To Codri and Celina.
To all the Little Lispers ever.

Soaked in Java: An Introduction to Programming
Text by: Adrian German
Tlustrations: Nickolas Boyce

Prelude

What computers can do (and how).
Programming languages.
Java.

Computers can do lots of things.

For today’s computers to perform a complex task, we
need a precise and complete description of how to
do that task in terms of a sequence of simple basic
procedures.

This instructing has to be exact and unambiguous.

In life, of course, we never tell each other exactly what
we want to say; we never need to, as context, body
language, familiarity with the speaker, and so on, en-
ables us to “fill the gaps” and resolve any ambiguities
in what is said.

Computers, however, can’t yet “catch on” to what is
being said, the way a person does. They need to be
told in ezcruciating detail exactly what to do.

I can see the emphasis.

Perhaps one day we will have machines that can cope
with approximate task descriptions, but in the mean-
time we have to be very prissy about how we tell
computers to do things.

A computer program tells a computer, in minute de-
tail, the sequence of steps that are needed to fulfill
a task. The act of designing and implementing these
programs is called computer programming. In this
course, you will learn how to program a computer —
that is, how to direct a computer to execute tasks.

Today’s computer programs are so sophisticated that
it is hard to believe that they are all composed of
extremely primitive operations.

Only because a program contains a huge number of
such operations, and because the computer can ex-
ecute them at great speed, does the computer user
have the illusion of smooth interaction.

To use a computer you do not need to do any program-
ming. You can drive a car without being a mechanic
and toast bread without being an electrician.

Many people who use computers every day in their
careers never need to do any programming.

Of course, a professional computer scientist or soft-
ware engineer does a great deal of programming.

Since you are taking this first course in computer sci-
ence, it may well be your career goal to become such
a professional.

Or maybe not—but let’s pretend!

OK.

To write a computer game with motion and sound
effects or a word processor that supports fancy fonts
and pictures is a complex task that requires a team
of many highly skilled programmers.

Your first programming efforts will be more mundane.
But we'll still be able to program a video game by the
end of the semester.

The concepts and skills you learn in this course form
an important foundation, and you should not be dis-
appointed if your first programs do not rival the so-
phisticated software that is familiar to you.

Actually, you will find that there is an immense thrill
even in simple programming tasks. It is an amaz-
ing experience to see the computer precisely and
quickly carry out a task that would take you hours
of drudgery, to make small changes in a program that
lead to immediate improvements, and to see the com-
puter become an extension of your mental powers.

OK. Why is programming fun?

I don’t know.

I think the reason I like it so much is that it gives me
a world I can control.

Could be. You a tad insecure?

No. (Snicker). The laws of nature in that world are
published, and knowing them, you can make things
happen to your liking.

I agree.

There are few limits to what you can accomplish if
you just think hard enough.

Not quite like the real world.

The real world?

“...the location of non-programmers and activities
not related to programming” ([1], [2] p. xvii)

Very good. What is programming?

Programming is a solution to a problem like this:

“You are given two different length strings that have the characteristic that they both take exactly
one hour to burn. However, neither string burns at a constant rate. Some sections of the strings burn
very fast; other sections burn very slowly. All you have to work with is a box of matches and the
two strings. Describe an algorithm that uses the strings and the matches to calculate when exactly

45 minutes have elapsed.”

That’s parallel programming’.

I agree. What is programming?

1Burning a string from both ends would make the string last only %hour, wouldn’t it?

Programming is a solution to a problem like this: That’s logic programming.

“A farmer lent the mechanic next door a 40-pound weight. Unfortunately, the mechanic dropped
the weight and it broke into four pieces. The good news is that, according to the mechanic, it is still
possible to use the four pieces to weight any quantity between one and 40 pounds on a balance scale.
How much did each of the four pieces weigh? (Note: You can weigh a 4-pound object on a balance
by putting a 5-pound weight on one side and a 1-pound weight on the other).”

Quite true. Is programming related to solving a problem like this?

Where’s the problem? Take it easy now. Here it is:

Ah! Sequential programming.

” A captive queen weighing 195 pounds, her son weighing 90 pounds, and her daughter weighing 165
pounds, were trapped in a very high tower. Outside their window was a pulley and rope with a basket
fastened on each end. They managed to escape by using the baskets and a 75-pound weight they
found in the tower. How did they do it? The problem is anytime the difference in weight between
the two baskets is more than 15 pounds, someone might get killed. Describe an algorithm that gets
them down safely.”

A bit conservative, I agree?.

Do you have more examples? Sure. But how about programming in Java?
Very well. What is this: 5 A number. Java calls that an int.
What is this: 3 + 5 Java calls that an expression.
What’s the value of this expression? It’s different from
2—-3+5 2—(3+5)

Very good. What’s the value of Shouldn’t this work the same?

2/3%6 6x2/3
No, and that’s the whole point. Precisely.

2This problem also illustrates the notion of a named procedure—just like the solution to the previous puzzle (using a balanced
ternary system) can help bring up the topic of arithmetic with positional number systems. Solving the puzzles reveals even more.

Let’s move on. How do you calculate

3+5-2
First an 8 gets created. Where do we store it?
I don’t know, it hangs around So things can be built in stages:
int result = 3 + 5;
result = result - 2; // gives us 6
What’s result? A name. The name of a variable.
What is a variable? A location with a name (and a type).
What’s this? That’s a cupholder.?
class Pair {
int x;
int y;
}
Could be a Point2D. Or a Fraction.?
They look similar. They just behave differently.
How do you create a new cupholder? You say: new Pair()
How do you place the cups in? Easy. Start by giving it a name:

Pair a = new Pair();
a.x = 3;
a.y = 5;

Then use the name of the cupholder to place the in-
dividual cups.

3Did somebody say McDonald’s? (I didn’t think so.)
4Really?

I see...

You could have more than one cupholder.

Indeed.

And you’d be accessing them in the same way.

Like this:

Pair a, b;

a = new Pair();
b = new Pair();
a.x = 3;
a.y = 5;
b.x = 1;
b.y = -2;

Four: local, instance, static variables, and also pa-

rameters.

How many kinds of variables do we have in Java?

Cups are instance variables.

Do you understand this?

fly=2+1

T is a parameter.

Do you understand this?

_J 3 if z is even
@)= { 3z +1 otherwise

Ah! if statements.

Do you understand this?

1 ifz=1

fz) = { z+ f(z—1) otherwise

This one is a loop ... f(10) is 55.

How do you do this in Java?

Ask Alan Kay®.

Seriously. . .

57 The ability to start with an idea and see it through to a correct and efficient program is one prerequisite for a great software
designer. A second is to see the value of other people’s good programming ideas. In 1961 Kay worked on the problem of transporting
data files and procedures from one Air Force air training installation to another and discovered that some unknown programmer had
figured out a clever method of doing the job. The idea was to send the data bundled along with its procedures, so that a program at
the new installation could use the procedures directly, even without knowing the format of the data files. The idea that a program
could use procedures without knowing how the data was represented struck Kay as a good one. It formed the basis for his later

ideas about objects.” ([3], p. 41)

Easy. Turn the page.

Here’s sum as defined above.

int sum(int x) {
if (x == 1) return 1;
else return x + sum(x - 1);

}

Not bad...

Programming uses longer names.

Show me more.

Here’s a Fraction

class Fraction {
private int num, den;
Fraction(int num, int den) {
this.num = num;
this.den = den;
}

Fraction add(Fraction other) {

It knows how to add.

return new Fraction(this.num * other.den +
this.den * other.num,
this.den * other.den);

Wow. You lost me.

I thought so. Let’s back up...

To interact with a human user, a computer requires
so-called peripheral devices.

The computer transmits information to the user
through a display screen, loudspeakers, and printers.
The user can enter information and directions to the
computer by using a keyboard or a pointing device
such as a mouse.

Some program instructions will cause the computer
to place dots on the display screen or printer or to
vibrate the speaker.

As these actions happen many times over and at a
great speed, the human user will perceive images and
sound.

Some program instructions read user input from the
keyboard or mouse.

The program analyzes the nature of these inputs and
then executes the next appropriate instructions.

On the most basic level, computer instructions are
extremely primitive.

Java is a high-level programming language. In Java
the programmer expresses the idea behind the task
that needs to be performed in a language that re-
sembles both natural language (somewhat) and (to a
greater extent) mathematics.

Then, a special computer program, called a compiler
translates the higher-level description into machine
instructions (called bytecode) for the Java virtual ma-
chine.

Compilers are sophisticated programs.

Thanks to them programming languages are indepen-
dent of a specific computer architecture.

Still, they are human creations, and as such they fol-
low certain conventions. To ease the translation pro-
cess, those conventions are much stricter than they
are for human languages.

When you talk to another person, and you scramble
or omit a word or two, your conversation partner will
usually still understand what you have to say.

Compilers are less forgiving.

Just as there are many human languages, there are
many programming languages.

This provides a useful source of analogy. Let me ask
you this: which is the best language for describing
something? Say: a four-wheeled gas-driven vehicle.

We needn’t introduce democracy just at the level of
words. We can go down to the level of alphabets.

What, for example, is the best alphabet for English?
That is, why stick with our usual 26 letters?

Everything we can do with these, we can do with three
symbols — the Morse code, dot, dash, and space.

So we see that we can choose our basic set of elements
with a lot of freedom, and all this choice really affects
is the efficiency of our language, and hence the sizes of
our books; there is no “best” language or alphabet—
each is logically universal, and each can model any
other. Same with programming languages, and Java
is no exception.

Like C (another popular programming language), the
Java language arose from the ashes of a failing project.

In the case of Java, the situation was an anticipated
market that failed to materialize®.

The HotJava browser, which was shown to an enthusi-
astic crowd at the SunWorld exhibition in 1995, had
one unique property: It could download programs,
called applets, from the web and run them.

Applets let web developers provide a variety of an-
imation and interaction and can greatly extend the
capabilities of the web page. In 1996 both Netscape
and Microsoft supported Java in their browsers. Since
then Java has grown at a phenomenal rate.

Programmers have embraced the language because it
is simpler than its closest rival, C++. In addition
to the programming language itself, Java has a rich
library that makes it possible to write portable pro-
grams that can bypass proprietary operating systems.

At this time Java has already established itself as one
of the most important languages for general-purpose
programming as well as for computer science instruc-
tion.

Was Java designed for beginners?

SPerhaps we’ll tell you the story at some point.

10

Java is an industrial language. And because Java was
not specifically designed for students, no thought was
given to make it really simple to write basic programs.
A certain amount of technical machinery is necessary
in Java to write even the simplest programs.

To understand what this technical machinery does,
you need to know something about programming.

This is not a problem for a professional programmer
with prior experience in another programming lan-
guage, but not having a linear learning path is a draw-
back for the student.

As you learn how to program in Java, there will be
times when you will be asked to be satisfied with a
preliminary explanation and wait for complete details
in a later chapter.

Furthermore, you cannot hope to learn all of Java
in one semester. The Java language itself is relatively
simple, but Java contains a vast set of library packages
that are necessary to write useful programs. There
are packages for graphics, user interface design, cryp-
tography, networking, sound, database storage, and
many other purposes.

Even expert Java programmers do not know the con-
tents of all the package—they just use those that are
needed for particular projects.

Taking this class, you should expect to learn a good
deal about the Java language and about the most im-
portant packages.

Keep in mind though that the purpose of this course
is not to make you memorize Java minutiae, but to
teach you how to think about programming.

All right, let’s see a program written in Java.

public class Hello
{ public static void main(String[] args)

How about this one?

{ System.out.println("Hello, and welcome to A201!");

}
¥

What can it do?

It displays a simple greeting.

I’d like to see that.

You need to create a program file, compile it and then
run it.

Here’s the session in Unix:

frilled.cs.indiana.edu)pico Hello. java
frilled.cs.indiana.edu),javac Hello. java
frilled.cs.indiana.edu%java Hello
Hello, and welcome to A201!

frilled.cs.indiana.edu’,

What’s pico?

11

It’s a (very small) Unix editor. That’s how it all gets
started: you enter the program statements into a text
editor. The editor stores the text and gives it a name
such as Hello.java which you then compile.

Yes, with javac.

When you compile your program, the compiler trans-
lates the Java source code (that is the text, or state-
ments that you wrote) into so-called bytecode which
consists of virtual machine instructions and some
other pieces of information on how to load the pro-
gram into memory prior to execution.

The bytecode for a program is stored in a separate file
with extension .class for example the bytecode for
the program we wrote will be stored in Hello.class
and you should look for this file on your system after
compilation.

What’s frilled?

Just the prompt on the Unix machine we were on at
the time. On your computer it might be C:\> or some
such thing.

What’s next?

The Java bytecode file contains the translation of your
program in Java virtual machine terms. A Java inter-
preter loads the bytecode of the program you wrote,
starts your program, and loads the necessary library
bytecode files as they are required.

That’s.. . javal

Precisely.

Your programming activity centers around these
steps: you start in the editor, writing the source file.
Compile the program—Iook at the error messages. Go
back to the editor and fix the syntax errors. When
the compiler succeeds—run the executable file.

If you find an error, you try to debug your program to
find the cause of the error. Once you find the cause of
the error, you go back to the editor and try to fix it.
You compile and run again to see whether the error
has gone away.

If not, you go back to the editor.

You bet.

This is called the edit - compile - debug loop, and you
will spend a substantial amount of time in this loop
in the months and years to come.

Can you draw a picture of that?

Sure. I could draw a flowchart.

I thought so.

12

Problems and Pain

The inevitable fun()

Let’s take a look at some examples.

Examples of what?

Of what programming is like, of course.

Fine, just to eliminate any misunderstandings.

Exactly. Here’s Problem No. 1

Go for it.

Write down detailed rules for multiplication, then find
someone willing to help you. Hand the rules you wrote
to that person. Ask her (or him) to perform one or
two multiplications following the rules you wrote.

Ask the person to follow the rules ezactly, without
any innovations or implicit assumptions.

Can you give me an example of a multiplication?

Sure: 123 x 4578 is an example.

To make it even clearer, here’s a second problem.

Problem No. 2

Exactly.

Let’s jump right into it.

Very well: write down detailed rules for taking the
square root of a positive integer.

For example: /123

Or+8...

Or /184529985018352430759371 for that matter.

It should be a little bit harder to come up with the
rules in this case, or recall them

But that’s what makes the problem an even better
example than the previous one.

Yes, it’s easier to test your rules on people now.

Yes, because they’re not likely to take square roots on
a daily basis (the way one uses multiplication).

13

14

Throughout the book, I will suggest some problems
for you to play with. You might feel tempted to skip
them. If they’re too hard, fine. Some of them are
pretty difficult!

But you might skip them thinking that, well, they’ve
probably already been done by somebody else; so
what’s the point? Well, of course they’ve been done!
But so what? Do them for the fun of it. That’s how
to learn the knack of doing things when you have to
do them.

Let me give you an example. Suppose I wanted to add
up a series of numbers, 1+2+3+4+5+6+7+...
up to, say, 62. No doubt you know how to do it; but
when you play with this sort of problem as a kid, and
you haven’t been shown the answer...it’s fun trying
to figure out how to do it.

Then, as you go into adulthood, you develop a certain
confidence that you can discover things; but if they’ve
already been discovered, that shouldn’t bother you at
all. What one fool can do, so can another, and the fact
that some other fool beat you to it shouldn’t disturb
you: you should get a kick out of having discovered
something.

Most of the problems I give you in this book have
been worked over many times, and many ingenious
solutions have been devised for them.

But if you keep proving stuff that others have done,
getting confidence, increasing the complexities of your
solutions—for the fun of it—then one day you’ll turn
around and discover that nobody actually did that
one! And that’s the way to become a computer sci-
entist.

I don’t want to become a computer scientist. . .

You don’t say!

But I think I solved the square root problem.

Hot ziggity, how’d you do it!?

OK, let’s say we want to calculate v/5. I start with an
initial guess z¢ for v/5. I choose a positive number.

Fascinating. What do you do with it?

Well, chances are that zo # v/5, so I will use this
guess to produce a new and better guess z.

How do you do that?

Here’s the procedure. If 2y = /5 we’re done.

Sure. Even I could verify that.

If 2o # /5 then =z, is either (strictly) smaller or
greater than /5.

That much I agree with.

In the former case we have v/5z¢ < 5, that is,
5
Vi< —
Zo

for zq # 0.

On the other hand, if zq > /5, then

5
V5> =
Zo

15

Thus we have either
5
zo < Vb < —
Zo

or 5
—<\/5<.Z'0
Zo

So, if we take the average of zy and 5/x, namely

_1 +5
$1—2 To Zo

the resulting value will lie midway between zy and
5/x¢ and so will, hopefully, be a better approximation
to v/5 (although it might not).

So we use this value as our next “guess”.

Now you’re on to something.

Continuing, we form the successive averages

_ (.5
332—21'1 o

x—l a:+5
3_2 2 I

...and so on.

I got it.

Intuitively, the sequence of numbers xzg,z1,Z2,...
should eventually approach v/5.

Pretty neat. And a lot of fun.

Certainly. But pretty difficult too.

Life is difficult, too. Life is a series of problems.

What makes life difficult is that the process of con-
fronting and solving problems is a painful one.

Discipline is the basic set of tools that we require
to solve life’s problems, and these tools are basically
techniques of suffering: Means by which we experi-
ence the pain of problems in such a way as to work
them through and solve them successfully, learning
and growing in the process.

The tools of discipline are four: delaying of gratifica-
tion, acceptance of responsibility, dedication to truth,
and balancing.

What is balancing?

The exercise of discipline is not only a demanding
but also a complex task, requiring both flexibility and
judgment.

Courageous people must continually push themselves
to be completely honest, yet must also possess the ca-
pacity to withhold the whole truth when appropriate.

16

To be free people, we must assume total responsibility
for ourselves, but in doing so we must possess the
capacity to reject responsibility that is not truly ours.
To be organized and efficient, to live wisely, we must
daily delay gratification and keep an eye on the future;
yet to live joyously we must also possess the capacity,
when it is not destructive, to live in the present and
act spontaneously.

In other words, discipline itself must be disciplined.

Precisely. This kind of meta-discipline is what we
call balancing. It is the type of discipline required to
discipline discipline.

This is not hard; it is very hard.

But it is the kind of discipline that gives us flexibility.

Since you are taking A201, A597, or 1210, or simply
reading this book, it may be that you want, or need
to learn Java—or programming in general. Since this
is a first experience for you I deeply hope it will come
easy, but be prepared if it does not.

In fact it really won’t be easy at all, unless you ap-
proach it with patience, perseverence and determina-
tion.

If you treat it superficially it will be downright diffi-
cult from the beginning, and will continue to be that
way until the very end, no matter how much we’ll
try to make it easy or understandable or obvious or
intuitive or immediate or easy to grasp.

But you can help, and I am sure you will.

Because there is some risk involved, I wish you luck.

And because the act of entering programming as a be-
ginner and a non-major is basically an act of courage,
you have my admiration

The difficulty in learning programming has two clearly
identifiable components: % of it is of a very genuine

mathematical nature. The other half (3) is psycho-
logical. You’ll need to bridge the two.

That was from Yogi Berra, wasn’t it?

And don’t forget: whatever happens, you’re still sim-
ply the best! Should someone fail to see this evidence,
with patience prove it beyond any conceivable doubt.

“You can observe a lot by watching.”

Yogi Berra (who also said: “If the people don’t
want to come out to the ballpark, nobody’s
going to stop them”)

“Failures, repeated failures, are finger posts on the road to achievement.

One fails forward toward success.”

Charles F. Kettering (1876-1958, American Engineer, Inventor)

Getting Started

Edit, compile, run.
Our first laboratory experiments.
Our first Java programs.

In Lecture One I have shown you a videotape’.

7

That’s “Wallace and Gromit”?® isn’t it?.

Yes. We'll discuss some of it below.

I am sure we will get to that.

But first, I would like to give you a challenge.

What is it?

Can you write a program that produces this:

.8.
.888.
:88888.

€88888.
.8. ¢88888.
.88. “88888.

.87 ‘8. ‘88888.
.8? ‘8. “88888.
.888888888. ‘88888.
.8’ ‘8. 88888.

I don’t know, what do you think?

C O O 00 00 00 CO CO CO o

8888888880

8888 ‘88.
8888 ‘88
8888 ,88
8888. ,88°
8888888888

8888 ‘88.
8888 88
8888 ,88’
888888888P

Is it easy, or hard?

,08888880.
8888 ‘88.
,8 8888 ‘8.
88 8888
88 8888
88 8888
88 8888
‘8 8888 .8’
8888 ,88’
¢8888888P’

How do you do, Mr. Chinny Chin Chin?

You don’t need to write this program...

I don’t?

Just think whether you can write it or not (and how).

"It was a portion of the “The Wrong Trousers”.

8 An Aardman production.

Oh, then that’s easy!

17

18

Also compile and run this program. .. (as shown in lecture)

import java.awt.Color;

import java.awt.Container;

import java.awt.GridLayout;

import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JPanel;

import javax.swing.JSlider;

import javax.swing.SwingConstants;
import javax.swing.event.ChangeListener;
import javax.swing.event.ChangeEvent;

public class SliderTest
{
public static void main(String[] args)
{
SliderFrame frame = new SliderFrame();
frame.setTitle("SliderTest");
frame.show() ;
}
}

class SliderFrame extends JFrame
{
public SliderFrame()
{
final int DEFAULT_FRAME_WIDTH = 300;
final int DEFAULT_FRAME_HEIGHT = 300;
setSize (DEFAULT_FRAME_WIDTH, DEFAULT_FRAME_HEIGHT) ;
addWindowListener (new WindowCloser());
colorPanel = new JPanel();
ColorListener listener = new ColorListener();

redSlider = new JSlider(0, 100, 100);
redSlider.addChangelistener (listener) ;

greenSlider = new JSlider(0, 100, 70);
greenSlider.addChangelistener(listener) ;

blueSlider = new JSlider(0, 100, 100);
blueSlider.addChangeListener(listener);

JPanel southPanel = new JPanel();
southPanel.setLayout (new GridLayout (3, 2));
southPanel.add(new JLabel("Red", SwingConstants.RIGHT));

19

southPanel.add(redSlider) ;

southPanel.add(new JLabel ("Green", SwingConstants.RIGHT));
southPanel.add(greenSlider) ;

southPanel.add(new JLabel("Blue", SwingConstants.RIGHT));
southPanel .add(blueSlider) ;

Container contentPane = getContentPane();
contentPane.add(colorPanel, "Center");
contentPane.add (southPanel, "South");

setSampleColor();

}

public void setSampleColor ()

{
float
float

red = 0.01F * redSlider.getValue();
green = 0.01F * greenSlider.getValue();

float blue = 0.01F * blueSlider.getValue();

colorPanel.setBackground (new Color(red, green, blue));
colorPanel.repaint();

private
private
private
private

private

{

JPanel colorPanel;
JSlider redSlider;
JSlider greenSlider;
JSlider blueSlider;

class ColorListener implements Changelistener

public void stateChanged(ChangeEvent event)

{

setSampleColor();

}
}

private

{

class WindowCloser extends WindowAdapter

public void windowClosing(WindowEvent event)

{

System.exit (0);

}
}
}

What does it do?

It doesn’t matter. But you should have no problem And when you see it running you should feel happy
creating, compiling, and running it. about it (and I hope you will).

20

The goal for this semester’s work is to understand A second large program will be discussed, you can
thoroughly a program such as this®. work with it here!?.

And now write a program as described below. In your program:

1. Create a square room composed of 100 tiles (10 x 10, that is).

2. Create a Penguin, and add it to the room in the 8th line and 3rd column.
That means tile (7, 2) given our numbering convention.

So, please take some time to review the numbering convention now.

Now ask the penguin to turn around and move to tile (2, 2).

Then ask the penguin to turn right, then move to tile (2, 7).

Then make the penguin turn right, and have it move to tile (7, 7).

Now ask the penguin to move to tile (2, 7).

© N o ot e W

And finally have it return to (7, 2), passing through (2, 2).

What you will need is described below. Yes, let me do the next chapter.

Be my guest. Here is a snapshot.

EE Exercise for L... M =] E3

%http://www.cs.indiana.edu/classes/a201-dger/spr2001/labs/nine/alienU.html
mhttp ://www.cs.indiana.edu/classes/a348/t540/lectures/iceblox/iceblox.html

Your First Java Program

Visiting Karel the Robot.

