */
    {

    
    
      triSolveBlk(so(rect),         whereAmI        , lgProcs-1 );             /*D*/
      if (me != whereAmI) {} else
        mpi_send_blocked_receive(square, so(rect),no(rect), child(whereAmI,lgProcs));
      sendDownAll(square,      no(rect),     whereAmI, lgProcs-1);         /*   ^ */
    }                                                                      /*   | */
    else                                                                   /*   | */
    {                                                                      /*   | */
                                                                           /*   | */
                                                                           /*   | */
                                                                           /*   | */
                                                                           /*   | */
                                                                           /*   | */
                                                                           /*   | */
                                                                           /*   | */
                                                                           /*   | */
                                             /* North on child.*/   /*A*/  /*   | */
      triSolveBlk(no(rect), child(whereAmI, lgProcs), lgProcs-1);          /*   | */
      if (me != child(whereAmI,lgProcs)) {} else                           /*   | */
        mpi_send_blocked_receive(square, no(rect),so(rect),  whereAmI );   /* <-+ */
      sendDownAll(square,    so(rect), child(whereAmI,lgProcs), lgProcs-1);
    }
  return;
}

static void triSolveE(int rect, int whereAmI, int lgProcs)
{
  if ( lgProcs==0 || rect>=rectBd(soloBound) )
    if (me != whereAmI) {} else
    {
      schurBlkUniproc( so(rect), sw(prnt(rect)) );                             /*E*/
      schurBlkUniproc  ( no(rect), nw(prnt(rect)) );                             /*B*/
      triSolveUniproc( no(rect) );                                             /*C*/
      triSolveUniproc( so(rect) );                                             /*F*/
    }
  else
    if ( amLeftChild(me,lgProcs-1) )      /* South on self. */
    {
      schurBlk   (so(rect), sw(prnt(rect)),      whereAmI, lgProcs-1);         /*E*/

        /* Upon arriving here, we must assume
        that rank-k updates (shurBlk calls) have scattered the current
        information in sw(auad) across remote memories, quad-by-quad.
        The first task is to assemble current information in all memories.
        */
      assembleBottomUpDown(so(rect),          whereAmI, lgProcs-1);
                                        /* South on  self. */                  /*F*/
      triSolveBlk         (so(rect),          whereAmI, lgProcs-1);
      if (me != whereAmI) {} else
        mpi_send_blocked_receive(square, so(rect),no(rect), child(whereAmI,lgProcs));
      sendDownAll(square,       no(rect),     whereAmI, lgProcs-1);           /* ^ */
    }                                                                         /* | */
    else                                                                      /* | */
    {                                                                 /*B*/   /* | */
      schurBlk(no(rect), nw(prnt(rect)), child(whereAmI, lgProcs), lgProcs-1);/* | */
                                                                              /* | */
        /* Upon arriving here, we must assume                                    |
        that rank-k updates (shurBlk calls) have scattered the current           |
        information in sw(auad) across remote memories, quad-by-quad.            |
        The first task is to assemble current information in all memories.       |
        */                                                                    /* | */
      assembleBottomUpDown(no(rect),     child(whereAmI, lgProcs), lgProcs-1);/* | */
                                        /* North on child. */         /*C*/   /* | */
      triSolveBlk         (no(rect),     child(whereAmI, lgProcs), lgProcs-1);/* | */
      if (me != child(whereAmI,lgProcs)) {} else                              /* | */
        mpi_send_blocked_receive(square, no(rect),so(rect),  whereAmI    ); /* <-+ */
      sendDownAll(square,     so(rect), child(whereAmI,lgProcs), lgProcs-1);
    }
  return;
}

Fig. 15. Aligned C code for triSolve. The subtree of memories must be synched for
finalization after distributed schurBlks.