What do we need to get started?

frilled.cs.indiana.edu%ls -1

total 28

—rw-——---- 1 dgerman
—rw-——-—-- 1 dgerman
—rW-————-- 1 dgerman
—rW-————-- 1 dgerman
—rW-————-- 1 dgerman
“rw--————-- 1 dgerman
—rw-—-———-- 1 dgerman
—rw-—-———-- 1 dgerman

frilled.cs.indiana.edu}

You need six files, one of which!! is a picture!2.

faculty
faculty
faculty
faculty
faculty
faculty
faculty
faculty

Take a look:

489
2376
1355

883
2261
4052
4011
9719

Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct

25
25
25
25
25
25
25
25

20:
22:
22:
20:
22:
22:
22:
20:

56
05
12
56
11
04
16
56

Actionlist. java
AppletFrame. java
Dance. java
NoFlickerApplet. java
One.java

Penguin. java

Rink. java
iceblox.gif

Let me explain each one in turn.

First, there is Rink, which is an applet.

No need to understand its inner workings now.

The only requirement is to understand how it’s used.

Then there’s Penguin!

3

Create two files, put the code in, and wait.

Then, there are three more ancillary files.

ActionList is every Penguin’s agenda.

NoFlickerApplet is a double-buffer.

These are all concepts we’ll learn inside out.

By the end of the semester, of course, not today.

Uhttp://www.cs.indiana.edu/classes/a348/CTED/moduleFour/lectures/iceblox/iceblox.gif
12Used by permission (courtesy Karl Hornell).

13Which is a Thread.

21

22

AppletFrame simply provides a context.

Essential, but not central for now.

Then there’s One. java which is the first example.

E? A Penguin:

And Dance. java which is the second.

Now:

1. can be created (and it will be facing south by default)

. can be added to a Rink at a certain location (you have to ask the rink for that, though)

2
3. can be asked to turn left, or right (regardless of the direction it’s facing)
4

. can be asked to move one cell forward (regardless of the direction it’s facing)

EE A Rink:

1. can be created (with the size (columns, rows) of your choice)

2. can hold one penguin at a time, added with add
3. adding a penguin to a rink is done by specifying

(a) the column (vertical slices), and

(b) the line (lines are horizontal rows in the rink) in that order, in the method add.

Note though that when the Rink shows, it labels the
cells by first printing the line, then the column, for
each one of its tiles.

The reason for which this numbering is also important
is due to it being the numbering used in 2 dimensional
arrays in Java (of the kind that we will encounter a
bit later).

Note that x and y still keep the meaning that they originally had:

1. x is the number of columns to the left, and

2. y is the number of lines above (to the top)

OK.

When we create the Rink, and when we add a Penguin
to it, we mention x first, and y next, almost as we do
in analytical geometry.

However when we refer to the table of cells that the
Rink is, we can also denote the cells in the array by
printing (y, x), that is, by specifying the line first,
and the column next. The point being that both no-
tations are well-established, and we need to be aware
of them both.

You should now write the program with no problems.

That’s what I was going to say. ..

23

Here’s Rink.

/*

It looks like a semester project to me.

<applet code="Rink.class" width=300 height=300>
<param name="columns" value= "10">

<param name="rows" value= "10">
<param name="penguin" value="yes">
<param name='"pengo_x" value= "1">
<param name='"pengo_y" value= "7">
</applet>

*/

import java.applet.*;

import java.awt.x;

import java.net.x*;

import java.awt.image.*;

import java.awt.event.x;

public class Rink extends NoFlickerApplet implements KeyListener {

int columns, rows;

Thread animation;

Image small[];

int cellWidth = 30, cellHeight = 30;
public Rink() { }

public Rink (int columns, int rows) {

}

this.columns = columns;
this.rows = rows;

int wide, tall;
public void init() {

if (columns == 0)
this.columns = Integer.parselnt(this.getParameter("columns"));
if (rows == 0)
this.rows = Integer.parselnt(this.getParameter("rows"));
this.wide = columns * cellWidth + cellWidth / 2;
this.tall = (1 + rows) * cellHeight + cellHeight / 2;
this.setSize(this.wide, this.tall);
String pictureURL = "http://www.cs.indiana.edu/classes/a348/CT" +
"ED/moduleFour/lectures/iceblox/iceblox.gif";
MediaTracker tracker = new MediaTracker (this);
Image collection;
try {
collection =
Toolkit.getDefaultToolkit () .getImage (new URL(pictureURL)) ;
} catch (Exception e) {
collection = Toolkit.getDefaultToolkit() .getImage("iceblox.gif");
}
tracker.addImage(collection, 0);
try {
tracker.waitForID(0);
} catch (InterruptedException e) { }
ImageProducer collectionProducer = collection.getSource();

24

int smalls = 48;

small = new Image[smalls];

int k =0, i =0, j =0;

ImageFilter filter;

while (k < smalls) {
filter = new CropImageFilter(j * 30, i * 30, 30, 30);
small[k] = createlImage(

new FilteredImageSource(
collectionProducer, filter));

tracker.addImage(small[k], 1);

k++; j++;
if (j ==8) {
j = 0; i++;
}
}
try {

tracker.waitForID(1);
} catch (InterruptedException e) { }
if (this.getParameter ("penguin").equals("yes")) {
this.add(new Penguin(),
Integer.parselnt(this.getParameter ("pengo_x")),
Integer.parselnt(this.getParameter ("pengo_y")));
}
this.addKeyListener (this);
}
int fontSize = 10; // in pixels
Font digitsFont = new Font("Serif", Font.PLAIN, fontSize);
Penguin skater;
void add(Penguin p, int x, int y) {
this.skater = p;
p-placeIn(this, x, y);
skater.start();
}
public void paint(Graphics g) {
((Graphics2D)g) .setFont (digitsFont) ;
g.setColor(Color.black) ;
g.fillRect(0, 0, columns * cellWidth, rows * cellHeight);
g.setColor(Color.gray) ;
for (int i = 0; i <= rows; i++) {
g.drawLine(0, i * cellHeight, columns * cellWidth, i * cellHeight);
}
for (int i = 0; i <= columns; i++) {
g.drawlLine(i * cellWidth, 0, i * cellWidth, rows * cellHeight);
}
g.drawRect (0, 0, cellWidth * columns, cellHeight * rows);
for (int j = 0; j < columns; j = j + 1)
for (int i = 0; i < rows; i++)
g.drawString(i + ", " + j,
j * cellWidth + 2, i * cellHeight + fontSize);
if (skater !'= null) {

25

int x skater.x,

y = skater.y;
g.setColor(Color.black) ;
g.fillRect(x, y, 31, 31);
skater.draw(g);

}

}
public void keyPressed(KeyEvent e) {

switch(e.getKeyCode()) {

case KeyEvent.VK_L: // left
// System.out.println("left");
skater.action.put("turnLeft");
break;

case KeyEvent.VK_F: // forward
// System.out.println("forward");
skater.action.put("moveForward") ;
break;

case KeyEvent.VK_R: // right
// System.out.println("right");
skater.action.put("turnRight");
break;

case KeyEvent.VK_B: // backwards
// System.out.println("back");
skater.action.put("backwards");
break;

}

}
public void keyReleased(KeyEvent e) { }

public void keyTyped(KeyEvent e) { }
}

Here’s Penguin in great detail. The second part of the semester project.

import java.awt.*;
public class Penguin extends Thread {
ActionList action;
public void run() {
while (true) {
perform(action.get());
}
}
private void _pause() {
try {
this.sleep(speed * 10);
} catch (InterruptedException e) { }
}
private void _think() {
try {
this.sleep(100);
} catch (InterruptedException e) { }

26

private void _turnLeft() {

_think();

if (direction.equals("south")) {
direction = "east"; look = 12;

} else if (direction.equals("east")) {
direction = "north"; look = 5;

} else if (direction.equals("north")) {
direction = "west"; look = 7;

} else {
direction = "south"; look = 2;

}

report();

}
private void _wave() {
for (int i = 0; i < 4; i++) {
_think(); look = 0; report();
_think(); look = 39; report();

}
_think(); look = 0; report();
}
private void _happy() {
_think();
if (direction.equals("south")) {
_wave(); _think(); look = 2; report();
} else if (direction.equals("east")) {
look = 2; _wave(); _think(); look = 12; report();
} else if (direction.equals("north")) {
look = 7; report(); _think();
look = 2; report(); _wave(); _think();
look = 7; report(); _think();
look = b5; report(); _think();
} else { // west
look = 2; report(); _wave();
look = 7; report(); _think();
}
}
private void _turnRight() {
_think();
if (direction.equals("south")) {
direction = "west"; look = 7;
} else if (direction.equals("east")) {
direction = "south"; look = 2;
} else if (direction.equals("north")) {
direction = "east"; look = 12;
} else {
direction = "north"; look = 5;
}
report();
}

void _moveForward() {

for (int i

27

0; i < 5; i++) {
_think();
if (direction.equals("south")) {

y += dy; look = animP[12 + (i + 1) % 4];
} else if (direction.equals("east")) {

X += dx; look = animP[4 + (i + 2) % 4];
} else if (direction.equals("north")) {

y -= dy; look = animP[8 + (i + 1) % 41;
} else { // west

x -= dx; look = animP[0 + i % 4];

}
report();
}
}
public void perform(String action) {
if (action.equals("turnLeft")) { this._turnLeft();
} else if (action.equals("turnRight")) { this._turnRight();
} else if (action.equals("moveForward")) { this._moveForward();
} else if (action.equals("backwards")) {
_turnLeft(); _turnLeft(); _moveForward(); _turnRight(); _turnRight();
} else if (action.equals("pause")) { this._pause();
} else if (action.equals("think")) { this._think();
} else if (action.equals("happy")) { this._happy();
} else System.out.println("Don’t understand " + action);
}
void turnRight() { action.put("turnRight"); }
void moveForward() { action.put("moveForward"); }
void wave() { action.put("wave"); }
void pause() { action.put("pause"); }
void think() { action.put("think"); }
void happy() { action.put("happy"); }
int animP[] = { 7, 8, 9, 8, // 1left (west)
10, 11, 12, 11, // right (east)
4, 5, 6, 5, // up (north)
1, 2, 3, 2 // down (south)
s

Rink location;

void placeIn(Rink placement, int x, int y)

}

this.location = placement;
frames this.location.small;
this.x = x * 30; this.y =y * 30;
this.report();

Image[] frames;

void report() { location.repaint(); }
int x, y, dx = 6, dy = 6, look = 2;
void draw(Graphics g) {

g.drawImage (frames[look], x, y, location);

X
int speed = 100;

28

Penguin() {
action = new ActionList();
this.speed = 100;

}
void turnlLeft() { action.put("turnLeft"); }
String direction = "south";
}
Don’t forget the agenda. How could I*4?

You’re right. ..

Perhaps we should say something about it. Such as?
This is a FIFO'® structure. YDS!61!
OMWOH!'". And it’s also synchronized. Amazing!

import java.util.x;
public class ActionList {
private Vector agenda;
public synchronized String get() {
while (agenda.size() == 0) {

try {
// wait for producer
wait();
} catch (InterruptedException e) { }
}
String value = (String) agenda.remove(0);
notifyAl1();

return value;

}

public synchronized void put(String value) {
agenda.addElement (value) ;
notifyAl1();

}

public ActionList() {
agenda = new Vector();

}

}

Next the double-buffer. And then the applet frame.

14Even if T wanted.
15Rirst-in, first-out.
16You don’t say!

170n my word of honor.

29

This one here is due to Calin Tenitchi. A very clever concept.

import java.awt.x;
import java.applet.*;
class NoFlickerApplet extends Applet {

private Image

offScreenImage;

private Graphics offScreenGraphics;

private Dimension offScreenSize;

public final void update(Graphics theGraphicsContext){
Dimension dim = this.getSize(); /* size() originally... */
if((offScreenImage == null) ||

}

(dim.

(dim.

this.

this.

this.
}

width != offScreenSize.width) |

height != offScreenSize.height)) {

offScreenImage = this.createImage(dim.width, dim.height);
offScreenSize = dim;

offScreenGraphics = this.offScreenImage.getGraphics();

this.offScreenGraphics.clearRect (0,

0,
this.offScreenSize.width,
this.offScreenSize.height) ;

this.paint (offScreenGraphics);
theGraphicsContext.drawImage (this.offScreenImage,

0,
0,
null);

Next one is due to Gary Cornell and Cay Horstmann. A little-used'® trick.

Indeed, as you will see it will provide a lot of flexibility. I certainly hope so.

import
import
import
import
import
import
public

java.awt.*;
Java.net.x*;

java.awt.event.*;

java.applet.*;

java.util.*;

java.io.*

3

class AppletFrame extends Frame implements AppletStub,

AppletContext,
WindowListener {

AppletFrame (Applet a) {
setTitle(a.getClass() .getName());
add("Center", a);
a.setStub(this);

18 And yet again very refreshing.

30

a.init();

a.start();

setSize(((Rink)a).wide, ((Rink)a).tall); // note the casting
show() ;

this.addWindowListener (this);

}

// AppletStub methods

public
public
public
public

if

boolean isActive() { return true; }
URL getDocumentBase() { return null; }
URL getCodeBase() { return null; }
String getParameter (String name) {
(name.equals("columns")) return "10";

else if (name.equals("rows")) return "10";

else if (name.equals("penguin")) return "no"; // could be yes
else if (name.equals("pengo_x")) return "1"; // don’t matter...
else if (name.equals("pengo_y")) return "7";

else return "";

}
public
public

AppletContext getAppletContext() { return this; }
void appletResize(int width, int height) { }

// AppletContext methods

public
public
public
public
public
public
public
public

public
public

AudioClip getAudioClip(URL url) { return null; }
Image getImage(URL url) { return null; }
Applet getApplet(String name) { return null; }
Enumeration getApplets() { return null; }
void showDocument (URL url) { }
void showDocument (URL url, String target) { }
void showStatus(String status) { }
void setStream(String key,

InputStream stream) throws IOException { }
InputStream getStream(String key) { return null;
Iterator getStreamKeys() { return null; }

// WindowListener methods

public
public
public
public
public
public
public
}

void windowActivated(WindowEvent e) { }

void windowClosed(WindowEvent e) { }

void windowClosing(WindowEvent e) { System.exit(0); 2}
void windowDeactivated(WindowEvent e) { }

void windowDeiconified(WindowEvent e) { }

void windowIconified(WindowEvent e) { }

void windowOpened(WindowEvent e) { }

With this we can

write our first two programs. The first one, is presented below.

Remember: if you have the five plus one files listed One such program is listed here.
above, you’re ready to write new programs.

What does it do?

It asks Pixel Pete to move around.

31

import
import
import
import
import
import

public

java.
java.
java.
java.
java.
java.

awt.*;
net.x*;
awt.event.*;
applet.*;
util. *;
io.*;

class One {

public static void main(String[] args) {

new Rink(10, // number of columns
10); // number of rows

Rink ballroom =

/* Note the Rink created is called ’ballroom’. We’ll
have to use this name to refer to it thereafter.x/

new AppletFrame(ballroom); // ask me why you need this...
Penguin p =

new Penguin(); // create a Penguin, call it
// ... ’p’ (what’s in a name?)

ballroom.add(p, 1, 7); // add the Penguin to our Rink, in
// column 1 and line 7 (and remember our numbering scheme)

p.pause(); p.turnLeft(); // control the Penguin
/* Remember ’The Wrong Trousers’ (the video)? x/

.moveForward() ;
.moveForward() ;
.moveForward () ;
.happy O ;
.moveForward () ;
.moveForward () ;
.moveForward() ;
.pause();
.turnLeft();
.pause() ;

heBL Bl B Be BB oBlo BB el

// commands are issued in sequence

.moveForward() ; p.moveForward();
p-moveForward(); p.moveForward();

lae)

p-turnLeft(); p.pause();

p-moveForward(); p.moveForward();
p-moveForward(); p.moveForward();

p.turnLeft(); p.pause();

p.moveForward(); p.happy();
p.moveForward(); p.pause();

p.moveForward(); p.happyQ;
p.moveForward(); p.pause();

32

p.moveForward() ; p.moveForward(); p.moveForward(); p.happyQ) ;
p-moveForward(); p.moveForward(); p.moveForward(); p.pause(); p.turnleft();
p-pause(); p.moveForward(); p.turnRight(); p.moveForward(); p.turnLeft(); p.
moveForward(); p.moveForward(); p.turnLeft(); p.turnLeft(); p.moveForward();
p-moveForward(); p.turnLeft(); p.turnLeft(); p.moveForward(); p.moveForward();
p-turnLeft(); p.turnLeft(); p.moveForward(); p.moveForward(); p.turnLeft();
p-turnLeft(); p.moveForward(); p.moveForward(); p.turnlLeft(); p.turnlLeft();
/* Can you still say you know where the Penguin is right now?
Remember that not only the computer reads your programs!
Write your programs as if they were essays.
Make your code crystal clear.

*/

p.moveForward () ;
p.moveForward () ;

p-turnLeft();

p-happy O ;

}

Here’s the second one. Called Dance. java it’s a bit shorter.

class Dance {
public static void main(String[] args) {

Rink ballroom = new Rink(6, 6);
new AppletFrame(ballroom); // again, ask me why you need this...
Penguin p = new Penguin();

ballroom.add(p, 1, 4);

p-pause();

p-turnLeft();

p-turnLeft(); p.moveForward(); // go left
p-turnRight(); p.moveForward(); // go right
p-turnLeft(); p.moveForward(); // go left
p.turnRight(); p.moveForward(); // go right
p-turnLeft(); p.moveForward(); // go left

p.turnRight(); p.moveForward(); // go right

// now stop, rotate once, stay some more
p.pause(); p.turnRight(); p.pause();

// come south three tiles

p.moveForward() ; p.moveForward(); p.moveForward();
// stop and catch your breath

p-pause();

// pirouette

p.turnLeft(); p-turnLeft(); p-turnLeft(); p.turnleft();
// stop, for applause

p-pause();

// another pirouette, followed by immediate movement west
p.turnRight(O; p.turnRight(); p.turnRight(); p.turnRight();
p-turnRight(); p.moveForward(); p.moveForward(); p.moveForward();
// stop

p-pause();

// turn left, then stop

p-turnLeft();

p-pause();
// one final pirouette, after which just thank the audience
p-turnLeft(); p.turnLeft(); p.turnLeft(); p.turnleft();

p-happy Q) ;
// Don’t worry(), be happy().

33

Algorithms

Algorithms.
Programs.
Mechanics of implementation in Java.

Before we look at the mechanics of implementing com-
putations let us consider the planning process that
precedes the implementation.

If you can’t give instructions for someone to solve a
problem by hand, there is no way the computer can
magically solve the problem.

The computer can only do what you do by hand. It
just does it faster, and it doesn’t get bored or ex-
hausted.

I’d like to see an example.

OK, let’s consider the following investment problem:

You put $10,000 into a bank account that earns 5% interest per year. Interest is compounded
annually. How many years does it take for the account balance to be double the original?

One could solve this problem by hand.

Sure, let’s do that. After the first year you earn $500
(5% of $10,000). The interest gets added to your bank
account and your balance becomes $10,500.00. Next
year, the interest is $525 (5% of $10, 500)...

...and your balance is $11,025.

You can keep going that way and build a table: Very good!
Year Balance
0 | $10,000.00 = $10,000.00
1 | $10,000.00 + 0.05 x $10,000 = $10, 500.00
2 | $10,500.00 + 0.05 x $10,500.00 = | $11,025.00
3| $11,025.00 + 0.05 x $11,025.00 = | $11,576.25
4 | $11,576.25+ 0.05 x $11,576.25 = | $12,155.06

35

36

You keep going until the balance goes over $20,000.00
and when it does. ..

... which it does (doesn’t it?!). ..

...you look into the “Year” column and you have the
answer. Of course, carrying out this computation is
intensely boring.

Yes, but the fact that a computation is boring or te-
dious is irrelevant to a computer. Computers are very
good at carrying out repetitive calculations quickly
and flawlessly.

What is important to the computer is the existence of
a systematic approach for finding the solution. The
answer can be found just by following a series of steps
that involves no guesswork.

Step 1 Start with the table

Here’s such a series of steps:

Year

Balance

0 | $10,000.00 = | $10,000.00

Step 2 Repeat steps 2a, 2b, 2¢ while the balance is less than $20,000.00

Step 2a Add a new row to the table.

Step 2b In column 1 of the new row, labeled “Year”, put one more than

the preceding year value.

Step 2c In column 2 of the new row, labeled “Balance”, place the value
of the preceding balance value, multiplied by 1.05 = (1 + 5%)

Step 3 Read the last number in the year column and report it as the number
of years required to double the investment.

Of course, these steps are not yet in a language that
a computer can understand, but you will learn soon
how to formulate them in Java.

Is this collection of steps an algorithm?

Yes, because the description is unambigous. . .

There are precise instructions what to do in every step
and where to go next. There is no room for guesswork
or creativity.

...executable, and terminating.

Because each step can be carried out in practice,
and the computation can be shown to come to an
end: with every step, the balance goes up by at least
$500.00, so eventually it must reach $20,000.00

37

Now we start looking at the mechanics of implement-
ing computations in Java.

public class Hello

{ public static void main(String[] args)
{ System.out.println("Hello, World!");
}

}

Let’s analyze our first program.

You know that you should make a new program file
and call it Hello. java, enter the program instruc-
tions, then compile and run the program.

That’s clear, the contents is more intriguing.

It is composed of words and symbols separated by
spaces.

The words and symbols are important and atomic:
they’re like words and symbols in an English sentence.
Bring me a glass of water!

Yes, but it’s a lot stricter. Java is case-sensitive. You
must enter upper- and lowercase letters exactly as
they appear in the program listing.

On the other hand Java has free-form layout. Spaces
and line breaks are not important, except to separate
words.

However, good taste dictates that you lay out your
programs in readable fashion, so you should follow
the layout in the program listing.

Now that we’ve seen the program, it’s time to under-
stand its makeup.

The | part boxes | introduces a class,

public class Hello‘

I[public static void main(String[] args) {
System.out.println("Hello, World!");

}

...called Hello.

In Java, classes are the central organizing mechanism
for code. You can’t do anything in Java without defin-
ing at least a class.

That is why we introduce the Hello class

... as the holder of the main method.

Java, like most programming languages, requires that
all program statements be placed inside methods.

A method is a collection of programming instructions
that describe how to carry out a particular task.

38

The part in further defines the main method.

public class Hello

{ ‘public static void main(String[] args) {

System.out.println("Hello, World!");

}

Every Java application must have a main method.

Most Java programs contain other methods beside
main, but it will take us a while to learn how to write
other methods. For the time being, simply put all in-
structions that you want to have executed inside the
main method of a class.

public class Hello
{ public static void main(String[] args) {
System.out.println("Hello, World!");

}
¥

I have them all | boxed]. (There’s only one, here).

The instructions or statements in the body of the
main method (that is, the statements inside the curly
braces { }) are executed one by one. Note that each
statement ends in a semicolon (;).

System.out.println("Hello, World!");

Yes, but it, too, has a structure.

Our method has a single statement:

The statement is supposed to print a line of text. I
presume the text is enclosed by double quotes (").

Yes, a sequence of characters in quotation marks is
called a string. You must enclose the contents of the
string inside quotation marks so that the compiler
considers them plain text and does not try to interpret
them as program instructions.

To print the text you call a method println as if
you’d call Papa John’s for a large pizza. But which
Papa John’s? You need to precisely locate it. Sup-
pose you say: the one on 3rd Street. But which 3rd:
most towns have a 3rd Street. So you need to add
Bloomington, and then IN.

39

All of this is apparent in their telephone number:

812 323 PAPA
System | out | println

From this analogy it looks like System contains out
which contains println?

Yes, we call the println method that is part of the So that’s what the parentheses are for...
out object, that is part of the System class, and we
pass it the string that we wanted printed.

Yes, in fact that’s how we tell that out is merely data, Why is System uppercased and out lowercased?
and not a method: method names are always followed
by a pair of parentheses.

This is only a convention, that object variables (or So let’s summarize: designers of the Java libraries

names) start with a lowercase letter, while classes defined a System class in which they’ve put useful

names should start with an upper case. Using this objects and methods. One of these objects is called

convention is strongly encouraged, as part of the style out and it lets you access the terminal window (also

guide. called the standard output). To use the out object in
the System class you must refer to it as System. out;
it has a method inside it, by the name of println
which we can use, and so we do.

That’s correct. Asking the computer to execute a method is also
known as calling or invoking the method.

When we call a method we can pass it information in In this case we pass one string.
between parentheses. If we pass no information there
will be an empty pair of parentheses.

Have you looked at the exercises yet? What for?

How would you print Hello, "World"! ? You need to escape the quotation marks inside the
string with a backslash (\), like that:

public class Hello
{ public static void main(String[] args) {

System.out.println("Hello, orld 1");

}
}

It becomes harder to read, but it’s also more precise. The computer won’t mistake any of the two escaped
double quotes as being the end of the string.

40

What other escape sequences are there?

Let’s mention a couple...

Since the backslash character is used as an escape
character, it needs to be escaped itself, if we need it in
output. Another escape sequence used ocasionally is
\n which is the same as new line or line feed character.

Are there any other things that we could pass to
println for printing?

Yes, for example arithmetic expressions.

Yes. What’s the asterisk (*) for?

Such as:

3+4
(2.5 -1) / 4
(83+4) x (2 -5)

It’s for multiplication, and / for division.

Very good. You could even ”add” strings by listing
them with a + between them. println will actually
concatenate them (or string them together).

OK, maybe I won’t do that right away. What’s the
difference between println and print?

The out object contains a second method called
print. You can see the difference between the two
methods if you consider the following program:

public class Test
{ public static void main(String[] args)
{ System.out.println("Hello, ");
System.out.println("World! ");
}
}

What does it do?

The println method prints a string or a number and
then starts a new line. The print method does the
same printing, without starting a new line afterwards.

public class Test
{ public static void main(String[] args)
{ System.out.print("Hello, \n");
System.out.print("World! \n");
}
}

I see... putting all of the things we’ve learned together
I could write the same program as follows:

Yes, and in fact in many other ways.

I won’t count how many...

Simple Programs

Objects and classes, reference types, symbolic names, variables declaration

and their initialization through assignment.

Objects and classes are central concepts for Java pro-
gramming.

It might take you some time to master these concepts
fully, but since every Java program uses at least a
couple of objects and classes, it is a good idea to have
a basic understanding of these concepts right away.

An object is an entity that you can manipulate in your
program, generally by calling methods.

You should think of an object as a “black box” with
a public interface—the methods you can call, and a
hidden implementation—the code and data that are
necessary to make these methods work.

Different objects support different sets of methods (in
general).

OK, enough of that, let’s see some examples. Have
we seen any object yet?

System.out

What methods does it have?

println and print

Yes, and we call them by identifying the object, fol-
lowed by the name of the method, and then by paren-
theses.

Yes, don’t you ever forget the parentheses.

Good. What other objects have we seen?

None that I know of.

Exactly. You’ve seen one but you didn’t know it was
an object.

"Hello, World!"

Indeed. It is a String object (its type).

Does every object have a type?

Yes.

41

42

Then what type does System.out have?

PrintStream and its class is defined in the package
java.io. But this shouldn’t tell you too much just
yet. (Full name is java.io.PrintStream.)

Nor could I have answered this question by myself
with what we know so far.

Although you could have looked it up in the online
documentation as part of class System.

http://java.sun.com/products/jdk/1.2/docs/api/java/lang/System.html#out
http://java.sun.com/products/jdk/1.2/docs/api/java/lang/System.html
http://java.sun.com/products/jdk/1.2/docs/api/overview—tree.html

...which is defined in the package java.lang (and
there are so many other packages besides it).

Let’s go back to "Hello, World!".

What methods does it have?

No println or print, I don’t think...

To find out what methods it supports we need to look
up its class (String) into the on-line documentation.

Of all the methods it has, we choose to take a look at
the length() method.

http://java.sun.com/products/jdk/1.2/docs/api/java/lang/String.html

For any object of type String the length method
counts and returns (reports) the number of characters
in the string.

So "Hello, World!".length() evaluates to 13

...as the quotation marks are not counted.

I’d like to see that.

Very well, then try this:

System.out.println("Hello, World!".length());

How does this work?

Same as before, only more work is to be done before
println can output its argument.

OK, let’s move on. Without classes there would be
no objects. Let’s take a look at classes.

A class is a holding place (or a container) for static
methods and objects.

That’s old news: the Hello class holds the static main
method. The System class holds the static out object.

A class is also a factory for objects. It contains the
blueprint of all objects of that kind, and can be used
to generate new objects.

I’d like to see that.

To see how a class can be an object factory, let us turn
to another class: the Rectangle class in the Java class
library.

Objects of type Rectangle describe rectangular
shapes.

43

This is where you can read about Rectangles.

http://java.sun.com/products/jdk/1.2/docs/api/java/awt/Rectangle.html

Great—that’s off the same URL you gave me earlier.

Note that a Rectangle object isn’t a rectangular
shape—it is just a set of numbers that describe the
rectangle. Each rectangle is described by the z and y
coordinates of its top left corner, its width and height.

I think I'd like to see a picture of that.

We need to work an example first. You can make
a new rectangle with top left corner at (5, 10) and
with a width of 20 and height 30. To make a new
rectangle you need to specify these four values, and
in that order.

new Rectangle(5, 10, 20, 30)

The new operator causes the creation of an object of
type Rectangle. The process of creating a new object
is called construction. The four values 5, 10, 20, 30
are called the construction parameters.

What does the new object look like?

L Rectangle J

What’s the rectangular shape that is described by this
Rectangle object?

Now you can draw your picture.

o ° x

10 -

20

Why did you draw the referential upside down?

Because that’s how it is in computer graphics.

To find the z you just measure how far you are from
the left margin of the screen.

To find out the y coordinate you measure how many
lines of pixels are there in between that point and the
top of the screen.

44

This is a side-effect of thinking that in English we
write from left to right, and from top to bottom

...S0 a character in a text message could be located
by the number of the column in which it appears (the
z coordinate) and the line in which it appears (the y
coordinate).

To construct any object, you do the following;:
1. use the new operator

2. give the name of the class

3. supply construction parameters (if any) inside parentheses

Different classes will require different construction pa-
rameters, and some classes will let you construct ob-
jects in multiple ways.

For example, you can also obtain a Rectangle object
by supplying no construction parameters at all:

new Rectangle();

But you must still use the parentheses. This con-
structs a (rather useless) rectangle with top left corner
at the origin (0, 0), width 0 and height 0.

How do I know that?

You have to read up the documentation see what the
designers of the class had in mind for it.

So it’s not something I could have deduced, or in-
ferred?

No.

What can you do with a Rectangle object?

What can you do with a number?

What number?

Say, "abc".length()

I could print it, to see if it comes out as 3 or not.

Can you print a Rectangle object?

I could try. Can it be printed?

You should try it.

I’d rather draw it.

We’ll learn that in a few chapters.

System.out.println(new Rectangle(5, 10, 20,

OK, how about this:

30));

How does it work?

The code creates an object of type Rectangle then
passes the object to the println method, and finally
forgets that object.

45

To remember an object give it a name; hold it in an
object variable.

An object variable is a storage location that stores not
the actual object but information about the object’s
location.

Can you give it any name?

Variable names in Java can start with a letter, an
underscore (_), or a dollar sign ($). They cannot start
with a number. After the first character, your variable
names can include any letter or number.

Once you decide on a name for a variable, to declare
it you need to place the name of the class in front of
it, followed by the variable name, and a semicolon (;)
at the end.

Like this?

Rectangle a;

Yes. This is a declaration statement. It says that the
name a will be used for a variable that will hold the
address to a Rectangle object.

So far, the variable does not refer to any object at
all. To make it refer to an actual object you could
copy in it the address of an actual object reference,
as returned by new:

Rectangle a = new Rectangle(5, 10, 20, 30);}

It is very important that you remember that a does
not contain the object. It contains the address of the
object (and refers to this object).

[/

Rectangle_]

I have a picture for that:

Very good.

I think I got the hang of it.

46

You could have two object variables refer to the same
object.

Like this?

Rectangle b = a;

Yes. The equal sign (=) acts more like an arrow from
right to left, as it represents the copying of the value
on the left into the location that the right hand side
denotes.

So the value on the right, which is the contents of the
variable a (an address) is copied into the location that
b denotes.

b has just been declared. And at the time of its decla-
ration (and also allocation) we copy in it the address
of the anonymous object that a points to.

May I draw a picture of that?

Definitely.

(Fectangle]

Now how does the picture change if we add

Rectangle ¢ = new Rectangle(5, 10, 20, 30);

A new object will come into the picture, and its ad-
dress will be stored in the variable with the name c.

Isn’t it identical to the object pointed to by a and b?

Yes, it’s like a twin. Identical but not the same.

Let me see it.

There you go.

(Rectanglej

What else can you do with Rectangle objects?

47

[RectangleJ

The Rectangle class has over 50 methods, some use-
ful, some less so.

To give you a flavor of manipulating Rectangles, let
us look at a method of the Rectangle class.

The translate method moves a rectangle by a cer-
tain distance in the x and y directions.

For example

a.translate(15, 25);

... moves the rectangle by 15 units in the z direction
and 25 units in the y direction.

48

Moving a rectangle doesn’t change its width or height,
but it changes the coordinates of the top left corner.

Can I see that?

Let’s write a program and test it. As with the Hello
program, we need to carry out three steps:

1. Invent a new class, say RectangleTest
2. Supply a main method
3. Place instructions inside the main method

Correct. Let’s see the program.

How about this one:

public class RectangleTest
{ public static void main(String[] args)
{ Rectangle a = new Rectangle(5, 10, 20, 30);
System.out.println(a);
a.translate(15, 25);
System.out.println(a);
}
}

It would work well, but

...if you try to compile it you will run into an error.

frilled.cs.indiana.edujpico RectangleTest. java
frilled.cs.indiana.edu%javac RectangleTest.java
RectangleTest.javakS: ‘Class Rectangle not found.‘

new Rectangle(5, 10, 20, 30);

{ Rectangle a

RectangleTest.java:3: Class Rectangle not found.
{ Rectangle a = new Rectangle(5, 10, 20, 30);

2 errors
frilled.cs.indiana.edu’

Does it always come out in boxes?

Not really. But the point here is that for this program
there is an additional step that you need to carry
out: you need to import the Rectangle class from
a package

... which is a collection of classes with a related pur-
pose. All classes in the standard library are con-
tained in packages. The Rectangle class belongs to
the package java.awt. Thus the full name of the
Rectangle class is really java.awt.Rectangle.

The abbreviation awt stands for ” Abstract Window-
ing Toolkit”. To use Rectangle from the java.awt
package simply place the following

import java.awt.Rectangle;

...at the top of your program.

49

You never need to import classes from the java.lang
package. All classes from this package are automati-
cally imported.

That’s why we can use the String and System classes
without ever needing to import them.

Ready for one final question?

Certainly.

What’s the output of the following snippet of code?

Rectangle a =
Rectangle b = a;
a.translate(10, 10);
b.translate(10, 10);
System.out.println(a);

new Rectangle(5, 10, 20, 30);

Easy: a and b both point to the same object. We
basically translate it twice, once by using its a name
and once by using its b name.

In the end printing a or b is the same.

You will see the original rectangle that has been trans-
lated twice.

So the top left corner is now at (25, 30) but the width
and height are unchanged.

Good. Can we move on now?

We sure can.

Great. I think it was about time.

50

import java.io.*; // I/0 package needed

public class ConsoleReader {
public ConsoleReader (InputStream inStream) { // constructor
reader = new BufferedReader(
new InputStreamReader (
inStream));
}
public String readLine() { // instance method
String inputLine = "";
try {
inputLine = reader.readLine();
} catch (IOException e) {
System.out.println(e);
System.exit(1);
}
return inputLine;
}
public int readInt() { // instance method
String inputString = readLine();
int n = Integer.parselnt(inputString);
return n;
}
public double readDouble() { // instance method
String inputString = readLine();
double x = Double.parseDouble (inputString) ;
return Xx;
}

private BufferedReader reader; // instance method

Types and 1/0

Numbers. Strings.
Reading input with ConsoleReader.
ConsoleReader revealed.

What’s 237

A number. An integer.

Java calls that an int.

Most of the times.

What’s 3.57

A number with a decimal part.

Java calls that a floating-point number.

I see. Isn’t there a keyword for that, like int?

There are two of them: double and float.

In Java there are two kinds of numbers: integers and
floating point numbers.

Integers have no fractional part.

And floating point numbers, which have a decimal
point and therefore a fractional part.

So 2.0 is a floating-point number

... while 2 is an integer.

The second one does not have any fractional part,
while the first one’s is zero.

Not missing, but zero.

In practice this can make a big difference.

There are two reasons for having separate types for
numbers: one philosophical and one pragmatic.

The philosophy is to use whole numbers when you
can’t have or don’t need a fractional part.

It is generally a good idea to choose programming
solutions that document one’s intentions.

Pragmatically speaking, integers are more efficient
than floating-point numbers.

They take less storage and are processed faster.

51

52

How do you use int, double, float in practice?

Like Rectangle they’re types.

Unlike objects of type Rectangle numbers are not
objects.

Yes, Rectangle is a reference type. int, double,
float (and 5 other) are primitive types.

So we can declare a variable of type int?

Yes. It’s like in algebra, except names have types in
Java.

In Java each variable has a type.

By defining

int a;

you proclaim that a can hold only integer values.

Even though initialization is optional, it is a good idea
always to initialize variables with a specific value.

You should always supply an initial value for every
variable at the time you define it.

So I could, for example, write:

int a = 3;

Could you have written

int a = 3.5;

instead?

No that is a contradiction in terms. I would have
broken my own rule of proclaiming that a won’t need
a fractional part.

Can we write

double b = 3.4;

Yes, but how about:

double b = 3;

That would work well, since there’s no loss of infor-
mation. Seeing the missing fractional part of 3 Java
will initialize b with 3.0

Symbolic names like a and b are meant to make the
program more readable and manageable. Keep in
mind, however, that you can only declare and ini-
tialize a symbolic name just once in every method.

Why is it good to initialize variables as soon as we
define them?

So that we don’t forget to initialize them at all.

If you try to use an uninitialized variable the compiler
will notice and complain.

All but the simplest programs use variables to store
values. Variables are locations in memory that can
hold values of a particular type.

53

They’re called variables because once you store a
value in them you can change it later at will.

I’d like to see that.

Very well, take a look:

int a = b;
a=7;
System.out.println(a);

That prints 7 and it works as follows:

// a is declared and initialized to 5,
// but later the value 7 is assigned to it.

Yes, that was an example of an assignment statement.

Can I see others?

Yes. Here’s a more complicated scenario:

int a = 5;
int b = a + 5;
System.out.println(b) ;

This prints 10

// as what’s being stored in b is the value of a plus 5.

So a symbolic name acts as a storage location (or
address) on the left hand side of the equals sign (which
is used for assignment statements)

... while when it appears on the right hand side it is
replaced by its value.

Can one name appear on both sides of an assignment?

Show me an example.

Here’s a scenario:

int a =

By the rule you formulated, that should print 20.

10; a = a + 10; System.out.println(a);

Yes, since the expression on the right is evaluated
first, then the resulting value is stored in the loca-
tion named a.

What other expressions can we use?

All of arithmetic, if you refer to numbers.

However, in general, when you make an assignment
of an expression into a variable, the expression on the
right, . ..

... which can contain method invocations, ...

...is first evaluated, and the resulting value has to be
of a compatible type with the type of the variable.

OK, I will try to remember that.

Let’s work some more examples.

Here’s a challenge first. Given:

int x, y; x = 5; y = 3;

...how do you swap the values of x and y?

Easy.

I need a third (temporary) location:

54

Is there another way?

What do you mean?

Supose you can’t use another variable.

Yet x and y are numbers?

Yes.

Well done!

Then it’s trickier, but fancier:

int x = 5, y = 3;
X =X +7y;
y=x-5y;
X=X-YF

I know. Isn’t that nice?

Why is this legal?

int a = 3;
double b = a;

Let’s work out some more examples.

Because b becomes 3.0, so we acknowledge the lack of
fractional part of a by writing a 0 (zero) for it in b.

Is this legal?

double b
int a = b;

3.5;

No, because a doesn’t have any room for a fractional
part (0.5) in it.

Can we just ignore that, the fractional part?

You can, but Java won’t do that for you unless you
specifically request it.

How do I do that?

This has the effect of discarding the fractional part.

You cast the floating point value to an integer:

double b = 3.5;
int a = (int) b;

What is (int)?

55

It is the cast to an int operator. It acts like the unary
minus sign. For example, the expression

-5 + 3

.. which yields -2,

and

-(5 + 3)

.. which yields -8,

...is the same as the difference between

(int)3.6 + 3.6

.. which yields 6.6,

..and

(int) (3.6 + 3.6)

.. which yields 7.

There is a good reason why you must use a cast in
Java when you convert a floating point number to an
integer: The conversion loses information.

You must confirm that you agree to that information
loss. Java is quite strict about this. You must use a
cast whenever there is the possibility of information
loss.

A cast is always of the form

(typename)

for example (int) or (double).

There are a few methods in class Math that have a
related functionality.

Math.round(3.7)

evaluates to... 4
Math.round(-3.7)

evaluates to. .. -4
Math.round(3.2)

evaluates to. .. 3

Math.round (x) evaluates to the closest integer to x
(represented as a long).

What’s long?

Another kind of integer. We’ll talk about it before
too long.

OK. Hit me with more Math

56

Math.ceil(3.7) evaluates to... 4.0
Math.ceil (-3.7) evaluates to... -3.0
Math.ceil(3.2) evaluates to... 4.0

Math.ceil(x) evaluates to the smallest integer
greater or equal to x (as a double).

ceil is short for “ceiling”. There is also a mathemat-
ical “floor” function.

Math.floor (3.7) evaluates to... 3.0
Math.floor (-3.7) evaluates to... -4.0
Math.floor (3.2) evaluates to... 3.0

Math.floor evaluates to the largest integer less than
or equal to x (as a double).

Math is a class that is defined in the java.lang pack-
age.

The Math class groups together the definitions of sev-
eral useful mathematical methods such as: sqrt, pow,
sin, cos, exp, log, abs, round, ceil, floor

...and many others. All these methods are static
(or class) methods (unlike print and println of the
System.out object). They belong to the class Math.

Beginners (or uninitiated) might think that in

Math.round(3.7)

the round method is applied to an object called Math,
because precedes round

...just as precedes print. That’s not

true. Math is a class, not an object.

A method such as Math.round that does not operate
on any object is known as a static method; another
example is main.

Static methods do not operate on objects, but they
are still defined inside classes, and you must specify
the class to which the round method belongs.

How can you tell whether Math is a class or an object.

You really can’t.

Then how do we know?

It is certainly useful to memorize the names of the
more important classes (such as System and Math).
You should also pay attention to capitalization.

All classes in the Java library start with an uppercase
letter (such as System).

Objects and methods start with a lowercase letter
(such as out and println).

57

You can tell objects and methods apart because
method calls are followed by parentheses.

Therefore

System.out.println()

denotes a call of the println method on the out ob-
ject inside the System class. On the other hand

Math.round(price)

denotes a call to the round method. ..

...inside the Math class. This use of upper- and low-
ercase letters is merely a convention, not a rule of the
Java language.

It is, however, a convention that the authors of the
Java class libraries follow consistently. You should do
the same in your programs.

You can use all four basic arithmetic operations in
Java: addition, subtraction, multiplication, and divi-
sion.

Parentheses are used just as in algebra: to indicate in
which order the subexpressions should be computed.

Just as in regular algebraic notation, multiplication
and division bind more strongly than addition and
subtraction.

So3 + 5 * 2 yields 13 while (3 + 5) * 2yields 16
as the parentheses come into play.

Division works as you would expect, as long as at
least one of the numbers involved is a floating-point
number.

However, if both numbers are integers, then the result

of the division is always an integer, with the remainder
discarded.

Here are some examples:

...evaluates to:

17 / 4 4
10 / 3 3
13/ 7 1
and 6 / 9 evaluates to... 0

If you're interested only in the remainder,

...you can use the % operator.

But for that we need to turn the page.

Exactly.

58

Here are some examples.

...evaluates to:

17 % 4 1
10 % 3 1
13 % 7 6
and 6 7 9 evaluates to... 6

The symbol % has no analog in algebra. It was cho-
sen because it looks similar to /, and the remainder
operation is related to division.

(a/b)*b+alb

Is it true that...

...is the same as a (for a and b positive integers)?

Yes. But can you prove it?

OK, let’s move on.

Whatis 16 / 5 * 5

15, since all operands are integers.

How about (16 / 5) * 5

Still 15, and in the same way.

What then is 5 * (16 / 5)

15 (multiplication is commutative).

OK, drop the parentheses: 5 * 16 / 5

The result is now 16 as we have to do the multiplica-
tion first.

What property requires this?

Left-to-right associativity.

Very good.

Let’s move on.

Next to numbers strings are the most important data
type that most programs use. A string is a sequence
of characters, such as "Hello"

In Java strings are enclosed in quotation marks, which
are not themselves part of the string.

59

You can declare variables that hold strings:

String name = "John";

Use assignment
name = "Carl";

...to place a different string into the variable.

The number of characters in a string is called the
length. For example, the length of "Hello!" is 6.

You can compute the length of a string with the
length method:

int n = name.length(Q);

That would place 4 in n.

For our example, yes.

By the way, a string of length 0 (zero), containing no
characters, is called the empty string

...and is written as "".

Also note that unlike numbers, strings are objects.

Rectangles were objects too. You can tell that
String is a class because it starts with an uppercase
letter. The basic types int and double start with a
lowercase letter.

Once you have a string, what can you do with it?

You can extract substrings, and you can glue smaller
strings together to form larger ones.

To extract a string use the substring operation.
s.substring(start, pastEnd)

returns a string that is made up of ...

...the characters in the string s starting at character
with index start, and containing all characters up to,
but not including, the character with index pastEnd.
Let’s see an example.

String a = "automaton";
String b = a.substring(2, 8);
// b is set to "tomato"

In Java there are two ways of writing comments.

We already know (and have used it above) that the
compiler ignores anything that you type between //
and the end of line.

The compiler also ignores any text between a /* and
x/. The // comment is easier to type if the comment
is only a single line long.

If you have a comment that is longer than a line or
two, then the /* ...*/ comment is simpler.

String c = "appearance";

String d = c.substring(2, 6);

So we could also have:

/* d is "pear" as the substring operation makes a string
that consists of four characters taken from string c */

A curious aspect of the substring operation is the
numbering of starting and ending positions.

Starting position 0 (zero) means ”start at the begin-
ning of the string”.

60

For technical reasons that used to be important but
are no longer relevant, Java string position numbers
start at 0 (zero).

The first position is labeled 0 (zero), the second one
is labeled 1 (one), and so on.

For example here are the position numbers

appearance
01234567883

in the "appearance" string.

The position number of the last character (a for the
"appearance" string) is always 1 less than the length
of the string.

How do you extract the substring "Bird" from

"Larry Bird, Indiana"
1 1
0123456789012345678

Count characters starting at 0, not 1. You find that
B, the 7th character, has position number 6. The first
character that you don’t want, a comma, is the char-
acter at position 10.

Therefore the appropriate substring command is

String m = "Larry Bird, Indiana";
String n = m.substring(6, 10);

It is curious that you must specify the position of the
first character that you do want and then the first
character that you don’t want.

There is one advantage to this setup. You can easily
compute the length of the substring: it is

pastEnd - start

If you omit the second parameter of the substring
method, then all characters from the starting position
to the end of the string are copied.

For example:

String u = "Larry Bird, Indiana";
String tail = u.substring(6);

...sets tail to the string

"Bird, Indiana"

This is equivalent to the call

String tail = u.substring(6, u.length());

I see.

Now that you know how to take strings apart, let us
see how to put them back together.

Given two strings, such as "India" and "napolis",
you can concatenate them to one long string.

String one = "India";
String two = "napolis";
String city = one + two;

The + operator concatenates two strings.

How do you get
"Larry Bird"

out of "Larry" and "Bird"?

IlLarryll + LU} + llBirdll

Very good, with a blank in the middle.

61

The concatenation operator in Java is very powerful.

If one of the expressions, either to the left or the right
of a + operator, is a string, then the other one is auto-
matically forced to become a string as well, and both
strings are concatenated.

For example:

.. evaluates to:

"Agent" + 7 "AgentT7"
||2|I + 3 |I23|l
2+ 3 5

Of course when associativity comes into play you have
to be a bit more careful.

..evaluates to:

2 + nn + 3 |I23|l
whereas.evaluates to:
2 + 3 + nn H5|l

Concatenation is very useful to reduce the number of
System.out.print instructions.

Fine. What if you want to convert a string like ”23”
that contains only decimals into a number?

To conwvert a string into a number you have two pos-
sibilities: to convert to an int use...

Integer.parselnt(...)

...and to convert to a double use...

Double.parseDouble(...)

So,evaluates to:
||23|l + 5 |I235|l

but 28
Integer.parselnt("23") + 5

Likewise "2.35"
"2.3" + 5

while 7.3

Double.parseDouble("2.3") + 5

62

How can you get a "2.3" string when you need a
number?

If you’re a user and type a number such as 2.3 you will
realize that you, in fact, have to type three characters:

...the digit 2, the period, and the digit 3.

The whole thing is a string of characters.

And that’s what you will have to start from when
dealing with user input.

How can we write programs that accept user input?

We will use a non-standard Java class, that we will
thoroughly discuss later on, and whose purpose is to
make processing keyboard input easier and less te-
dious.

We recommend that you use the ConsoleReader class
in your own programs whenever you need to read con-
sole input.

Simply place the ConsoleReader. java file together
with your program file, into a common directory.

The purpose of the ConsoleReader class is to add
a friendly interface to an input stream such as
System.in and here’s how you use it.

To accept user input in a program you first need to
construct a ConsoleReader object, like this:

ConsoleReader console =

String line =
int n = console.readInt();
double x = console.readDouble();

new ConsoleReader(System.in);

Next, simply call one of the following three methods:

console.readlLine(); // read a line of input
// read an integer
// read a floating-point number

Let’s see an example.

OK, let’s write a program that asks a user for a name
(that will be recorded as a String), an amount of
dollars (that the user has) and the rate of exchange
between the British pound and the American dollar.

The program asks all this of the user, and then com-
putes and tells the user how many British pounds the
user would get in exchange for the amount of dollars
the user has.

Why not leave this for tomorrow?

Good idea.

See you in the lab.

Reference vs. Primitive Types

Some simple programs. Some sample problems.

Here’s a diagrammatic description of the fundamental Reference types first (using Rectangle)
difference between primitive and reference types.

Suppose you have The picture looks as follows:

Rectangle a = new Rectangle(10, 20, 30, 40);
Rectangle b El;

Eectangle _]

Now if you have You will be able to see the change. Both a and b point

to one and the same thing, an essentially anonymous

[a] translate(3, 3); object, to which we refer as both a and b. So changes

System.out.println((b]; made using the a name can be seen by looking at the
object using the other name, that is, b.

63

64

Primitive types (using int)

int a = 3;
int b

[a];

The picture looks as follows:

Iy b
3 3

The big difference is that the primitive value is copied
into the storage location. So each location has its own
copy. It just works that way with numbers (as prim-
itive types) but doesn’t work the same with objects
(reference types).

That’s simply how it works. With reference types,
what the variable holds is a reference, the arrow.
With primitive types, the variable holds a walue, a
copy of the actual value.

Now if you have

[a] = 10;

System.out.println([:b;

you will see that the value of b has not been updated.

Each location has its own (copy of the) value, and
changing one does not affect the other. This is an

important difference, we refer to it as the
vs. access to variables, and it will be

useful for you to remember it from now on when you
reason about and design programs.

Now, let’s move on to exercises.

I need to do more exercises!

Yes, we’d better be doing that.

Check the website for more!

Syntax

The structure of main

What is a number? That much we know.

Let’s say: an integer or a floating point number. We know all about integers and floating point num-
bers, I'd say.

What is an operator? You want a long answer or a short one?

Short. +, -, x, / are operators.

What is an ezxpression? A number, is a (very simple) expression. A symbolic

name is also a (very simple, or atomic) expression.

What is an expression followed by an operator followed That would also be an expression, wouldn’t it?
by another expression?

Yes, indeed. What do we have so far? We have this table:
Term defined Composition
erpression number
variable
(expression operator expression)

Do we need the parentheses? Not really, but we want to emphasize the structure.
Correct. Now, is It is. Do you want to show why with a diagram?
((3 + 4) x a)

an expression?

65

66

I sure do.

EXPIESSION

Very well, there you go:

\\\

(expression

T

(expyss:’an operalor expression

|)

nimber * nmber

¢ |
3 4

aperator

expression
\} van'a\l?‘l'e

&

That’s interesting that we can define a concept (such
as ezxpression) in terms of itself.

This is called a recursive definition. An important
part of a recursive definition is specifying a set of fized
points,

... without which defining something in terms of itself
could go on for ever.

Exactly. Thank goodness for numbers and wvariable
names without which our definition would be irre-
versibly circular.

What is an assignment statement?

Its structure is as follows: wariable name, followed by
an equal sign, followed by an expression, and then by
a semicolon.

a=3+25;
a = b;
r = new Rectangle(2, 2, 10, 10);

What are we trying to get at?

The structure of all Java programs.

What is a declaration?
int m;
Rectangle r;
double x, y, Z;

Yes, that’s relatively obvious by now, I hope.

It is a type, followed by a variable name and a semi-
colon. ..

I see you can declare several variables at the same
time.

67

...and it can also be a type, followed by an assignment
statement (as defined above).

int m =
int n =

25;
34, p;
Rectangle r =

new Rectangle (5, 10, 8, 16);

You should be building a few examples following these
definitions, or take some statements and analyze them
the way we analyzed the simple expression a few lines
above.

OK, I see what you're getting at, let’s move on.

Are we really going to be extremely precise and cover
all possible cases?

Not really. For that we’d have to sacrifice some of the
intuitive structure of all these.

But we’ll go far enough for you to get a good grasp of
the general structure.

Are you ready for something really deep?

Go ahead.

What is a function call?

System.out.println();
System.out.println("Wow!");
Math.sqrt(2);
r.translate(3, 3);

A function name followed by open parenthesis, fol-
lowed by zero or more arguments separated by com-
mas, followed by closed parenthesis.

What is an argument?

I suppose any expression would work as one.

System.out.println("tom" + "ate".substring(0, 2) + "a dog".charAt(3));

I've seen length() and substring() being invoked
on Strings, but what’s charAt()?

Exactly what you're thinking that it might be.

Based on its name?

Yes. And we’ll talk more about chars tomorrow.

OK, let’s summarize what we have so far:

Literals appear in boxes.

Term defined Composition

expression number

variable

expression operator expression
funCall funName
funName | (| arguments
arguments expression
expression, arguments

68

Any questions about function names?

Not really, I suppose they’re basically of the “absolute
path ” kind, like System.out.println

Good assumption.

Are function calls expressions themselves?

I'm glad you asked. The answer is “yes” if the function
returns a value.

Then we are now dealing with an even bigger infinity
of expressions.

Note though that not all functions return values.

Yes, println from System.out does not return a
value, but sqrt from class Math returns the square
root of the argument, so it can be used in an expres-
sion.

Let’s update our table. We’ll put a star (*) next to re-
mind ourselves that it’s a logic error to use a function
cell in an expression if the function does not return a
value. I didn’t box the terminals this time around.

| Term defined |

Composition |

expression

(expression operator expression)

number
variable

funCall*)

funClall

funName (arguments)

funName ()

arguments

expression, arguments

expression

The update is minimal, but I think I need to look at
more examples before I become too dizzy.

You’ve already seen examples of expressions, as de-
fined by the table above.

This table is a table of syntactic categories described
in terms of other syntactic categories,

.. .an enterprise aimed at describing the (grammatical
structure of our simple) language.

Here are some more examples of expressions.

Take them apart, fit them in the table, don’t just
accept them and then move on.

Math.sqrt(a + Math.sqrt(b))

Don’t worry. Let’s take a look:

This is easy:

a+\/1—)

Math.sqrt(Math.sqrt(Math.sqrt (Math.sqrt(a))))

Just as easy:

=

69

Math.pow(a, (1.0 / 16.0)) Same as above:

S
&=

Math.sqrt (Math.pow(Math.sqrt (Math.pow(Math.sqrt(2)), 2)), 2)

Let’s rewrite this as follows: A bit messy, perhaps, but easy:

Math.sqrt(((\/5)2)2

Math.pow(
Math.sqrt(
Math.pow(
Math.sqrt(2)), 2)), 2)

6+ B+ @+ @+ (2+1))))) Neat.

What is a statement?

A statement is a
e declaration or
e an assignment statement,
Or a function call, as in:

System.out.println("Hello, world!");

Exactly. What is this?

public class Template
{ public static void main(String[] args)
{

<methodBody>

}
X

(Notice how I boxed the non-terminal this time.)

That is, declarations and statementsin any order, with
the following final table describing the entire structure
of the language (so far).

It’s the template we’re using, and methodBody is com-
posed of one or more statements.

70

| Term defined | Composition
statement declaration
assignment
funClall
declaration type variable ;
type variable = assignment ;
assignment variable = expression ;
expression number
variable
(expression operator expressiomn)
funCall™)
funCall funName ()
funName (arguments)
arguments expression
expression, arguments

This table covers the syntax of the Java programs that
we are going to be writing for a while.

Note that not all syntactically correct programs are
logically correct.

For example declaring a variable a twice is a semantic
error, although having two declarations in a program
is not a syntactic error...

... but if the variable is one and the same the semantic
part of the compiler will signal that.

Suppose you compile and run the program below.

class One {

public static void main(String[] args) {

int m = 2;
System.out.println(m);
int m = 3;
System.out.println(m);

}

}

What’s its output?

The program won’t compile.

One cannot declare a variable twice.

(One cannot declare the same variable twice.)

All right, let’s move on. Have you heard of the latest
late policy on assignments and such?

There’s no new policy, everything is still the same:
you need to turn everything on time. Try your best
to meet the deadlines.

Just trying to get your attention.

Sure. Let’s move on.

Fine. What is an int?

It’s an integer number between —23! (which is about
-2 billion) and (23! — 1). If you need to refer to
these boundaries in your program, use the constants
Integer .MIN_VALUE and Integer.MAX_VALUE

...which are defined in a class called Integer like
Math.PI is defined in the Math class.

Convention says: name your constants using all caps
for the name of the constant.

71

How do you define constants?

Mark them final when you declare them.

Here’s a program, what does it produce:

public class Test
{ public static void main(String[] args)
{ int n = Integer.MAX_VALUE;
System.out.println(n);
n=mn+1;
System.out.println(n);

}

Overflow.

Have you run it?

Yes, it’s an eye-opening experience.

Why does it happen?

Representation is finite.

What if we need bigger integers?

Use long.

What’s a long?

It’s a type that allows for the representation of bigger
integers. The range is now —2% (which is about -9
billion billions) to (2% - 1).

What if we need bigger integers?

Then work with objects of class BigInteger.

How do I do that?

We’ll see that in a minute. What is a floating-point
number?

A double or a float.

float spans the range from -3.4E38 to 3.4E38.
double is much wider: from -1.7E308 to 1.7E308 but
both suffer from the same problem:

...precision.

public class Test
{ public static void main(String[] args)

{ double a = 30000000000000000000000.0;

System.out.println(a - (a - 0.5));
}
}

Yes—what’s the output of this program?

It should be 0.5 by algebra.

Yes, but is that what the program prints?

Try it.

Also, try to initialize the double variable with a value
that doesn’t contain the decimal point.

In that case the compiler catches the overflow before
it happens.

Overflow happens even for double type.

72

The following program produces Infinity. You're kidding me!

Try it:

public class Test
{ public static void main(String[] args)
{ double a = 1.5E308;
System.out.println(a * 10);
}
}

For most of the programming projects in this book, Just bear in mind that overflow or loss of precision
the limited range and precision of int and double are occur.
acceptable.

Another kind of loss of precision occurs in what is What’s that?
known as a roundoff error.

In the processor hardware, numbers are represented You get roundoff errors when binary digits are lost,
in the binary number system, not in decimal. they just may crop up at different places than you
might expect.

Here’s an example: Another eyeopener.

System.out.println(4.35 * 100);

What do we do? Keep a cool head. For example in this last case first
round then cast to an int...

...if you want an int,and especially if you want the right one.
v) g

How about Slightly off. ..

System.out.println(Math.pow(Math.sqrt(2), 2));

A bit different, but related. Yes, and we’ll discuss how floating-point numbers
should be tested for equality soon.

How do you use big numbers? If you want to compute with really large numbers, you
can use big number objects.

73

Big number objects are objects of the BigInteger!?

and BigDecimal?? classes in the java.math?! pack-
age.

Unlike int or double, big numbers have essentially
no limits on their size and precision,

...however, computations with big number objects
are much slower than those that involve primitive
types. To perform operations you need to use meth-
ods such as. . .

e add(...)

e subtract(...)

multiply(...) and

o divide(...)

(...that big number objects have.)

import java.math.*;
public class Test
{ public static void main(String[] args)
{ BigInteger a =
BigInteger b =
BigInteger c =
BigInteger d = a.add(b.multiply(c));
System.out.println(d);
}
}

Here’s
a+b *xc

with big numbers.

new BigInteger ("100000000000000000000000000000000000000") ;
new BigInteger ("200000000000000000000000000000000000000") ;
new BigInteger ("300000000000000000000000000000000000000") ;

This is good exercise in object notation.

You bet. We’ve seen rectangles, strings, and now big
numbers. We’re getting even better.

So what should we have achieved by now?

I think we understand integer and floating point num-
bers.

We’re able to write arithmetic expressions in Java.

We can appreciate the importance of comments and
good code layout.

We can define and initialize variables and constants.

We know of the limitations of int and double types,

...and the overflow and roundoff errors that result.

We can read program input with ConsoleReader.

We know how to print program output.

We understand the structure of a method body,

...which contains statements, such as declarations,
assignments, and function calls.

We’ve also talked about expressions.

We have used the String class...

...to define and manipulate strings.

19http://java.sun.com/products/jdk/1.2/docs/api/java/math/BigInteger.html
2Ohttp://java.sun.com/products/jdk/1.2/docs/api/java/math/BigDecimal.html
21http://java.sun.com/products/jdk/1.2/docs/api/java/math/package-tree.html

74

By the way can you draw a picture for me for the
following situation:

String a
String b

"Hello!";
a.toUpperCase() ;

I sure can:

Thanks. It is the same with substring, isn’t it?

I know it is.

String objects are called immutable objects.

That’s right: toUpperCase on a String works like
add on a big number. ..

...or like intersection on a Rectangle.

Predicates

boolean values, expressions, and if statements.

What’s this?

x < 15

A boolean expression: an expression whose value is
either true or false.

Can you define boolean variables in Java?

Sure, boolean is a primitive type in Java.

boolean b;

b can only hold true and false values.

What are the primitive types in Java?
e int, byte, short, long
e double, float
e boolean

e char

There are four kinds:
e whole numbers
o floating-point numbers
e boolean values

e characters

We’ve seen int, and double values. ..

...we now take a look at boolean values.

How do you read this?

x <= 15

“z is less than or equal to 15”

How do you write “zis in between 9 and 15”7

First, what value does it have: true or false?

We don’t know yet, it depends on what z is.

So we might as well call it p(z).

Very well; now we can look at it for particular values
of .

p(3) is false

p(20) also is false

Come to think of it, p(z) is false for many values.

What’s p(z) again?

75

A statement about z being between 9 and 15.

76

When is it true?

When
x <= 15
and at the same time

x> 9

How do you write AND in Java?

&&

So p(x) can be written as:

(x >=9) && (x <= 15)

&& is read as AND

And || is read as OR.

While ! stands for NOT in Java.

I like A201 !

Ido ! think this is thaet funny...

So &&, | |, and ! are operators for truth values.

Yes. How do they work?

Let me draw a table.

P q |p&&gqlpllql! q
true true true true false
true false false true true
false true false true
false | false false false

AND OR NOT

So && works in the following way: you graduate if you
satisfy both of two requirements.

Otherwise you don’t graduate.

| | is a bit more lenient.

You graduate if you satisfy at least one of the two
requirements.

And only when none of them has been satisfied you
do not graduate.

And ! is easy.

It is, indeed.

The boolean type is called after mathematician
George Boole, a pioneer in the study of logic.

Logic is tricky: suppose a is a boolean value, true or
false. What value does

a || 'a

have?

Doesn’t it depend on the value of a?

Well, then let’s look at all possible cases:

7

a ' a | a |l (0 a)

true false
false true

true
true

Doesn’t it look easy now?

Yes, and there weren’t even too many cases.

How do you compute:

3+5 %2

Why are you bringing this up?

Because as you know there is an implicit order of eval-
uation for arithmetic expressions.

Does a similar set of rules apply to boolean expres-
sions?

Yes. In arithmetic, unary minuses are taken into ac-
count before we do any multiplications. . .

...and only after that we may do addtions, if any.

If there are no parentheses, otherwise the parens dic-
tate the order of evaluation.

What rules govern the order of evaluation for &&, ||,
and ! 7

! has the highest priority. Then comes &&, and the
| | has the lowest priority.

So if you look at

all b&& ! c

It’s evaluated as

all (b & (! c))

What is the truth table for

Let’s build it at the same time for

'a && 'b '(a || b)
| a [b a4 b|!(@&&b)| ta | 'b ['all !b]
true true true false false | false false
true false false true false true true
false true false true true false true
false | false false true true true true

We have just proved one of DeMorgan’s law.

What is the other one?

It’s the dual of this:
t(a || b)

is the same as

'a && !'b

There are many other identities that one can prove.

Perhaps we can do that later, as needed.

Yes, but let me give some examples, in case you get
bored and want to practice.

Sure.

This. ..

...is the same as this

a&& (b || <

a&& b || a && c

78

This.is the same as this
a || true true
a && true a
a || false a
a && false false
a == true a
a == false 1 a

Let’s face it: booleans can make you dizzy.

Yes, but they are clearly necessary.

For example, the programs we have seen so far are
fairly inflexible.

Except for variations in the input they work the same
way with every program run.

One of the essential features of nontrivial computer
programs is the ability to make decisions. ..

...and to carry out different actions, depending on
the nature of the inputs.

With booleans one can program simple and complex
decisions.

Learning that will greatly increase our expressive
power in Java.

In some of the previous assignments we went to great
length to either avoid...

...or fake (or, simulate) decisions by building them
into clever formulas.

Being able to make decisions would greatly simplify
those programs.

The if/else statement is used to implement a deci-
sion in a program. The if/else statement has three
parts:

e a test (a boolean expression),
e a then branch, and

e an else alternative.

If the test succeeds, the body of the then branch,

...also known as the body of the if statement,

...is executed. Here’s an example, as a flowchart:

This is from one of the problems of last week.

true

max = X;

79

false

And in Java:

if (x> y) {|max = x;]|}

else { [max = y; | }

¥

-]

]

The condition is , the body of the if statement is
, while the body of the else alternative appears
in . (OK, I know we don’t have colors here but

I’'m sure you know which is which—plus, notice the
correct spelling!).

A statement such as
max = X;

is called a simple statement.

A conditional statement, such as:

if x>0 {y=x;1}
else { y = -x; }

is called a compound statement.

By the way, this last compound statement could be

replaced by (as it’s equivalent to):

y = Math.abs(x);

I know, but that’s only because it’s so simple.

Our programs remain essentially sequences of state-
ments, we just allow compound statements, such as

if statements, in.

But they (at least) become two-dimensional.

80

Quite often the body of an if statement consists
of multiple statements that must be executed in se-
quence whenever the test is succesful.

These statements must be grouped together to form
a block statement by enclosing them in braces:

e {and
o }.

Also, while an if statement must have a test and a
body, the else alternative is optional.

I want to see examples.

Here’s one, a bit contrived:

if (x <y) {
temp = Xx;
X =Yy;
y = temp;
}

We assume, of course, that x, y, and temp have been
declared, and that x and y, at least, have been initial-
ized already.

Can you briefly say what the code is doing?

It makes sure that of the two values the larger one is
always in x.

Very good. What were we saying about braces?

They group statements together.

What if we drop them?

Then the code no longer works as intended.

So what is the syntax of an if statement?

The body of an if statement (or an else alternative)
must be g statement (just one).

But it can be:
e a simple statement

e a compound statement (such as another if state-
ment), or

e a block statement

It’s good to get into the habit of using braces (and
thus block statements) all the time.

Yes, as we will see when we get to exercises, shortly.

I can hardly wait. But first, let’s analyze the if state-
ment closer, and look at what makes a test.

Its outcome is either true or false.

In many cases the test compares two values.

Comparison operators such as <= (read “less than or
equal”) are called relational operators.

Java has six relational operators.

81

| Java | Math | Description |
> > Greater than
>= > Greater than or equal
< < Less than
<= < Less than or equal
== = Equal
1= # Not equal

The operator is initially confusing to most new-
comers to Java.

In Java, the = symbol already has a meaning, namely
assignment.

The == denotes equality testing:

a=5; // assign 5 to a

if (a == 3) // tests whether a equals 3
System.out.println("a is equal to 3");

else

System.out.println("a is not equal to 3");

You will have to remember to use == for equality test-
ing and to use = for assignment.

Floating point numbers have only a limited precision,
and calculations can introduce roundoff errors.

That means we need to be careful when we want to
test if two floating point quantities are representing
the same thing.

Here’s an example:

double r = Math.sqrt(2);
if (r * r == 2)

System.out.println(r * r + " == 2");
else

System.out.println(r * r + " != 2");

Unfortunately such roundoff errors are unavoidable.

In most circumstances it does not make a lot of sense
to compare floating point numbers exactly.

Instead we should test whether they’re close enough.

That is, the absolute value of their difference should
be less than some threshold.

Mathematically, = and y are close enough if

|z —y| <e

...for a very small number, e.

Greek letter epsilon (€) is commonly used to denote a
very small quantity.

It is common to set € to 10~ '* when comparing double
numbers.

However, this is not always good enough.

82

Indeed, if the two numbers are very big, then one can
be a roundoff of the other even if their difference is
much bigger than 10714,

To overcome this problem we need to normalize: we
divide by the magnitude of the numbers before com-
paring how close they are.

So z and y are close enough if

|z — 9l
— I <
max(|z|, [y])

And to avoid division by zero it is better to test
whether

|z —y| < € max(|z|, y|)

In Java, this is:

Math.abs(x - y) <= EPSILON * Math.max(Math.abs(x), Math.abs(y))

OK, I think I understand how I test numbers (integers
or floating point) for equality.

What else can we test for equality?

How about Strings?

To test whether two strings are equal to each other,

...that is, that their contents is the same. ..

...one must use method equals.

Why not use == like for numbers?

Strings are objects.

And so are Rectangles.

If you compare two object references with the == oper-
ator, you test whether the references refer to the same
object.

That’s because you check to see whether the two lo-
cations contain the same thing.

The ezact same thing.

Which is in each case an address, to an actual object.

Let’s see some examples.

Rectangle a = new Rectangle(5, 10, 20, 30);

Rectangle b = a;

Rectangle ¢ = new Rectangle(5, 10, 20, 30);

The comparison a == b is true.

Both object variables refer to the same object.

But the comparison a == c is false.

The two object variables refer to different objects.

83

[Rectangle1

[Rectangle1

It does not matter that the objects have identical con-
tents.

You can use the equals method to test whether two
rectangles have the same contents.

Thus | a.equals(c) |is true.

And so is obviously.

Same with Strings, so we will have to remember to
use equals for string comparison.

In Java letter case matters. Thus

‘”harry".equals("HARRY“)‘

evaluates to false.

But

"harry".equalsIgnoreCase ("HARRY")

evaluates to true.

Even if two strings don’t have ”identical” contents we
may still want to know the relationship between them.

The compareTo method compares strings in dictio-
nary order.

If stringl.comparesTo(string2) < 0

...then stringl comes before string?2 in dictionary
order.

84

If stringl.comparesTo(string2) > 0

...then stringl comes after string?2 in dictionary
order.

If stringl.comparesTo(string2) ==

...then the two strings have identical contents.

You should look this method up in class String.

Actually the dictionary ordering used by Java is
slightly different from that of a normal dictionary.

Java is case-sensitive and sorts characters by listing
numbers first, then uppercase characters, then lower-
case characters.

For example 1 comes before B which comes before a.

And the space character comes before all other char-
acters.

Can we describe the comparison process a little bit in
greater detail?

When comparing two strings, corresponding letters
are compared until one of the strings ends or the first
difference is encountered.

If one of the strings ends, the longer string is consid-
ered the later one.

If a character mismatch is found, compare the char-
acters to determine which string comes later in the
dictionary sequence.

The process is called lexicographic comparison.

That’s why "car" comes before "cargo",

And "cathode" comes after "cargo" in lexicographic
ordering.

Time for a break.

I sure think so.

And some exercises too.

Yes, but the break first, please.

OK, here’s what we’ll do: we’ll put the exercises into
the break altogether.

And combine the useful with the necessary.

The text of the problem is always the same.

I know it already: ” What is the output produced by the
following snippets of code when embedded in a com-
plete program.”

Let’s see the snippets.
Snippet 1:

int x = 3;

if (2 > x)
System.out.print(1);

else
System.out.print(2);

if (x < 2)
System.out.println(3);

System.out.print (4) ;

Easy. Draw a diagram.

85

Snippet 2: Messy. The curly braces change everything.

int x = 3;
if (x > B)
if (x < 10)
System.out.print (1) ;
else
System.out.print(2);
System.out.print(3);

What if you take them out? The diagram changes significantly.

And you have experienced a dangling else. That’s right.

(Also, your indentation was a bit misleading.)

Snippet 3:

int x = 3;

if (x > 0) System.out.print(x + 1);
else if (x > 1) System.out.print(x);
else if (x > 2) System.out.print(x - 1);
else if (x > 3) System.out.print(2 * x);
else System.out.print(x * x);

Easy. Diagram it.

Snippet 4 (and last):

int x = 3;

if (x > 0) System.out.print(x + 1);

if (x > 1) System.out.print(x);
else if (x > 2) System.out.print(x - 1);
if (x > 3) System.out.print(2 * x);

else System.out.print(x * x);

Remove the else’s. Who would ever do that in a program?
Nobody. It’s for practice. Messy again. You have to redraw everything.
I agree it’s messy, but is it hard? No. Is this the last one?

Yes. Can we do a reasonable example now?

86

OK, here’s Nineteen from the first set of problems.

/* Solution to problem nineteen in the first problem set. Use
ConsoleReader from lab notes 2 as explained. The trick here
(as hinted in the text) is to transform a number for a month in
a position (index) in the string where the month name is starting,
all names being made of the same length, and then concatenated
together in one final string.

*/

public class Nineteen {

public static void main(String[] args) {

String monthNames = "January February March "o+
"April May June "+
"July August September " +

"October November December " ;
// open a connection with the keyboard
ConsoleReader console = new ConsoleReader(System.in);
// greet the user, and ask for input
System.out.println("Please enter a month number from 1 to 12.");
// get month name
int month = console.readInt();
// report the name of the month
System.out.println(

monthNames.substring("September ".length() * (month-1),
"September ".length() * month));

// formula uses the length of the longest name

Here is it with if statements:

public class P19 {
public static void main(String[] args) {

ConsoleReader console = new ConsoleReader(System.in);
System.out.println("Please enter a month number from 1 to 12.");
int month = console.readInt();

if (month == 12) System.out.println("December");

else if (month == 11) System.out.println("November");

else if (month == 10) System.out.println("October");

else if (month == 9) System.out.println("September");
else if (month == 8) System.out.println("August");
else if (month == 7) System.out.println("July");

else if (month == 6) System.out.println("June");

else if (month == 5) System.out.println("May");

else if (month == 4) System.out.println("April");
else if (month == 3) System.out.println("March");
else if (month == 2) System.out.println("February");
else if (month == 1) System.out.println("January");

87

I thought we agreed to use block statements (with
curly braces) for the bodies of if statements and else
alternatives all the time.

Yes, but just for once I wanted to keep the code some-
what shorter.

Well, then, just for once, I have two more exercises.

OK, I will remember to put braces from now on, al-
ways.

Too late.

Show me the first exercise.

Here it is:

if (false && false || true) {
System.out.print(false);

} else {
System.out.print (true) ;

}

Can’t be true!

Snippet 2:

if (false && (false || true)) {
System.out.print(false);

} else {
System.out.print (true);

}

I can see the difference.

T’'m sure you do.

That’s probably true or false.

88

Classes

Introduction to user-defined types. Classes.

You have now learned about the number and string
data types of Java.

Although it is possible to write interesting programs
using nothing but numbers and strings, most useful
programs need to manipulare data items that are more
complex and more closely represent entities in the real
world.

Examples of these data items are bank accounts, em-
ployee records, graphical shapes, and so on.

The Java language is ideally suited for designing and
manipulating such data items, or objects.

In Java, you define classes that describe the behaviour
of these objects. (Classes are blueprints).

You will now learn how to define classes that describe
objects with very simple behaviour. This will be a
very good start.

Let’s create a simple class that describes the be-
haviour of a bank account.

Before we can describe what a bank account is in Java
we need to be clear (in plain English) what we mean
by it.

In other words we have to sell it first.

Exactly.

Well, consider what kinds of operations you can carry
out with a bank account. You can:. ..

e deposit money
e withdraw money

e get the current balance

Sounds like a bank account to me.

In Java these operations are expressed as method calls.

So the set of methods that an object of type...

...BankAccount (sounds like a good name to me)

... will support, could be. ..

e deposit
e withdraw

e getBalance

89

90

That’s what BankAccounts do best!

OK, before we get too euphoric we need to imagine
such an object in action.

Objects are agents.

Exactly. If they have methods (and most objects do)
they have a behaviour, defined by what their methods
can do. Now, how do you envision BankAccounts in
action?

To start with, opening a new bank account should
look like this:

BankAccount myChecking = new BankAccount();

...and the initial balance should be zero. How do
you put, let’s say, $1,000.00 in your account when you
create it?

It would be something like this:

myChecking.deposit (1000.00) ;

Isn’t this very similar to translate for Rectangles?

It is, indeed, the very same thing: we’re translating
the balance, in one dimension.

How would you check your current balance?

T'd ask myChecking to report the balance, which I
could then print:

System.out.println(myChecking.getBalance());

Isn’t this very similar to printing the length of a
String?

It sure is. As for the third method, I just realized I
don’t even need it. ..

How come? What if you want to withdraw $300.00
from your checking?

I can already express that as:

myChecking.deposit(-300.00) ;

Then it won’t be too hard though to come up with an
extra method. . .

.. that could be called as follows:

myChecking.withdraw(300.00) ;

This should make more sense to the user of your class.
Are we done now?

I think we are. These three methods form the com-
plete list of what you can do with an object of type
BankAccount, ...

... at least from the point of view of what we wanted
in a bank account. We could certainly add methods
to compute interest, etc., and enhance our model (or
design), but for now. ..

91

... these three methods are more than enough for what
we have in mind with this class.

We want to implement it and see it used in a Java
program.

Nothing less. For a more complex class, it takes some
amount of skill and practice to discover the appro-
priate behaviour that makes the class useful and is
reasonable to implement.

We will learn more about this important aspect when
we get to the chapter on ” Object oriented design”.

The behaviour of our BankAccount class is very sim-
ple, and we have described it completely. We can now
implement it.

Yes, let’s go for it.

Although T think it’s worth pointing out one thing,
before we even write a single line of code of imple-
mentation. ..

What is it?

In our description of the methods we have used objects
of type BankAccount without knowing (or caring too
much to know) about their implementation, which we
are only now about to describe.

Yes, that’s an important aspect of object-oriented pro-
gramming. But now, that we are completely clear on
how to use objects of the BankAccount class, we really
need to get started. ..

... to describe the Java class that implements the de-
scribed behaviour.

public class BankAccount

{...
}

I can get us started and in the following way:

What do we put inside?

Methods and data.

I don’t understand what you mean by data.

It’s what makes tiggers remember where they have
bounced last. Do you remember Rectangles?

I certainly do. Their diagrams were always containing
four slots, in which we were writing the current values
of their x, y, width, and height.

That’s the data that they have, which helps them re-
member where they are, and how big they are. Could
you draw a diagram to illustrate what’s happening
after we create a new BankAccount?

The code would be...

BankAccount mySavings = new BankAccount();

Take a look on the next page.

...and the diagram?

92

mySavings

!

[BankhAcc ounq

0.0

Very good. What’s that in which you put the initial
balance of 0 (zero)?

It’s a location, like we’ve seen for Rectangles. It looks Each object must store its current state; for objects
like a variable, probably of type double or of a similar of type BankAccount the state is the current balance
or related type. of the bank account.

Each object stores the state in one or more instance An instance variable declaration consists of the fol-

variables . lowing three parts:
a) an access specifier ...such as private
b) the type of the variable ...such as double
c) the name of the variable ...such as balance.
So far we have: ...and the diagram:

public class BankAccount m}rSa\ringg

{ | private double balance;

-]
¥ [Bankhccounq
balance
0.0

The balance field is all we need, as far as data goes.

93

Each object of a class has its own copy of the instance
variables.

mySavings

!

[Bankhccounq

10.00
balance

We’ve seen that with Rectangles and it’s the same
with BankAccounts.

momsSavings

|'

[Bankhccounq

F500.00
balance

Each object has its own balance field.

And in our example they hold different values.

Instance variables are generally declared with the ac-
cess specifier private.

That means that they can be accessed only by meth-
ods of the same class. In particular, the balance vari-
able can be accessed only by the deposit, withdraw,
and getBalance methods.

Let’s write these methods in Java.

OK. Let’s start by defining them.

Yes, let’s start by describing their headers.

A method header consists of the following parts:

a) an access specifier

...such as public

b) the return type of the method

...such as double or void

c) the name of the method

...such as deposit

d) a list of the parameters of the method

... describing the method’s initial data. Let’s consider
each of these parts in detail.

The access specifier controls which other methods can
call this method.

Most methods should be declared public. This way,
all other methods in your program can call them.
(Ocasionally, it can be useful to have methods that
are not so widely callable, but we will look at that
later).

94

The return type is the type of the value that the
method computes.

For example, the getBalance method returns the cur-
rent account balance, which will be a floating-point
number, so its return type is double. On the other
hand the deposit and withdraw methods don’t re-
turn any value. They just update the current balance
but don’t return it.

To indicate that a method does not return a value,
use the special type void.

Both the deposit and withdraw are declared with
return type void.

The parameters are inputs to the method.

The deposit and withdraw methods each have one
parameter: the amount of money to deposit or with-
draw.

You need to specify the type of the parameter, such
as double, and the name for the parameter, such as
amount.

The getBalance method has no parameters. In that
case, you still need to supply a pair of parentheses ()
behind the method name.

If a method has more than one parameter, you sepa-
rate them by commas.

And once you have specified the method header, you
must supply the implementation of the method, in a
block that is delimited by braces ({...3}).

Putting all this together we have: Looks good.
public class BankAccount
{ public void deposit(double amount)
{...
}
public void withdraw(double amount)
{...
}
public double getBalance()
{...
}
private double balance;
}
We now must provide an implementation for each The implementation of these three methods is

method of the class.

public class BankAccount
{ public void deposit(double amount)
{ ‘balance = balance + amount; ‘

}

public void withdraw(double amount)

straightforward: when some amount of money is de-
posited or withdrawn, the balance increases or de-
creases by that amount.

{ ‘balance = balance - amount; ‘
}

public double getBalance()

{ ‘return balance; ‘

private double balance;

}

95

The getBalance simply returns the current balance.

But wait: how can we use balance and amount with-
out declaring or initializing them, as we said we should
be doing every single time?

They are not method (local) variables. amount is a
method parameter. When the method is called the
value that will be passed to the method will be placed
in a location called amount of type double that rep-
resents the initial data of the method. So amount, as
a method parameter is like a variable. ..

...that is, a symbolic name that refers to a memory
location. ..

...and will have been initialized when the method is
called.

How about balance?

It is also a variable, only not a method variable. It is
an instance variable, visible to every instance method
(such as deposit, withdraw, and getBalance). For
these methods it is a (somewhat) global variable
(which they share).

Instance variables are initialized when the object to
which they belong is constructed. In this respect they
are really different from method variables.

They are initialized with default values, that depend
on their types.

Numbers, for example, are initialized with a value of
0 (zero).

Of course, you can also initialize them in a certain,
customized way, if you define constructors.

We will talk about constructors tomorrow.

Meanwhile let’s see what we mean by return.

Well, when you ask someone a question, and you pay
for the question to be answered, ...

...you expect an answer, ...

...in return.

When a function, that is supposed to provide a value
as an answer, has the answer ready. ..

... (by computing an expression, or by referring to a
location where the final result has been stored, ready
to be reported). ..

...and when it wants to report it, ...

...to whoever called it in the first place. ..

...it simply states that it’s ready to finish and
returns the value, ...

... after which the function (or method, as it’s known
in Java) ends.

Interesting. So this is basically syntaz.

Very much so.

96

OK, can we see the full program?

Yes, you need to have two classes.

One is the class we designed.

public class BankAccount
{ public void deposit(double amount)
{ balance = balance + amount;
}
public void withdraw(double amount)
{ balance = balance - amount;
}
public double getBalance()
{ return balance;
}

private double balance;

While the other one has the main.

public class Experiment
{ public static void main(String[] args)
{ BankAccount a = new BankAccount();
BankAccount b = new BankAccount();
a.deposit(200);
b.deposit (300) ;
System.out.println(a.getBalance());
System.out.println(b.getBalance());
a.withdraw(100);
b.withdraw(200) ;
System.out.println(a.getBalance());
System.out.println(b.getBalance());
}
}

Place them in the same directory.. .

...compile and run them, and enjoy!

Not many problems couldn’t be much harder,

...I think. I agree. By the way, ...

7T hope you’re not much tired, are you?”

”Nohow. And thank you very much for asking!”

Constructors and Instance Variables

Classes, objects, constructors.

There is only one issue with the

BankAccount.

remaining

We need to define the default constructor.

Why do we need to talk about the default constructor?

Because that’s the one we’re using now, not having
defined any constructor whatsoever yet.

Constructors are not methods, but they are used to
create instances of the class (objects).

Many classes have more than one constructor.

The purpose of a constructor is to initialize the in-
stance variables of the object.

The code for a constructor sets the initial state of the
object.

When a BankAccount object comes into existence it
will have an initial state with the current balance be-
ing 0 (zero).

So there’s just one constructor for the class.

Since it does not take any arguments it is called a
no-arg constructor.

Its purpose is to initialize the instance variables of a
bank account object when the object is created.

Objects of type BankAccount only have one instance
variable: their balance.

If you do not initialize an instance variable that is a
number it will automatically be initialized to 0 (zero)
by Java, befor the constructor even comes into play.

In this regard, instance variables act differently than
local variables!

By local variables you mean ”wariables declared in
methods, such as in main” right?

Yes. Those have to be initialized by the programmer
before they are used.

It’s not the same with instance variables.

Instance variables are set by Java to a default value.

Local variables will not.

No they won’t be initialized by Java. Instance vari-
ables, however, will be initialized by Java if you don’t
initialize them (as a programmer).

OK. If the balance of a new account will be set to
0 (zero) even before the constructor starts working,
then the constructor need not do anything.

97

98

Yes. And Java will always provide (by default) a no-
arg constructor that doesn’t do anything, for every
class that you define.

So if you don’t define any constructor you will be given
one, by default.

Yes, and if you define at least one, those that you
define are your constructors.

How do we write a constructor?

They are essentially initialization procedures so they
look very similar to methods. They have a header,
and a method body.

Their header contains an access specifier, but not a
return type.

Their name is always that of the class.

Like methods they have a list of parameters: named
locations of a certain type, in which their initial infor-
mation is placed.

That is, the arguments.

Indeed. Can I see one?

Here’s the one that you get by default, if you don’t
specify any constructor.

public class BankAccount {

‘public BankAccount () {
// nothing

public void deposit(double amount) {
balance = balance + amount;

}

public void withdraw(double amount) {
balance = balance - amount;

}

public double getBalance() {
return balance;

}

private double balance;

}

It’s the one in . Note that the body of the con-
structor is empty.

Since this is the default constructor that means I get
it for free.

Indeed, but you might actually write it anyway to not
forget that you can use it.

Can I define a second constructor?

How would you want to use it?

I'd like to create an account with an initial sum of
money in it, like this:

BankAccount m = new BankAccount(300.00);

Yes you can. You will only need to set balance to the
initial value inside the constructor.

99

Is that it?

public BankAccount(double initial) {
balance = initial;

}

Yes, can you describe it a little?

It is used to create a bank account with an initial
balance.

When you call it you need to specify that amount, like
you did when you showed me the way you intended to
use it.

A constructor looks like a method, only the header
does not have a return type, and the name of a con-
structor is the name of the class.

The rest of it is just like a method.

Yes, so I defined a formal parameter initial which
must be of floating-point type (that is, with a frac-
tional part). I chose double for the type of the formal
parameter.

So in your previous example this constructor gets
called to create a new object, and the initialization
steps start by storing 300.00 in a location of type
double by the name initial.

Yes, and in its body I use initial to copy its value
in balance.

Very well. You could have used it in a more involved
way, but there was no need for you to do that.

There’s a tricky rule in Java about the default no-arg
constructor.

We mentioned it above, but in an implicit way.

We can avoid mentioning it here by stating another
rule, that is easier to state (and remember).

Always declare all the constructors that you need.

And how’s the actual rule?

The default constructor is provided by default when
there are no constructors specified. If you specify
at least one constructor, the default constructor no
longer is provided and if you need it you need to write
it explicitly in the class.

I see, so this class definition won’t let me create bank
accounts with an initial value of 0 (zero)?

public class BankAccount {
double balance;
public BankAccount(double initial) {
balance = initial;
}
}

Not directly.

So I can’t say

BankAccount m = new BankAccount();

No, but you can create it this way:

BankAccount m = new BankAccount(0.0);

100

Well, can we put the class to work? Sure, we did that last time, we can do it again. Here’s

a different test program though:

public class BankAccountTest {

public static void main(String[] args) {
BankAccount account = new BankAccount(10000);
final double INTEREST_RATE = 5;
double interest;
// compute and add interest for one period
interest = account.getBalance() * INTEREST_RATE / 100;
account.deposit(interest);
System.out.println("Balance after the first year is $" + account.getBalance());
// add interest again
interest = account.getBalance() * INTEREST_RATE / 100;
account.deposit(interest);
System.out.println("Balance after the second year is $" +
account.getBalance());

}
}
And the class is still the same as last time, with the ...the no-arg empty constructor and the one that ini-
two constructors added, tializes the balance to a certain initial value, that is

specified when you call the constructor.

Yes, here it is:

public class BankAccount {

}

private double balance; // instance variable, the account balance
public BankAccount() { // the no-arg empty constructor

}

public BankAccount(double initial) { // another constructor
balance = initial;

}

public void deposit(double amount) { // instance method deposit
balance = balance + amount;

}

public void withdraw(double amount) { // instance method withdraw
balance = balance - amount;

}

public double getBalance() { // instance method getBalance
return balance;

}

Once again to see this in action I need to copy the Then you compile them and run the test class.
code in two files, one for the bank account class and

the other one for the bank account test class (that has

the main method).

101

Can we summarize now?

We sure can.

I have a summary with two short examples.

Let’s see them.

Objects are entities that can have memory and specific
behaviour. Their memory is represented by variables
that they have inside and their behaviour is defined
by actions that they know how to perform

...that is, the methods that are associated with those
objects.

All objects of the same kind, that have the exact same
structure, make up a class.

In fact, in programming it’s always the other way
around: one first defines a class,

which describes how that particular class of objects
will look and behave (what methods they have,)

...then one creates as many objects (of that kind) as
needed

...and lets them loose,

... thus running the program.

To better clarify instance variables and instance meth-
ods let’s look at two examples.

Each one will resemble a short play (as in a stage
representation of an action or a story).

Our dramatic compositions will be simple, since we
will abstract away all the unwanted details.

The titles of the plays will be:
e Sports, and

e Babies.

Better than ” You are old Father William” already.

OK, let’s look at the first one.

A Hoosier basketball fan’s simple to describe:

...she cheers, by shouting ’Go Hoosiers!” when she
feels like cheering for the former team of Bob Knight,
and that’s the end of it.

Write a short program (a play) that presents three
Hoosier fans cheering for the IU Hoosiers,

. each fan cheering once, and in no particular order.

Here’s how the program should behave:

tucotuco.cs.indiana.edu) javac Sports.java
tucotuco.cs.indiana.edu) java Sports
Go Hoosiers!

Go Hoosiers!

Go Hoosiers!
tucotuco.cs.indiana.edu¥

The output of the program is in .

At a basketball game the noise is so loud that you
don’t know who is cheering and when.

public class Sports {
public static void main(String[] args) {

The crowd is anonymous, more or less. Here’s the
object oriented implementation of this play:

102

Hoosier a = new Hoosier();
Hoosier b = new Hoosier();
Hoosier c = new Hoosier();
a.cheer();
b.cheer();
c.cheer();

}

}

class Hoosier {
void cheer() {
System.out.println("Go Hoosiers!");
}
}

Just a quick question: for all practical purposes cheer- Printing, or displaying a big printed note,
ing here essentially means printing, right?

... which reads (in this case): “”.

So we see that a Hoosier is an object that knows only ...and in only one way.
one thing: to cheer,

The objects’ behaviour is defined by their methods, ...an instance of a class the methods themselves are
and since each object is called instance methods.
OK. Here’s the second play, Babies. We won’t have much time for that.

Here’s the play:

tucotuco.cs.indiana.eduj, javac Babies. java
tucotuco.cs.indiana.eduj, java Babies
Alice: Hello, my name is Alice

Susan: Hello, my name is Susan

Jimmy: Hello, my name is Jimmy
tucotuco.cs.indiana.edu

Looks good to me.

Here’s the screenplay and the cast.

public class Babies {
public static void main(String[] args) {
Baby a = new Baby("Alice");
Baby b = new Baby("Susan");
Baby c = new Baby("Jimmy");

a.talk();
b.talk();

103

c.talk();

X
}

class Baby {
String name; // instance variable

Baby (String givenName) { // constructor
name = givenName;

¥

void talk() { // instance method
System.out.println(name + ": Hello, my name is " + name);

X

}

Oh, but I think I understand instance variables now. Oh, but I am sure you do.

104

Here’s a program:

class StrawDispenser {
final static CAPACITY = 100;
int balance = StrawDispenser.CAPACITY;

Straw dispense() {
this.balance -= 1;
return new Straw();

3

int getBalance() {
return this.balance;

}

void refill() {
this.balance = StrawDispenser.CAPACITY;
X
X

Admittedly, this looks more like a Bubble Machine (if it makes the Straws as it goes).
Here’s another one:

class NumberTwo {
Sandwich a; // Larry Bird is from Freedom Lick, IN...
Fries f;
Drink d;
NumberTwo (int size, String drink) {
a = new Sandwich("cheeseburger");
f = new Fries(size);
d = new Drink(drink, size);
}
}

Methods

Wrap-up of Classes and Objects material.

Let’s go through a set of examples to clarify classes and objects even further.

1. What’s this program doing?

Can you draw a diagram to illustrate what happens when you run it?

public class One {
public static void main(String[] args) {
Potato p = new Potato();
Potato q;
q = new Potato();

P=4q

}
}
class Potato {

}

How do the Potatoes get created?

2. What is this next program doing? Can you diagram it? What’s new?

public class Two {
public static void main(String[] args) {
Pair u = new Pair();

Pair v;
v = new Pair();
u.a = 1;
u.b = 2;
u.a = u.a + u.b;
u.b =1 - u.a;
}
}
class Pair {
int a;
int b;
}

105

106

3. Why does this next program not compile?

What’s wrong with it?

public class Three {
public static void main(String[] args) {
Pair u = new Pair();
Pair v = new Pair(1, 2);

}

}

class Pair {
int a;
int b;

}

Can you fix it?

4. What does the next program print and why (or how).

public class Four {
public static void main(String[] args) {
Calculator m = new Calculator();
int value = m.fun(3);
System.out.println(value) ;
}
}
class Calculator {
int fun(int x) {
int result;
result = 3 * x + 1;
return result;

Same question if we change the Calculator as follows:

class Calculator {
int fun(int x) {
int result;

result = +1;

return result;

int g(int x) {
int result;
result = 3 * x;
return result;

5. What does the following program print and why (or how)?

107

public class Five {
public static void main(String[] args) {
Calculator ¢ = new Calculator();
int value = c.fun(1) + c.fun(c.fun(2));
System.out.println(value);
}
}
class Calculator {
int fun(int x) {
int result;
result = 3 * x + 1;
return result;

6. Same question about this one:

public class Six {
public static void main(String[] args) {
Calculator calc = new Calculator();
int value = calc.fun(
calc.fun(
calc.fun(
calc.fun(
calc.fun(5)))));
System.out.println(value);
}
}
class Calculator {
int fun(int x) {
int result;
if (x % 2 == 0)
result = x / 2;
else
result = 3 * x + 1;
return result;

7. What’s the output of the following program and why?

public class Seven {
public static void main(String[] args) {

Oracle a = new Oracle();

System.out.println(a.odd(5));
System.out.println(a.odd(6)) ;
System.out.println(a.odd(7));
System.out.println(a.odd(8));
System.out.println(a.odd(9));

108

}
class Oracle {
boolean odd(int n) {
boolean result;
if (n % 2==0) {
result = false;
} else {
result = true;
}

return result;

8. Let’s now review a previous step once again.

What’s the output of this program and why (or how)?

public class Eight {
public static void main(String[] args) {
Calculator calc = new Calculator();
int value = calc.fun(
calc.fun(
calc.fun(
calc.fun(
calc.fun(27)))));
System.out.println(value) ;

}

class Calculator {
int fun(int x) {

int result;

if (x % 2 == 0)
result = x / 2;

else
result = 3 * x + 1;

return result;

9. Now fasten your seat belts and look closely.

What’s the output of this program and why (or how)?

public class Nine {
public static void main(String[] args) {
Alien x = new Alien();
int value = x.what(4);
System.out.println(value) ;

class Alien {
int what(int x) {
int result;
if (x == 1) {
result = 1;
} else {
result = x + what(x - 1);
}

return result;

10. What’s a good name for the method what?

11. What’s the output of this program?

public class Eleven {
public static void main(String[] args) {
Alien x = new Alien();

int value = x.what ();

System.out.println(value);
}
}
class Alien {
int what(int x) {
int result;

if (x ==1) {
result = 1;
} else {

result = x + what(x - 1);
}

return result;

12. What’s the output of this program and why (or how)?

public class Twelve {
public static void main(String[] args) {
Alien x = new Alien();
int value = x.what(10);
System.out.println(value);
}
}
class Alien {
int what(int x) {
int result;
if (x == 1) {
result = 1;
} else {

109

110

System.out.println(x);
result = x + what(x - 1);

}

return result;

13. What’s the output of this program and why (or how)?

public class Thirteen
public static void main(String[] args)
Alien x = new Alien();
int value = x.what(10);
System.out.println(value) ;

class Alien {
int what(int x) {

int result;

if (x == 1) {
result = 1;

} else {
result = x + what(x - 1);
System.out.println(x);

}

return result;

14. What’s the output of this program and why?

public class Fourteen {
public static void main(String[] args) {
A a = new A(Q);

a.fun();
a.fun();
a.fun();
System.out.println(a.n);
}
}
class A {
int n;
void fun() {
n += 1;
}
}

15. What’s the output of this program and why?

111

public class Fifteen {
public static void main(String[] args) {
Vegetable tomato = new Vegetable();

tomato.f();
tomato.f();
tomato.g();
System.out.println(tomato.n) ;
tomato.g();
tomato.g();
tomato.f();
System.out.println(tomato.n) ;
}
}
class Vegetable {
int n;
void £ {
n=n-+1;
}
void g() {
n=n+1;
}
}

16. What is the output of this program and why?

public class Sixteen {
public static void main(String[] args) {

Vegetable tomato = new Vegetable();
Vegetable = new Vegetable();
tomato.fun();
tomato.fun();
[orate]rn
tomato.fun();

potato|.fun();

potato|.fun();

potato|.fun();

tomato.fun();

}
}
class Vegetable {
int n;
int m;
void fun() {
n=n+1;
m=m+ 1;
System.out.println("n =" +n + ", m =" + m);
}
}

17. What is the output of this program and why?

112

public class Seventeen {
public static void main(String[] args) {

Vegetable tomato = new Vegetable();
Vegetable = new Vegetable();
tomato.fun();
tomato.fun() ;
[prato] runs;
tomato.fun() ;

potato |.fun();

potato |.fun();

potato |.fun();

tomato.fun();
}
¥
class Vegetable {
int n;

void fun() {
n=mn+1;
m=m+ 1;
System.out.println("n =" +n + ", m =" + m);

}

18. Please describe briefly what this picture represents:

instunce variable

ormul parameter
class A /{ f P

int x;
void fun {(int y) {
int =z = 3;

= =z 3
}
}
local variable

better write it s this.x

Define all terms involved, as briefly and completely as you can.

19. Answer the following question: What’s this?

Decisions

Branches and paths. If statement exercises. (L)oops.

What’s the purpose of if statements? It allows us to include decisions in our programs.

What do we do with their results? We can branch our course of action.

How do you code this branching situation?

L

Use the space above.

Did you remember to use curly braces? I try to do this as often as possible, it helps me keep
all my branches distinct.

That’s good practice. Indeed, even though sometimes I don’t really need the
brackets.

113

114

How would you code this slightly modified situation?

statl

L

e —

I see there’s one minor change.

It may look minor on the diagram.

I see...Now I have to use brackets.

Yes, there’s no way around it.

Otherwise the branches tangle.

In general, in our programs, we have the flowchart
clear in mind and we just need to translate it into
Java.

But we need to do that with care, as illustrated above,
and curly braces are more than just syntactic sugar in
Java.

Ocasionally we will have to do the reverse,

...that is, build the diagram out of Java text,

...when we read someone else’s code.

Let’s see some examples.

OK, here’s a bigger one.

I can hardly wait.

Bigger Example One

Assume that option is an int variable that can only
be: 1, 2 or 3 before each of the following code frag-
ments start executing.

So this is given.

Yes. Now the question.

Which of the fragments below set variable i to the
same value that option has?

We will look at this kind of problems with the help of
diagrams, as announced before.

115

The (given) code is on the left,

...the diagram is on the right, in all examples below.

Code

if (option == 1)
i=1;

else if (option == 2)
i=2;

else
i= 3

Diagram

i =0 option

must be 31

i=3

In this particular case it’s easy to see that the code
sets i to the same value as option

... given the assumption about the possible values
that option can have. We just explore all paths.

For the remaining of these notes we only sketch the

diagrams here,

...and fill them with text in class.

Code

i=1;

if (option >= 2)
i=14+1;

if (option == 3)
i=1i+1;

Diagram

116

Code

if (option == 1)

Diagram

i=1;
if (option == 2)

i=2;
else

i=3;

[I

Code Diagram
i=1;

if (optiom > 1)
if (optiomn > 2)

i=3;
else
i=2;

=R
Facg
T

Don’t forget we still need to provide an answer with
each one of the diagrams.

Indeed we need to say whether the code fragments
presented are (or not) equivalent to

i = optionm;

... which is the equivalent code.

If the equivalent code is that simple, why do we go
through all this trouble, to rephrase a simple assign-
ment statement?

We chose a simple situation to practice if statements
on it. Don’t worry, I have a list of suggested exercises
indexed at the end of these notes, below. Those are
real iffy situations.

Very good. So we keep things simple while we learn
the concept, and we use diagrams to reason about
these simple, illustrative programs.

Indeed, we rely on diagrams for the time being. With
time we won’t need them, as you’ll be able to see them
without drawing them, but for beginners they seem to
be more tangible.

117

Here’s the last case:

Code

1 if (option == 1);
2 if (option == 2);
3 if (option == 3);

But, you get a Picasso.

Incorrect syntax, no diagram.

Time to move on.

Bigger Example Two

Consider this code fragment

if (x > y)

z =2z + 1;
else

zZ =2z + 2;

Which one of the following (code fragments) are equiv-
alent to it? Two code fragments are be considered
equivalent when they behave in the same way.

Two code fragments are to be considered equivalent

... when they behave in the exact same way.

That is they have
e the same output, and
e same sequence of internal states

for identical inputs,

...over their all possible inputs.

Note that the structure of the diagram is as important
as what gets written inside the boxes.

We sketch the diagrams below.

And leave the reasoning to you.

118

Code Diagram
if (x > y)
z =2z + 1;
if (x <= y)
z =z + 2;
So, what’s the answer? Those paths are not independent, I don’t think.

How about this next one, then?

Code Diagram
it (Y (x> ¥))

z =2z + 2; _
else

z =2z + 1;

This one is much easier to think about, no doubt
about it. But careful thinking is required when the
problem is posed, as it is, with its upside down.

How about this next one, then? Not harder, but somewhat unfamiliar. ..

Code Diagram
z =2z + 1;

if (x <= y)
z =2z + 1;

Code has been factored out.

119

How about this next one, then?

Code

if (x > y)
z =2z + 1;
else if (x <= y)
z =z + 2;

Diagram

If the last one was efficient this one’s redundant.

How about this next one, then?
Code
z =2z + 2;

if (M (x > y))
z =2z -1;

The approach looks a bit contortive this time.

Diagram

No, that’s circular, not even recursive.

That, my dear friend, is Paul Klee.

I think it’s more like this:

With your permission.

120

Bigger Example Three Consider the following two program fragments:
Fragment 1 Fragment 2
if (x == 5) if (x == 5)
X =x + 1; x =x + 1;
else if (x !'=5)
x = 8; x = 8;

EF Check all that apply:
e The two fragments are logically equivalent
e Fragment two contains a syntax error.
e If x is 6 initially then

— the value in x is 8 after executing fragment one,

— the value in x is 6 after executing fragment two.
¢ x always has the value 8 after executing fragment two.

e x has either the value 5 or the value 8 after executing fragment one.

I think this is a bit involved. Very well, then, here’s a hint.

There’s more to it than meets the eye. That much is clear.

Bigger Example Four Assume that x and y are integer variables.

Then consider the following nested if statement.

if (x > 3)
if (x <= 5)
y=1
else if (x !'= 6)

If y has the value 2 after executing the above program ...then what do you know about x?
fragment,

Did you have to draw a diagram?

121

No, I used a sculpture this time.

Bigger Example Five

Assume that x and y are integer variables,

if (x>3)

if (x <= 5)
y=1;
else if (x != 6)
y =2
else
y=3;

...and consider the code fragment shown below:

I hope you noticed the difference between it and the
previous one (Bigger Example Four).

You .

Now the questions.

Question 1. If x is 1 before the fragment gets executed
what’s the value of y after the fragment is executed?
(Is it possible to give an answer to this question?)

Question 2.

Now erase the curly braces. What value must x have
before the fragment gets executed, for y to be 3 at the
end of the fragment?

What do you think about these problems?

They make for good practice.

Would you happen to have more?

More? You mean, real problems, programs?

Yes, to practice even further.

I actually do.

Very well, where are they?

Here’s a set of warmup problems of the kind you seem
to be looking for.

http://www.cs.indiana.edu/classes/a201/sum2002/notes/ifs.html

122

Here are my solutions. You're pretty quick, aren’t you?

http://www.cs.indiana.edu/classes/a201/sum2002/notes/ifsSol.html

Yes, and ready for more. Then here are some programming problems of the
kind you seem to be looking for.

http://www.cs.indiana.edu/classes/a201/sum2002/notes/pIfs.html

And I think you should work them all out.
http://www.cs.indiana.edu/classes/a201/sum2002/notes/pIfsSol.html

Weren'’t we supposed to start loops today.

Yes, and we can still do it. Then let’s go for it!

What’s the motivation? Remember the investment problem from the first
week? It was presented in lecture notes two.

Here’s the code in Java, most of it. What is in and what is in blue?

double balance = 10000;
int year = 0;

year = year + 1;

balance = balance + balance * 0.05;

System.out.println("Year: " + year);

The code in blue should be executed only once. The part in looks like what one would want to
have done repeatedly until the balance becomes big
enough, or doubles (or reaches 20,000).

In Java there is a while statement which is able to do With it one only need specify the red part, with an
the iteration for us. Like if is a composite statement. indication of when to stop. Or, rather, for how long
it should go on with the computing of it.

Here’s the code:

double balance = 10000;
int year = 0;

while (balance < 20000) {
year = year + 1;‘

balance = balance + balance * 0.05;

}

System.out.println("Year: " + year);

123

Can I draw a flowchart for this?

You sure may. Here it is:

START

year =10

while | balance < 20000 Y {

|

add interest
increment year

print year

STOP

It takes a while to understand all this, ... but once you do it you’re home free.

124

import java.io.x;
public class Ten {
public static void main(String[] args) {
int year;
ConsoleReader console = new ConsoleReader (System.in);
System.out.print ("Please enter the year then press Enter : ");

year = console.readInt();

if ((((year % 4) == 0) && ((year % 100) != 0) || (year < 1582))
. (year Y% 400 == 0)
) {
System.out.println("Leap year: " + year);
} else {

System.out.println(year + " not a leap year!");

Loops

Loops

What is the purpose of a while loop?

To execute a statement while a condition is true.

Let’s see some examples.

Here’s one that prints the first n numbers, where the
value of n comes from the user:

ConsoleReader console = new ConsoleReader (System.in);

int n = console.readInt();

int i = 0;

while (i < n) {
System.out.println(i);
i+=1;

}

Very good. What do you think of this one?

int year = 0;

while (year < 20) {
double interest = balance * 0.05;
balance = balance + interest;

}

Almost good, except it’s an infinite loop.

What did I forget?

The year doesn’t change.

OK. What is the purpose of a for loop?

To do what while does, except in a more systematic
manner.

In what way?

It clearly distinguishes an initialization step, the con-
dition that needs to be true for the loop to keep going,
and what we do from one step to the other.

Is this what you mean?

125

126

Yes, this is printing a line of 10 asterisks.

Could you do that with a while statement?

Yes, and here’s how:

i=0;

while (i < 10) {
System.out.print("*");
i=1i+1;

}
The for and while statements are equivalent. Yes, and this makes for good exercises.
What’s the purpose of a do-while? It lets you do the body once, first.
Can we see an example? First the syntax:

do {

) while ()

Very good, now the example. OK. Here’s a code fragment that adds all the numbers
that the user types in and then reports the sum of all
these numbers.

int sum = 0;
do {

127

int number = console.readInt();
sum = sum + number;
} while (number != 0);
System.out.println(sum) ;

Does this go on for ever? No. Our ad-hoc convention is that the program

frilled.cs.indiana.edu)webster ad-hoc

l1ad hoc \(’)ad-’ha":k, -’ho"-k; (’)a":d-’ho”-k\ adv

[L, for this]

(1659)

:for the particular end or case at hand without consideration of wider
application

frilled.cs.indiana.edu,

...ends when the user types a value of 0 (zero).

So you use a sentinel. Yes, the value of 0 (zero) acts as a sentinel in this case,
guarding the end of our processing.

This is only a convention, right? Yes, but it works for us.

Can you do this with a while or a for loop? Yes, but you’d have to test first.

And do-while just as well in this case. Plus, zero is such a great sentinel for addition!

How do you break a loop? Use the break statement.

What’s continue doing? It just resumes the loop from that point.

How often are you likely to use these? Not often (break and continue, that is) but in some

situations they can come in real handy.

OK, let’s do an exercise. Let’s see it.

What’s this code doing?
int i = 0;
while (i < 10)
i+=1;

Just going through the first 10 integers I suppose.

Correct. What’s this one do? <snicker>

int i = 0;
while (i < 10) ;
i+=1;

128

Doesn’t it do the same thing?

Don’t you see a difference?

Ah, the semicolon — that’s an infinite loop now.

Tricky.

Indeed.

You have to be careful.

How do you write 10 asterisks on a line.

Use a for loop.

How do you write 10 such lines?

Use a for inside a for?

Yes, here’s a diagram:

And how does the code look?

for (i = 0; i < 10; i++) {
for (j = 0; j < 10; j++) {
System.out.print ("*");

}

System.out.println();

129

And the diagram again:

=0 L0 -+

So these are nested loops. Yes, nested for loops.

Can you draw a square of asterisks of any size? Yes.

Just replace 10 in the code above by the size.

Can you make it hollow? With no stars inside?

Yes. I’d have to distinguish between
e the border and
e the inside,
and print
e spaces inside and

e stars on the border.

Can you do that?
Take a look.

130

public class Square {

public static void main(String[] args) {
ConsoleReader console = new ConsoleReader(System.in);
System.out.print ("Enter the size: ");
int size = comnsole.readInt(), i, j;
for (i = 0; i < size; i++) {

for (j = 0; j < size; j++) {
if @==01]j==0 1[I

i == (size - 1) ||
j == (size - 1)) {
System.out.print ("* ");
} else {
System.out.print (" ");
}
}
System.out.println();
}
}
}
How does it work? Here you go:

frilled.cs.indiana.edu),java Square
Enter the size: 4

* ok ok %

* *

* *

* ok k%
frilled.cs.indiana.edu%java Square
Enter the size: 8

* ok ok ok ok Kk ok ok

* *
* *
* *
* *
* *
* *

* ok ok ok ok ok % ok
frilled.cs.indiana.edu%java Square
Enter the size: 10

* ok ok ok ok ok ok ok X ok

*

* X X X * X
* X ¥ X X X ¥ ¥x

*
* %k ok ok ok ok k k k x
frilled.cs.indiana.edu),

131

Looks good.

Thanks. Lab notes contain all the details.

So here’s a more appropriate challenge for you. Oh, no...

Write a program that produces

e an ”E” (uppercase)

e whose size is user-defined.

Can you draw that for me?

There you go:

Three borders and half of a middle line...

And the user inputs the size?

Yes.

Not bad, not bad at all.

public class E {
public static void main(String[] args) {

ConsoleReader console = new ConsoleReader (System.in);
System.out.print ("Enter the size: ");
int size = console.readInt(), i, j;
for (1 = 0; i < size; i++) {
for (j = 0; j < size; j++) {

if (i ==0 ||
i == (size - 1) ||
j==01I
(i == (size - 1) / 2 && j < (size / 2))
) {
System.out.print ("* ");
} else {

System.out.print(" ");
}
}

System.out.println();

Could have been much harder.

132

I agree. I know you do.
Yes: X, 4... Well, let’s not even get into that now.
Sure, let’s wait for the lab. I can hardly wait.

frilled.cs.indiana.edu’java E
Enter the size: 10

* ok ok ok ok Kk Kk Kk k ok

*

* % Xk X

* %X X ¥ ¥ x

*

ok ok ok ok ok ok ok K ok
frilled.cs.indiana.edu’java E

Enter the size: 19

% ok ok ok ok ok ok ok ok ok ok ok ok K ok ok k ok Xk
*

* %k Xk k Xk 3k % xk

* X X X X X X X X X ¥ X ¥ X x

*
% ok ok k ok k k k k k Kk k k k k * k k X
frilled.cs.indiana.edu’

Two Dimensional Patterns

Nested loops, other loops, loops and a half, scalable letters.

Let’s practice a bit with for loops. Can you print the numbers from 0 to 9?7

Easy:

frilled.cs.indiana.eduj,cat One.java
class One {
public static void main(String[] args) {
for (int i = 0; i < 10; i++) {
System.out.println(i);
}
}
}
frilled.cs.indiana.edu%javac One.java
frilled.cs.indiana.edu’,java One

© 00N O WNHF-O

frilled.cs.indiana.edu)

Well, what if you want to print the numbers on the
same line?

Just use print in the loop,

frilled.cs.indiana.eduj,cat One.java
class One {
public static void main(String[] args) {
for (int i = 0; i < 10; i++) {

133

134

System.out.print (i) ;
}
System.out.println();

}

frilled.cs.indiana.edu%javac One.java
frilled.cs.indiana.edu’java One
0123456789

frilled.cs.indiana.edu’

...and one (empty) println outside of it:

Very good. But don’t you want to space them out a bit?

OK, I will print each number in parentheses.

frilled.cs.indiana.edujcat One.java
class One {
public static void main(String[] args) {
for (int i = 0; i < 10; i++) {
System.out.print(" (" + i + ")");
}
System.out.println();
}
}
frilled.cs.indiana.edu%javac One.java
frilled.cs.indiana.edu’java One
(0) (1) (2) (3) (4) (B) (&) (7) (8) (9

frilled.cs.indiana.edu’

Looks good. Can you write 10 such lines?

Let me first highlight the code that prints a line.

class One {
public static void main(String[] args) {
[for (int i = 0; i < 10; i++) { |

D]

System.out.println();

‘System.out.print(" M+ 1+ MM, ‘

That’s the part that you have in .

Exactly. Now let’s do that 10 times. Use a for loop, with a different index, j.

Why j, when I can call it ?

frilled.cs.indiana.eduj,cat One.java
class One {
public static void main(String[] args) {

for (int = 0; < 10; [line f+) {

}

frilled.cs.indiana.edu’,javac One.

}

for (int i = 0; i < 10; i++) {

}

System.out.println();

135

Calling it would be just fine with me.

System.out.print (" (" + i + ")");

frilled.cs.indiana.eduj,java One

(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)

(1)
(1)
(1)
D)
D)
1
1
1
€D
€D

(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)

@) [@]e) 6) (7

(3
(3
(3
(3
(3)
(3)
(3)
3
3

(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)

(5)
(8)
(5
(5
(8)
(8)
(8)
(5
(5

frilled.cs.indiana.edu)

(6)
(6)
(6
(6)
(6)
(6)
(6)
(6)
(6)

(7
(7
("
(7
(7
(7
(7
(7
(7

java

(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8
(8

9
(9
(9
€D
€D
9
9
9
€D
€D

Although that doesn’t influence in the very least the
way the program actually works.

Looks good, doesn’t it?

Relax. I marked two of the (4)’s in your output with

and blue. Can you tell me what the difference is
between them?

They appear on different lines.

Indeed, for the first one line is 0 (zero), while for the
second one line has a value of 3 (three).

Let me change the output to include information
about this second dimension.

frilled.cs.indiana.eduj,cat One.java
class One {
public static void main(String[] args) {

0; line < 10; line++) {

for (int line
for (int i = 0; i < 10; i++) {

¥

System.out.println();

Good idea.

System.out.print (" C‘|+ line + ","|+ i+ "™mmM;

136

}

frilled.cs.indiana.edu%javac One.java

frilled.cs.indiana.edu’java One

(o, 0) (o, 1) (o, 2) (0, 3) (0, 4) (0, 5) (0, 6 (0, 7) (0, 8) (0, 9)
(1, 00 (1, 1) (1, 2) (1, 3) (1, 4) (1, B) (1, 6) (1, 7) (1, 8) (1, 9
(2, 0) (2, 1) (2, 2) (2, 3) (2, 4) (2, B) (2, 86) (2, 7 (2, 8 (2, 9
(3, 00 (3, 1) (3, 2) (3, 3) (3,4) (3,5) (3,6) (3, 7) (3, 8 (3, 9
(4, 0) (4, 1) (4, 2) (4, 3) (4, 4) (4, b) (4, 6) (4, 7) (4, 8) (4, 9
(5, 0) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) (5, 7) (5, 8) (5, 9)
(6, 0) (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) (6, 7) (6, 8) (6, 9)
(7, 00 (7, 1) (7, 2) (7, 3) (7, 4) (7, 5) (7, 6) (7, 7) (7, 8 (7, 9)
(8, 0) (8, 1) (8, 2) (8, 3) (8, 4) (8, 5) (8, 6) (8, 7) (8, 8) (8, 9)
(9, 0) (9, 1) (9, 2) (9, 3) (9, 4) (9,) (9, 6) (9, 7) (9, 8) (9, 9)
frilled.cs.indiana.edu’

It was an easy change. I see, the part in is new.

Now I have 100 cells in the output, and I have a name Yes, 1line and i, as a pair of numbers.
for each one of them.

Might as well rename i as something more meaningful. Such as column.

And let’s ask the user to specify the size of the square Use ConsoleReader for that.
(number of lines and columns).

frilled.cs.indiana.edujcat One.java
class One {
public static void main(String[] args) {
ConsoleReader c = new ConsoleReader(System.in);
System.out.print ("What size? ");
int = c.readInt();

for (int line = 0; line < ; line++) {
for (int column = 0; column < ; column++) {

System.out.print(" (" + line + ", " + + MM
}

System.out.println();

}

}
frilled.cs.indiana.edu%javac One.java
frilled.cs.indiana.edu’java One
What size? 4

(0, 0) (0, 1) (0, 2) (0, 3)

1, 00 (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1) (2, 2) (2, 3)

3, 00 (3, 1) (3, 2) (3, 3)
frilled.Cs.indiana.edu%java One
What size? 6

(0, 0) (o, 1) (0, 2) (0, 3) (0, 4) (0O, 5)

(1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, B
(2, 0) (2, 1) (2, 2) (2, 3) (2, 4) (2, B
(3, 00 (3, 1) (3, 2) (3, 3) (3, 4) (8, 5)
(4, 0) (4, 1) (4, 2) (4, 3) (4, 4) (4, 5
(5, 00 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5)
frilled.cs.indiana.edu’

137

Looks good, doesn’t it? Relax. What’s new is in red and , isn’t it?

Yes. It looks really good. I have 6 characters for each ~ Can you highlight the second column?
cell, and everything looks nice and tidy.

You mean the set of cells for which column has a value You got it.
of 1 (one)?

frilled.cs.indiana.edul,cat One.java
class One {
public static void main(String[] args) {
ConsoleReader c¢ = new ConsoleReader (System.in);
System.out.print ("What size? ");
int size = c.readInt();
for (int line = 0; line < size; line++) {
for (int column = Q; column < size; column++) {
‘if (column == 1) {‘
System.out.print (" **x ");

System.out.print(" (" + line + ", " + column + ")");

System.out.println();

}

frilled.cs.indiana.eduj,javac One. java
frilled.cs.indiana.edu’,java One

What size? 6

(0, 0) *x (0, 2) (0, 3) (0, 4) (O, 5)
(1, 00 *x (1, 2) (1, 3) (1, 4) (1, 5)
(2, 00 *x (2, 2) (2, 3) (2, 4) (2, 5)
(3, 00 *x (3, 2) (3, 3) (3,4 @B, 5
(4, 0) xk (4, 2) (4, 3) (4, 4 (4, 5
(5, 0) *x (5, 2) (5, 3) (5, 4) (5, 5)
frilled.cs.indiana.edu,

I can do the first diagonal now. I know, the change is minor.

frilled.cs.indiana.educat One. java
class One {

138

public static void main(String[] args) {
ConsoleReader ¢ = new ConsoleReader (System.in);
System.out.print ("What size? ");
int size = c.readInt();
for (int line = 0; line < size; line++) {
for (int column = 0; column < size; column++) {
if (column ==) {
System.out.print (" xx ");
} else {
System.out.print(" (" + line + ", " + column + ")");
}
}

System.out.println();

}
}
frilled.cs.indiana.edu%javac One.java
frilled.cs.indiana.edu%java One
What size? 6
#* (0, 1) (0, 2) (0, 3) (0, 4) (0, 5)
(1, 0) *k (1, 2) (1, 3) (1, 4 (1, 5)
(2, 0) (2, 1) *k (2, 3) (2, 4) (2, 5)
(3, 0) (3, 1) (3, 2) *x (3, 4) (38, 5)
(4, 0) (4, 1) (4, 2) (4, 3) ok (4, 5)
(5, 0) (5, 1) (5, 2) (5, 3) (5, 4) *x
frilled.cs.indiana.edu,

What if you want to see both the last column and first I don’t know, you tell me.
diagonal?

Well, here’s what I think: I go through all the cells Exactly.

anyway.
I check their names. And if you can tell by their name
...that they belong to either the first diagonal or to ...you turn them on.

the last column,

That’s it. This would turn on all of the cells that ap- It’s just a union of sets.
pear on the first diagonal and all of those that appear
on the last column.

Easy for you to say that, but here’s the program:

frilled.cs.indiana.eduj,cat One.java
class One {
public static void main(String[] args) {
ConsoleReader c = new ConsoleReader (System.in);
System.out.print ("What size? ");
int size = c.readInt();
for (int line = 0; line < size; line++) {

for (int column = 0; column < size; column++) {

if (column == line ‘II column == (size - 1)‘) {

System.out.print ("
} else {

% %

")

System.out.print (" (" + line + ", " + column + ")");

}
}
System.out.println();

}
}
frilled.cs.indiana.edu%javac One.java
frilled.cs.indiana.edu’java One
What size? 6

* (0, 1) (0, 2) (0, 3) (0, 4)
(1, 0) *x (1,2 (1, 3) (1, &
(2, 0) (2, 1) *x (2, 3) (2, 4)
(3, 0) (38, 1) (8,2 = (3,4
(4, 0) (4, 1) (4, 2) (4, 3) * %
(5, 0) (5, 1) (5, 2) (5, 3) (5, 4
frilled.cs.indiana.edu,

* %
* %
* %
* %
* %
* %

Looks good.

139

And T was the first to say that.

How can we make this look more like a square?

Maybe change the output a bit.

frilled.cs.indiana.edul,cat One.java
class One {

How about this:

public static void main(String[] args) {
ConsoleReader ¢ = new ConsoleReader(System.in);

System.out.print ("What size? "
int size = c.readInt();

);

for (int line = 0; line < size; line++) {
for (int column = 0; column < size; column++) {
if (column == line || column == (size - 1)) {
System.out.print("x ");

} else {
System.out.print ("
}

}
System.out.println();

}
}
frilled.cs.indiana.edu%javac One.java
frilled.Cs.indiana.edu%java One
What size? 8
* *

")

140

*
* X X X X x

*
frilled.cs.indiana.edu}

Did you catch that?

You bet. ..
Now the names are only implicit. Only in our program’s mind.
We can draw patterns, scalable patterns. Here’s code for a Z:

frilled.cs.indiana.eduj,cat One.java
class One {
public static void main(String[] args) {
ConsoleReader c = new ConsoleReader (System.in);
System.out.print ("What size? ");
int size = c.readInt();
for (int line = 0; line < size; line++) {
for (int column = 0; column < size; column++) {

if (column == (size - 1 - line)
line == 0 [::J
line == (size - 1))

{

System.out.print ("* ");
} else {

System.out.print (" ");
}

}
System.out.println();

}
}
frilled.cs.indiana.edu%javac One.java
frilled.cs.indiana.edu’java One
What size? 7
* ok ok ok ok k%

* % ok ok Kk K *x
frilled.Cs.indiana.edu%java One
What size? 4

* x k%

*
* % ok ok
frilled.cs.indiana.edu)

141

Can you draw a circle? A circle?

Sure, why not? Of course:

frilled.cs.indiana.eduj,cat One.java
class One {
public static void main(String[] args) {

ConsoleReader ¢ = new ConsoleReader (System.in);

System.out.print ("What size? ");
int size = c.readInt();

for (int line = 0; line < size; line++) {
for (int column = 0; column < size; column++) {

- size / 2) +‘

(column - size / 2) * (column - size / 2) - ‘

if (
‘Math.abs((1line - size / 2) * (line
(size -1) * (size - 1) / 4 ‘
m ‘ (0.15 * size) ‘
{

System.out.print ("* ");
} else {

System.out.print(" ");
}

}
System.out.println();

}
}
frilled.cs.indiana.edu%javac One.java
frilled.cs.indiana.edu’,java One
What size? 20

142

* *
frilled.cs.indiana.edu}

Hey, now wait a minute!

I hope you understand approzimations.

And the equation of a circle. If you don’t, don’t worry...

Don’t worry, be happy! Well, then it’s time for a new lab assignment!

public class Patterns {
public static void main(String[] args) {
ConsoleReader console = new ConsoleReader (System.in);
System.out.print ("Enter the size: ");
int size = console.readInt(), i, j;
for (i = 0; i < size; i++) {
for (j = 0; j < size; j++) {
if (false) {
System.out.print ("* ");

Here’s the grid:

} else {
System.out.print (" ");

}

}

System.out.println();

}
}
}
Now, let’s look at all the patterns.
Pattern 1: Pattern 2:

(j == 0) (i==0)

143

Pattern 3: Pattern 4:
EnssasewasEanes|

(j == (size - 1)) (i == (size - 1))
Pattern 5: Pattern 6:

((G == 0) & (i <= size/2)) ((G == 0) & (i > size/2))
If you see that (in places) we’re off by 1 (one), ...then you’re on the right track.
But keep in mind we are interested here in the over- ...so we trade (where appropriate) absolute accuracy
all understanding of inequalities that determine (or for a shorter (simpler, yet still reasonably exact) for-
define) the patterns, mula.
Pattern 7: Pattern 8:

zceczai) T

((1 == 0) & (j <= size/2)) (1 ==0) & (j > size/2))

Pattern 9: ((j == (size - 1)) && (i <= size/2))

144

Pattern 10: ((j == (size - 1) && (i > size/2))

Pattern 11: ((i == (size - 1)) && (j < size/2))

R l/or
Pattern 12: ((i == (size - 1)) && (j > size/2)
Pattern 13: Pattern 14:
| r e A A o |
|Frerel e
(j == size/2) (i == size/2)
Pattern 15: Pattern 16:

15: ((j == size/2) &&(i <= size/2))
16: ((j == size/2) &&(i > size/2))

145

Pattern 17: Pattern 18:

17: ((1 == size/2) &&(j <= size/2))
18: ((i == size/2) &&(j > size/2))

Pattern 19: Pattern 20:

1 ==3 i+ j == (size - 1))

Pattern 21: Pattern 22:

21: ((i == j) &&(i <= size/2) && (j <= size/2))
22: ((1 == j) &&(i > size/2) && (j > size/2))

Can either one of these conditions be simplified at all?

Pattern 23: Pattern 24:

23: ((i + j == (size - 1)) &&(i <= size/2) && (j > size/2))
24: ((i + j == (size - 1)) && (i > size/2) && (j <= size/2))

Can either one of these be simplified?

146

If we have these "atomic” patterns (described above), how we can combine them to obtain more complicated
patterns (such as the ones illustrated below):

Uppercase T:

A cell should be turned ON if it appears in the group described by pattern 13
OR if it appears in the group that is described by pattern 2, otherwise the cell
is OFF (blank)

Uppercase L:

A cell should be turned ON if it appears in the group described by pattern 13
OR if it appears in the group described by pattern 12

Uppercase E:

If cell is in pattern 1 OR in pattern 2 OR in pattern 4 or in pattern 17 then the
cell should be turned ON otherwise leave the cell blank (print a space)

Uppercase W:

Cell to be turned ON if pattern 1 matches OR if pattern 24 matches OR if
pattern 22 matches OR if pattern 3 matches, otherwise leave cell blank

(20) OR (3) OR (18)

Uppercase R:

147

22) 1@ 11 1@

I am sure you can think of many other patterns: Y, Q (for example). A diamond.

EF Your task is to write a program that produces a scalable 4 (four):

Did you notice the space on right?

Yes, it’s for writing the conditions.

Let me give you another problem, for when you’re
finished. I will tell you the problem, and show you
the solution and you tell me what’s wrong about it.

OK.

A bank account starts out with $10,000. Interest is
compounded at the end of every month at 6 percent
per year (0.5 percent per month). At the beginning
of every month, $500 is withdrawn to meet college
expenses after the interest has been credited. After
how many years is the account depleted?

OK, I know what you want to say now: suppose
the numbers ($10,000, 6 percent, $500) were user-
selectable. Are there any values for which the algo-
rithm we develop does not terminate? If so, make
sure it always terminates. Was that it?

Yeah. ..

Well, T don’t see anything fishy just yet.

frilled.cs.indiana.edu%webster fishy
fishy \’fish-e”-\ fish-i-er; -est
(1547)

1: of or resembling fish esp. in taste or odor

‘2: creating doubt or suspicion: QUESTIONABLE

frilled.cs.indiana.edul

What do you plan to do about it in your program?

So here’s the code, for you to look at:

148

class Interests {
public static void main(String[] args) {
ConsoleReader c = new ConsoleReader (System.in);

System.
System.

double

System.

double

System.

double
double

out.println("Welcome to the financial calculator.");
out.print("What’s your initial balance? ");
initialBalance = c.readDouble();

out.print("What’s the yearly interest? ");
yearlyInterest = c.readDouble() / 100;

out.print ("How much do you plan to withdraw monthly? ");
monthlyStipend = c.readDouble();

calculation =

initialBalance * (1 + yearlyInterest / 12) - monthlyStipend;
if (calculation >= initialBalance) {
System.out.println("This will last forever.");

} else

{

double balance = initialBalance;
int months = 0;
while (balance * (1 + yearlyInterest / 12) > monthlyStipend) {

}

months += 1;
balance = balance * (1 + yearlyInterest / 12) - monthlyStipend;

int years = months / 12;
months = months % 12;
System.out.println("The account will last " + years +

" year(s) and " + months + " month(s).");

System.out.println("Ending balance will be: " +

}

Math.round(balance * 100) / 100.00
+ " dollars."

);

Why is this program not calculating the last case correctly?

Also, is this program printing the right (correct) output?

Why or why not?

frilled.cs.indiana.eduj,cat Why.java

class Why

{

public static void main(String[] args) {
double sum = 0;
for (int 1 = 0; i < 10; i++)

sum

= sum + 0.1;

System.out.println(sum) ;

X
}

frilled.cs.indiana.edujjavac Why.java
frilled.cs.indiana.edu),java Why
0.9999999999999999
frilled.cs.indiana.eduj

More Loops

More practice with loops. Loops, tokenizers, and Monte Carlo problems.

Do you like loops? I don’t know: so far, so good.
Now we need to move on. First a few simple, basic exercises.
Can you explain this? I sure can.

frilled.cs.indiana.edu)cat Two.java
class Two {
public static void main(String[] args) {
for (int i = 0; i < 10; i++) {
System.out.print (i) ;
}
i=10;
System.out.println(i);
}
}
frilled.cs.indiana.edu%javac Two.java
Two.java:6: Undefined variable: i
i = 10;

Two.java:7: Undefined variable: i
System.out.println(i);

2 errors
frilled.cs.indiana.edu¥

Can you fix it? I sure can.

frilled.cs.indiana.edu)cat Two.java
class Two {
public static void main(String[] args) {
int i;
for (i = 0; i < 10; i++) {
System.out.print(i);

149

150

}
i = 10;
System.out.println(i);

X

frilled.cs.indiana.edu%javac Two.java
frilled.cs.indiana.edujava Two
012345678910

frilled.cs.indiana.eduj

How do you call that? I’d say: scope of a variable.

frilled.cs.indiana.edu)webster scope

scope |’sko”-p| n

[It scopo purpose, goal, fr. Gk skopos; akin to Gk skeptesthai to
watch, look at -- more at SPY]

(1555)

1: space or opportunity for unhampered motion, activity, or thought

2: INTENTION, OBJECT

3: extent of treatment, activity, or influence

4: |range of operation‘

syn see RANGE

frilled.cs.indiana.edu}

Sounds good. It’s the range of operation for that variable.

Take a look at this: It doesn’t compile!

class Wow {
public static void main(String[] args) {

{
int i;
i=3;
System.out.println(i);
}
System.out.println(i);
}
}
Why? The curly braces!
Indeed, they are defining the scope. And they do it in the same way for:

e classes
e if statements
e for loops

e while loops

151

As well as other kinds of loops. There’s just one more, as we will see below.

In any event, having blocks of statements available as Let me see some examples.
standalone entities that can be placed anywhere inside

the program can sometimes be a source of confusion

for the beggining Java programmer.

Here’s one: That is not a source of any confusion!

frilled.cs.indiana.educat Wow. java
class Wow {
public static void main(String[] args) {

int x = 1;
if (x> 2) {

System.out.println("Yes, " + x + " is greater than 2.");
}

}

frilled.cs.indiana.edu%javac Wow.java
frilled.cs.indiana.edu)%java Wow
frilled.cs.indiana.edu,

I know, but consider this: Ah, I see the semicolon!

frilled.cs.indiana.eduj,cat Wow.java
class Wow {
public static void main(String[] args) {

int x = 1;
if (x> 2) [5]4

System.out.println("Yes, " + x + " is greater than 2.");
}

}
}
frilled.cs.indiana.edu%javac Wow.java
frilled.cs.indiana.edu%java Wow
Yes, 1 is greater than 2.

frilled.cs.indiana.edu¥

I hope you do. That is an if with an empty body.

That’s how we got an infinite loop last time. There’s one thing to be learned from this.
Syntax rules. And people who use it properly, rock!

Let’s look at other kind of loops. OK, here’s a program that talks to the user.

frilled.cs.indiana.edu,cat Three. java
class Three {
public static void main(String[] args) {

152

ConsoleReader ¢ = new ConsoleReader (System.in);
String line;

System.out.print ("Type something: ");

line = c.readLine();

System.out.println("You typed: " + line);
‘} while (! line.equals("bye"));
System.out.println("Good bye!");

}
}
frilled.cs.indiana.edu),javac Three. java
frilled.cs.indiana.edu),java Three
Type something: I am here
You typed: I am here
Type something: You are there
You typed: You are there
Type something: Your name is Echo
You typed: Your name is Echo
Type something: Bye
You typed: Bye
Type something: bye
You typed: bye
Good bye!
frilled.cs.indiana.edu’

Using while is just a bit longer. Yes, since the test comes first.

frilled.cs.indiana.edu)cat Three. java
class Three {
public static void main(String[] args) {
ConsoleReader c¢c = new ConsoleReader (System.in);
String line;
System.out.print ("Type something: ");
line = c.readLine();
System.out.println("You typed: " + line);
‘while (! line.equals("bye")) {
System.out.print ("Type something: ") ;
line = c.readLine();
System.out.println("You typed: " + line);

System.out.println("Good bye!");
}

}
frilled.cs.indiana.edu),javac Three. java
frilled.cs.indiana.edu),java Three
Type something: Works the same, doesn’t it?
You typed: Works the same, doesn’t it?
Type something: It does seem so.
You typed: It does seem so.
Type something: I am happy.
You typed: I am happy.

153

Type something: BYe

You typed: BYe

Type something: byE

You typed: byE

Type something: bye

You typed: bye

Good bye!
frilled.cs.indiana.edu,

In both cases we work with whole loops. Yes, we know we’re done either at the beginning or at
the end of the loop’s body of statements.

Sometimes we’d like to allow for being able to realize And end your processing in mid-loop? Doesn’t this
we're done halfway through the loop. coding situation have a specific name?

Yes, it’s called the loop and a half problem. Very good. Here’s an example: A program that reads
lines from a file, then reverses them.

frilled.cs.indiana.edu%cat Four. java
class Four {
public static void main(String[] args) {
ConsoleReader ¢ = new ConsoleReader(System.in);
boolean done = false;
String line;
while (! done) {
System.out.print ("Echo> ");
line = c.readLine();
if (line == null) { ‘// EQOF or ctrl-D for that
done = true;
} else {
System.out.println(line);

}

}
}
frilled.cs.indiana.edu%javac Four. java
frilled.cs.indiana.edujava Four
Echo> Hello!
Hello!
Echo> I am here.
I am here.
Echo> How are you?
How are you?
Echo> I am fine, how about you?
I am fine, how about you?
Echo> You don’t say...
You don’t say...
Echo> I am going to type control-D now
I am going to type control-D now
Echo> Bye!
Bye!
Echo> frilled.cs.indiana.edu¥

154

Where’s the file?

You can pipe one into your program!

(See your friendly TA or ask me for more details).

Alright. So we read lines, one by one. When the line
we read is empty there’s nothing to be reversed. So
the program simply quits the loop.

Oh, I see: and we skip the lower half of the loop.

Indeed, at that point we simply quit it.

How do you do that?

One can do that with break, or...

...using a boolean variable, and an if statement.

We choose the second approach, because one can ar-
gue it’s a bit more structured.

But the first one is also often used, and it greatly
simplifies code on occasion.

So now we have a basic echo program.

Yes, but as of right now nothing is being reversed.
Wasn’t that what we set out to do?

OK, let’s make this more exciting, as if through a
looking glass.

Yes, s’tel esrever sretcarahc ni sdrow!

Well, yletanutrofnu ew t’nac od taht.

?neht ,elbissop si siht spahrep tuB

That, we can do.

frilled.cs.indiana.edu)cat Four.java
class Four {

public static void main(String[] args) {
ConsoleReader c¢c = new ConsoleReader (System.in);

boolean done = false;

String line;

while (! done) {
System.out.print ("Echo> ");
line = c.readLine();

if (line == null) { // EOF or ctrl-D for that

done = true;

} else {
String rev = "";
int i;

for (i = line.length() - 1; i >= 0; i—-) {

rev += line.charAt(i);

}

System.out.println(rev);

}
}
frilled.cs.indiana.edu%javac Four.java
frilled.Cs.indiana.edu%java Four
Echo> Hello!

155

'olleH

Echo> I say, that’s Spanish.

.hsinapS s’taht ,yas I

Echo> Arabic?

?cibarA

Echo> What’s going on, can you please tell me.
.em llet esaelp uoy nac ,no gniog s’tahW

Echo> Hmmm. ..

. mmmH
Echo> :-)
)-:
Echo> ... ees I
I see...
Echo> .ahctoG
Gotcha.

Echo> frilled.cs.indiana.edu,

I like this guy, Gotcha. Once upon a time there was a Polish carpenter, by
the name of Zbigniew Gotcha, who lived in Kracow.
You know the story?

No. I don’t either, but I like the way it starts.
Time to wrap up. Let’s do random numbers.
Yes, we kept 7 for dessert. Do you like sherbet?

Let’s program the following simulation:

Darts are thrown at random points onto the square with corners (1 ,1) and (-1, -1). If the dart lands
inside the unit circle, that is, the circle with center (0, 0) and radius 1 it is a hit. Otherwise it is
a miss. Run this simulation to determine an experimental value for the fraction of hits in the total
number of attempts, multiplied by 4.

Oh, this is so easy! Easy as !

Fine, if it’s easy, why don’t you do it first? Relax, here it is:

frilled.cs.indiana.educat Pi.java
import java.util.Random;
public class Pi {
public static void main(String[] args) {
Random r = new Random();
double x, y, d;
int i, count = 0;
for (i=0; i < 100000 ; i++) {
x = r.nextDouble() * 2 - 1;
y = r.nextDouble() * 2 - 1;
d = Math.sqrt(x * x + y * y);

156

if (d < 1) count++;

}

System.out.println("Pi is approximately " + 4.0 * count / i);

}
}
frilled.cs.indiana.edu)%javac Pi.java
frilled.cs.indiana.edu)java Pi
Pi is approximately 3.13648
frilled.cs.indiana.edu)java Pi
Pi is approximately 3.15064
frilled.cs.indiana.edu%java Pi
Pi is approximately 3.14424
frilled.cs.indiana.edu%java Pi
Pi is approximately 3.1422
frilled.cs.indiana.edu)java Pi
Pi is approximately 3.1438
frilled.cs.indiana.edu’%

Can you explain it?

The probability of a hit is the fraction that the circle
represents of the total area.

It is also close to the ratio of the measured frequencies:

hits divided by attempts.

So we write the formulas, and the radius simplifies, as
it appears on both sides.

But there is a factor of half (5) which. ..

1
2

...1s squared, so it participates as a fourth (
end, and there you have it.

%) in the

Pretty good.

I want to do more problems.

I was hoping you would.

I'm in great shape today.

Here’s a program that helps with problem 6.1

Where does this number come from?

Just ignore it for now. ..

import java.util.x*;
import java.io.x;
class Six {

What does the program do?

public static void main(String[] args) {
ConsoleReader console = new ConsoleReader(System.in);

System.out.print ("Hello> ");

String line = console.readLine();

while (line != null) { // °D would do it
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
String token = tokenizer.nextToken();
System.out.println(token.toUpperCase());

}

System.out.print("Hello> ");

line = console.readlLine(); // what if we take this out?

157

}
System.out.println("End of program.");
}
}
Reads lines, one by one. When does it end?
When you type Control-D. Which is EOF (end of file).
Yes, in that case the line is null. What does it do, line by line?

Looks at the tokens, and prints them back, but con- Not much different from the one about Zbigniew, ex-
verted into uppercase. cept this one uses this StringTokenizer.

Exactly, that’s the main difference. How does that work?

Take a closer look:

StringTokenizer | tokenizer| = new StringTokenizer(line);
while (.hasMoreTokens()) {
String token = .nextToken();

System.out.println(token.toUpperCase());
}

Better look this class up.®

%http://java.sun.com/products/jdk/1.2/docs/api/java/util/StringTokenizer.html

It’s like a machine gun loaded with words. Or like a stapler, if you don’t mind.

A stapler would also be a good analogy. With staples of variable length.

Glued together by blank spaces. Staples are tokens.

frilled.cs.indiana.edu)webster token

to-ken \’to”"--ken n

[ME, fr. OE ta"-cen, ta"-cn sign, token; akin to OHG zeihhan sign, Gk
deiknynai to show -- more at DICTION]

(bef. 12¢)
1: an outward sign or expression <his tears were tokens of his
grief>

2a: SYMBOL, EMBLEM <a white flag is a token of surrender>;
2b: |an instance of a linguistic expression

3: a distinguishing feature: CHARACTERISTI

[...]

frilled.cs.indiana.edu}

For both problem 6.2 and 6.3 the trick is to interpret I think I can handle that (ignore the numbers).
(read and promptly evaluate) input.

158

You’re going to have to read Which is Control-D (in Unix).
e 3 rate,
e then numbers,
e finished by zero...

...then numbers again, ending with EOF.

Or some such thing. I could even end it with a keyword, such as “quit”
or “bye”, or some other meaningful word.

Really, how?

Take a look.

import java.util.x;
import java.io.x;
class TwoAndThree {
public static void main(String[] args) {
ConsoleReader console = new ConsoleReader (System.in);
System.out.print("Rate>");
String line = console.readLine();
StringTokenizer tokenizer = new StringTokenizer(line);
double rate = Double.parseDouble(tokenizer.nextToken()) ;
double amount;
do {
System.out.print ("Dollars>") ;
line = console.readLine();
tokenizer = new StringTokenizer(line);
amount = Double.parseDouble(tokenizer.nextToken());
} while (amount > 0);
do {
System.out.print ("Euros>");
line = console.readLine();
if (line == null || line.equalsIgnoreCase("quit"))
break;
tokenizer = new StringTokenizer(line);
amount = Double.parseDouble(tokenizer.nextToken());
} while (true);
System.out.println("Thank you for using this program.");

This should get you started.

Nice, but I see that you’re assuming the user willnever So I could get by without a tokenizer. I agree, but I
type more than one number on a line. used one for the sake of practice.

I have a larger set of problems for next time.

159

Can’t wait. Let’s press on with the ones for today.
Next one up: problem 6.4, page 263 (Horstmann).

Simulate the wandering of an intoxicated person in a square street grid. For 100 times, have the
simulated drunkard randomly pick a direction (east, west, north, south) and move one block in the
chosen direction. After the iterations, display the distance that the drunkard has covered. (One
might expect that on average the person might not get anywhere because the moves to different
directions cancel another out in the long run, but in fact it can be shown that with probability 1
(certainty) the person eventually moves outside any finite region.

There are many ways of solving this problem.

Yes, but empathy would not be one of them.

Of course. What I meant was that you need to gen-
erate random directions.

And you have more than one way to produce random
numbers.

Let’s use whatever the book uses.

It’s a good book.

I know.

What book?

In addition to that, I would like to use an object ori-
ented approach.

And bring a drunkard into the picture.

Exactly.

A drunkard is like a BankAccount.

I was going to say.

import java.util.x;

class Drunkard {

int x, y;

Drunkard(int x, int y) {
this.x = x;
this.y = y;

}

void moveNorth() {
this.y -= 1;

}

void moveEast() {
this.x += 1;

}

void report() {

Well, here’s how I'd get started.

System.out.println("Hiccup: " + x + ", " + y);

}
}

class Four {

public static void main(String[] args) {

Random generator = new Random() ;

160

Drunkard drunkard = new Drunkard(100, 100);
int direction;
for (int i = 0; i < 100; i++) {
direction = Math.abs(‘generator.nextInt()‘) % 4;

if (direction == 0) { |// N
drunkard.moveNorth() ;

} else if (direction == 1) {
drunkard.moveEast();

} else if (direction == 2) {
System.out.println("Should move South.");

} else if (direction == 3) {
System.out.println("Should move West.");

} else {
System.out.println("Impossible!");

}
drunkard.report();
}
}
}
Not bad at all. Of course, one needs to finish it first.
Reminds me of homework assignment two. Somewhat. Now let’s look at 6.5 and 6.6.

Suppose a cannonball is propelled vertically into the air with a starting velocity vg. Any calculus
book will tell us that the position of the ball after ¢ seconds is

s(t) = —0.5gt> + vot
where g = 9.8177 is the gravitational force of the earth. No calculus book ever mentions why someone
would want to carry out such an obviously dangerous experiment, so we will do it in the safety of the
computer. In fact, we will confirm the theorem from calculus by a simulation. In our simulation, we
will consider how the ball moves in very short time intervals A¢. In a short time interval the velocity

v is nearly constant, and we can compute the distance the ball moves as As = vAt. In our program,
we will simply set

double deltaT = 0.01;
and update the position by
s = s + v *x deltaT;

The velocity changes constantly—in fact it is reduced by the gravitational force of the earth. In a
short time interval, v = —gAt, and we must keep the velocity updated as

v =v - g * deltaT;

161

In the next iteration the new velocity is used to update the distance. Now run the simulation until
the cannonball falls back onto earth. Get the initial velocity as an input (1007 is a good value).
Update the position and velocity 100 times per second, but print out the position only every full
second. Also print out the the values from the exact formula s(t) = —0.5gt2 + vyt for comparison.

What is the benefit of this kind of simulation when an exact formula is not available? Well, the
formula from the calculus book is not exact. Actually the gravitational force diminishes the further
the cannonball is away from the surface of the earth. This complicates the algebra sufficiently that it
is not possible to give an exact formula for the actual motion, but the computer simulation can simply
be extended to apply a variable gravitational force. For cannonballs, the calculus book formula is
actually good enough, but computers are necessary to compute accurate trajectories for higher-flying
objects such as ballistic missiles.

Now to complete the picture we need to say that most cannonballs are not shot upright but at an
angle. If the starting velocity has magnitude v and the starting angle is «, then the velocity is
actually a vector with components v, = vcosa and v, = vsina. In the z-direction the velocity does
not change. In the y-direction the gravitational force takes its toll. Repeat the simulation from the
previous exercise, but store the position of the cannonball as a Point2D variable. Update the = and
y positions separately, and also update the z and y components of the velocity separately. Every full
second, plot the location of the cannonball on the graphics display. Repeat until the cannonball has
reached the earth again.

This kind of problem is of historical interest. The first computers were designed to carry out just
such ballistic calculations, taking into account the diminishing gravity for high-flying projectiles and
wind speeds.

Isn’t a cannonball like a drunkard? Yes, they’re both tiggers.

They all deal directly with gravitational fields.

Cannonballs require more physics, though.

class Cannonball {

double x;

double y;

double vx;

double vy;

final double g = 9.81;

Cannonball(double speed, double angle) {
x = 0;
y = 0;
vx = Math.cos(angle) * speed;
vy = Math.sin(angle) * speed;

}

void move() {
double deltaT = 0.01;
x += vx * deltaT;
y += vy * deltaT;
vy —-= g * deltaT;

}

void report() {
System.out.println("Located at: (" + x + ", " + y + ")");

162

}

double height () {
return y;

X

}
class FiveAndSix {
public static void main(String[] args) {
Cannonball ¢ = new Cannonball(10, Math.PI / 4);
for (int i = 0; i < 10 * 100; i++) { // flying 10 seconds
c.move();
c.report();
if (c.height() < 0) {
System.out.println("SPLO00F! The cannonball landed!");
break;

Homework assignment one! Almost, only in finer steps.

Could you also compute the highest point that the That would almost be problem 16, wouldn’t it?
cannonball gets to?

Problem 16. Write a program that reads a series of floating-point numbers and prints:

e the maximum value
e the minimum value

e the average value

It would. We’d have to update our notion of a current maximum
every time we are looking at a height.

Come to think of it the cannonball could do it. Intelligent cannonball.

Intelligent, but misguided. Well, here it is anyway:

class Cannonball {
double x;
double y;
double vx;
double vy;
final double g = 9.81;
double max;
Cannonball(double speed, double angle) {
x = 0;
y = 0;
vx = Math.cos(angle) * speed;

163

vy = Math.sin(angle) * speed;
max = 0;
}
void move() {
double deltaT = 0.01;
x += vx * deltaT;
y += vy * deltaT;
vy —= g * deltaT;

‘if (y > max) { max = y; }

}
void report() {

System.out.println("Located at: (" + x + ", " + y + ") ");

‘System.out.println(" max altitude so far: " + max);
}
double height() {

return y;
}

}
class Max {
public static void main(String[] args) {
Cannonball ¢ = new Cannonball(10, Math.PI / 4);
for (int i = 0; i < 10 * 100; i++) { |// flying 10 seconds
c.move();
c.report();
if (c.height() < 0) {
System.out.println("The cannonball landed!");

break;
}
}
}
}

You just added three lines? Four, and yes, that was all.

But how often do those get executed? They’re part of the cannonball’s movement.
Let’s move on to problem 6.7. This one is easy.

The Fibonacci sequence is defined by the following rule. The first two values in the sequence are
1 and 1. Every subsequent value is the sum of the two values preceding it. Write a program that
prompts the user for n and prints the nth value in the Fibonacci sequence.

Hint: this problem is easy.

Yes, from two values we compute a third. And we Now only this new value and the most recent of the
keep doing this over and over again. two it was computed from should be kept.

And these two values are then added to compute a And the whole process is repeated, as follows:
new value.

164

for (int i = 3; i <= n; i++) {
fNew = £f01ld + fOlder;
f0lder = £014d;

f01d = fNew;
}
Yes, that’s it. This reminds me of another problem:
What problem is that? See if you can figure it for yourself.

import java.io.x;
class Mistery {
public static void main(String[] args) {
ConsoleReader console = new ConsoleReader(System.in);
System.out.print ("Pass the salt please: ");
double a = console.readDouble();
System.out.print("And the butter: ");
int n = console.readInt();
double xo0ld, xnew;
xold = ... ;
do {
xnew = xold - (Math.pow(xold, n) - a) / (n * Math.pow(xold, n - 1));
x0ld = xnew;
System.out.println(" " + (Math.pow(xnew, n) - a));
} while (Math.abs(Math.pow(xnew, n) - a) > 0.001);
System.out.println(xnew);
System.out.println(Math.pow(xnew, n) + " " + a);
System.out.println("Thank you!");

}
}

P6.14 perhaps? But what’s the ...7 It doesn’t matter, if it has a value.

For this problem, at least. Problems 6.9, 6.10, and 6.15 are easy, although for 10
and 15 we need to wait until we look at applets to do
any graphics.

Let’s do number 10. OK, but I won’t draw circles, I'll just create them.

Drunkards, circles, cannonbals: they’re all the same.

Especially drunkards. Here’s the code:

import java.util.x*;
class Ten {
public static void main(String[] args) {
System.out.print ("Enter number of circles: ");
ConsoleReader console = new ConsoleReader(System.in);
int n = console.readInt();
System.out.println("Generating " + n + " circles.");

165

Random generator = new Random();
for (int i = 0; i < n; i++) {
int x 100 + Math.abs(generator.nextInt()) % 200;
int y 100 + Math.abs(generator.nextInt()) % 200;
int r = 10 + Math.abs(generator.nextInt()) % 40;
Circle e = new Circle(x, y, r);
System.out.println(e); // looks better when you draw it

}
System.exit (0);
}
}
class Circle {
double xCenter, yCenter, radius;
Circle (double x, double y, double r) {
xCenter = x;
yCenter = y;
radius = r;

}
public String toString() {
return "I am a circle at: (" +

xCenter + ", " + yCenter +
") with a radius of " +
radius;

}

}

Why is 6.15 easy? Because it’s like 10, and in addition you have complete
information about the position of the squares. You’ll
see, later.

Why is 6.15 hard? Because you should come up with a formula for the
position of a square given its row and column (or line
and column).

This way you can use a for loop for the lines, ...and another one for the columns.

One, inside each other. Like for the patterns we developed last week.

And why is 6.9 easy? Because you just have to compute two sums, and take
a square root at the end.

Why is 6.9 hard? 6.9 is not hard, but you have to read the problem
carefully and use the right formula.

Which is the last one (second of two). The last one for today anyway.

We’ll do a lot more next time. As always, I can hardly wait.

166

Appendix Special (Selected Problems and Their Numbers).

@ Here’s another approach to producing random numbers.

Say we need random numbers between a, and b, where a is less than b. Let y be such a random
number. Then we can calculate how far into the segment y is, as a percentage.

double p = (y - a) / (b - a); // [1]

Since y is random that means p can be anywhere between 0 and 1.
Well, such numbers can be generated with Math.random().
So, let’s turn [1] on its head, to obtain y as a function of p.

Then, we have:
y=px*x (b - a) + a;
Now replace p by Math.random():
y = (b - a) * Math.random() + a;

Same as stretching followed by a translation. End of story.

Problem 6.14. Write a program that asks the user for an integer and then prints out all its factors. For
example, when the user enters 150, the program should print: 2 3 5 5.

Problem 6.9. Write a program that reads a set of floating-point data values from the input. When the end of
file is reached, print out the count of the values, the average, and the standard deviation. The average of a data
set Tj=1.. . is p =Y z;/n. The standard deviation is

S = Z(ﬂfi—#)z

n—1

However that formula is not suitable for our task. by the time you have computed the mean, the individual z;’s
are long gone. Until you know how to save these values, use the numerically less stable formula

S:\/Zwﬂ;_%(lzwi)?

You can compute this quantity by keeping track of the count, the sum, and the sum of squares as you process
the input values.

Problem 6.10. Write a graphical applet (?'—see if you get around that) which prompts a user to enter a
number n and then draws n circles with random center and random radius.

Problem 6.15. Write a program that prompts the user for an integer and then prints out all prime numbers
up to that integer. For example, when the user enters 20, the program should print: 2 3 5 7 11 13 17 19.
Recall that a number is a prime number if it is not divisible by any number except 1 and itself.

Computer Games

In which Tigger has guests from another tale.

Have you ever played Nim?

No. But do you play croquet?

I'd love to but I don’t have the time.

Well, how do you play Nim?

Allow me to describe it.

Very well, but please be very clear, my dear.

Yes, try to be very clear.

Nim is a well-known game with a number of variants.
We will consider the following variant, which has an
interesting winning strategy.

Two players alternately take marbles from a pile. In
each move, a player chooses how many marbles to
take, then removes the marbles.

The player must take
e at least one but
e at most half

of the marbles.

Then the other player takes a turn.

You already said that.

I thought you were sleeping.

This is very provoking. ..

Sorry, dear. Ahem.

The player who takes the last marble loses.

You will write a program in which a computer plays
agains a human opponent.

Generate a random number between 10 and 100 to
denote the initial size of the pile.

Generate a random integer between 0 and 1 to decide
whether the computer or the human takes the first
turn. Then start the game.

This variant of the game has an interesting winning
strategy. Careful thinking will reveal that whoever
moves first can win.

167

168

How? Take off enough marbles to make the pile a power of
two minus one, that is 1, 3, 7, 15, 31, or 63.
I see. One could program the computer to always play in

what could be called smart mode.

That would not be too much fun for the user.

One could also program the computer to always per-
form a random legal move.

That’s what we’ll do, as it seems a bit more fair.

OK, let’s get started.

First of all, what do we need?

No pile of marbles, no Nim.

Let’s bring one in.

How does it look?

What do you think of this?

class PileOfMarbles {

int height;

PileOfMarbles (int height) {
this.height = height;

}

int report() {
return this.height;

}

¥

Looks like a good start.

A pile of marbles is like a bank account.

Whoever withdraws the last cent loses.

It has a balance (height).

And a get-balance (report) method.

We also need a withdraw, don’t we?

Yes, let’s call it move.

What do you think of this?

void move(int number) {

You have to be careful when withdrawing.

System.out.println("*x*Removing " + number + " marbles from the pile.");

this.height -= number;

System.out.println("Pile of marbles is now: " + this.report());

So how do you check that?

‘// then it’s a bad move‘

} else {

‘// it is a good move‘

How about this condition?

if (number <= 0 || ((number > height / 2) && (number != 1))) {

169

Can I look at this again? You mean the check for a bad move?

Yes. Here it is (a bad move).

if (number <= 0 || ((number > height / 2) && (number != 1))) {
System.out.println("***Bad move: you lose.");
System.exit (0);

} else {

Or, just the condition, again:

(number <= 0 || ((number > height / 2) && (number != 1)))

Either zero marbles or less,or more than half, and not the last.

I think this last part is rather tricky. Using de Morgan’s law we can reformulate this to rep-
resent a good move. Perhaps that would help.

Yes, let’s write down its negation. Here it is (a good move):
(number > 0 && ((number <= height / 2) || (number == 1)))
To me this looks better, easier to understand. It does seem that way to me too.

Even if this is no easier to read than the first version I quite agree with that.
you now have a choice, an option.

So we can finish report now. Yes. Let’s make the pile of marble responsible for
announcing the end of the game too.

Then it needs to know who moved. I think I can accommodate that.

void move(int number, String user) {
System.out.println("***Removing " + number +

" marbles from the pile for: " + user);
if (number <= 0 || ((number > height / 2) && (number !'= 1))) {
System.out.println("*x*Bad move for " + user + ". " +

user + " loses.");
System.exit (0);
} else {
this.height -= number;
if (this.height == 0) {

System.out.println("*x*End of game. " + user + " loses.");
System.exit (0);
}
}
System.out.println("Pile of marbles is now: " + this.report());

170

That’s pretty much it, isn’t it? Yes. Now we need to set up the game.
We need a while loop. We need a loop, like we did in Echo, yes.
Here’s my suggestion. Looks like you finished it altogether now.

int height = (int) (Math.random() * 90 + 10);
PileOfMarbles pile = new PileOfMarbles(height) ;
System.out.println("Game starts with a pile of height: "
+ pile.report());
int number, currentHeight;
while (true) {
System.out.println("*** Computer moves.");
System.out.println("Pile of marbles of height: " + pile.report());
currentHeight = pile.report();
if (currentHeight == 1) {
number = 1;

} else {

number = (int) (Math.random() * (currentHeight / 2)) + 1;
}
System.out.println("Computer chooses to remove: " +

number + " marbles.");

pile.move(number, "Computer");
System.out.println("-—-———————————————————— ")
System.out.println("#*** Now " + user + " has to move.");
System.out.println("Pile of marbles of height: " + pile.report());
System.out.print (user +

", please enter number of marbles you want to take: ");
number = console.readInt();

pile.move(number, user);
System.out.println("-—-————————————— oo ");

}

Yes, here’s the whole thing:

class Nim {
public static void main(String[] args) {
ConsoleReader console = new ConsoleReader(System.in);

System.out.println("Hello, and welcome to the game of Nim!");
System.out.print ("What is your name: ");
String user = console.readLine();

int height = (int) (Math.random() * 90 + 10);
PileOfMarbles pile = new PileOfMarbles(height);

171

System.out.println("Game starts with a pile of height:
+ pile.report());

int number, currentHeight;

while (true) {
System.out.println("*** Computer moves.");

System.out.println("Pile of marbles of height: " + pile.report());
currentHeight = pile.report();

if (currentHeight == 1) {

number = 1;
} else {

number = (int) (Math.random() * (currentHeight / 2)) + 1;
}

System.out.println("Computer chooses to remove: " +
number + " marbles.");

pile.move(number, "Computer");

System.out.println("----————-————————————————— ");
System.out.println("*** Now " + user + " has to move.");
System.out.println("Pile of marbles of height: " +
pile.report());
System.out.print (user +
", please enter number of marbles you want to take: ");

number = console.readInt();

pile.move(number, user);

System.out.println("-—-—————————————————— ");
¥
}
}
class Pile0fMarbles {
int height;

PileOfMarbles (int height) {
this.height = height;
}
int report() {
return this.height;
X
void move(int number, String user) {
System.out.println("*x*Removing " + number +
" marbles from the pile for: " + user);
if (number <= 0 || ((number > height / 2) && (number != 1))) {

172

System.out.println("***Bad move for " + user + ". " + user + " loses.");
System.exit (0);
} else {
this.height -= number;
if (this.height == 0) {
System.out.println("***End of game. " + user + " loses.");
System.exit (0);

}
}
System.out.println("Pile of marbles is now: " + this.report());
}
}
Don’t forget your ConsoleReader! I'm ready. Let’s play!

The King looks like Humphrey Bogart in Casablanca.

Have you seen Casablanca? Shh—we’re playing Nim now!

173

frilled.cs.indiana.edu%javac Nim. java
frilled.cs.indiana.edu)java Nim

Hello, and welcome to the game of Nim!

What is your name: |Mary-Ann

Game starts with a pile of height: 86

**x Computer moves.

Pile of marbles of height: 86

Computer chooses to remove: 23 marbles.
**xxRemoving 23 marbles from the pile for: Computer
Pile of marbles is now: 63

*** Now Mary-Ann has to move.

Pile of marbles of height: 63

Mary-Ann, please enter number of marbles you want to take:
***Removing 30 marbles from the pile for: Mary-Ann
Pile of marbles is now: 33

**x*x Computer moves.

Pile of marbles of height: 33

Computer chooses to remove: 1 marbles.

**xxRemoving 1 marbles from the pile for: Computer
Pile of marbles is now: 32

*%% Now Mary-Ann has to move.

Pile of marbles of height: 32

Mary-Ann, please enter number of marbles you want to take:
***Removing 16 marbles from the pile for: Mary-Ann
Pile of marbles is now: 16

*xx Computer moves.

Pile of marbles of height: 16

Computer chooses to remove: 7 marbles.

xx*Removing 7 marbles from the pile for: Computer
Pile of marbles is now: 9

*%% Now Mary-Ann has to move.

Pile of marbles of height: 9

Mary-Ann, please enter number of marbles you want to take:
***Removing 2 marbles from the pile for: Mary-Ann
Pile of marbles is now: 7

*xx Computer moves.

Pile of marbles of height: 7

Computer chooses to remove: 1 marbles.

**xxRemoving 1 marbles from the pile for: Computer
Pile of marbles is now: 6

*xx Now Mary-Ann has to move.

Pile of marbles of height: 6

174

Mary-Ann, please enter number of marbles you want to take:
***Removing 3 marbles from the pile for: Mary-Ann
Pile of marbles is now: 3

**x* Computer moves.

Pile of marbles of height: 3

Computer chooses to remove: 1 marbles.

**x*Removing 1 marbles from the pile for: Computer
Pile of marbles is now: 2

*%% Now Mary-Ann has to move.

Pile of marbles of height: 2

Mary-Ann, please enter number of marbles you want to take:
**x*xRemoving 1 marbles from the pile for: Mary-Ann
Pile of marbles is now: 1

*%% Computer moves.

Pile of marbles of height: 1

Computer chooses to remove: 1 marbles.

**x*xRemoving 1 marbles from the pile for: Computer
**x*xEnd of game. Computer loses.
frilled.cs.indiana.edujava Nim

Hello, and welcome to the game of Nim!

What is your name:

Game starts with a pile of height: 77

*** Computer moves.

Pile of marbles of height: 77

Computer chooses to remove: 8 marbles.

***Removing 8 marbles from the pile for: Computer
Pile of marbles is now: 69

x Now Queen has to move.

Pile of marbles of height: 69

Queen, please enter number of marbles you want to take:
***xRemoving 33 marbles from the pile for: Queen
Pile of marbles is now: 36

*xx Computer moves.

Pile of marbles of height: 36

Computer chooses to remove: 11 marbles.
***Removing 11 marbles from the pile for: Computer
Pile of marbles is now: 25

x Now Queen has to move.

Pile of marbles of height: 25

Queen, please enter number of marbles you want to take:
**x*xRemoving 12 marbles from the pile for: Queen
Pile of marbles is now: 13

*xx Computer moves.

Pile of marbles of height:
Computer chooses to remove:
x*x*Removing 5 marbles from
Pile of marbles is now: 8
**x Now Queen has to move.
Pile of marbles of height:
Queen, please enter number
***xRemoving 1 marbles from
Pile of marbles is now: 7
*xx Computer moves.

Pile of marbles of height:
Computer chooses to remove:
**x*Removing 2 marbles from
Pile of marbles is now: 5
**x Now Queen has to move.
Pile of marbles of height:
Queen, please enter number
***xRemoving 2 marbles from
Pile of marbles is now: 3
*xx Computer moves.

Pile of marbles of height:
Computer chooses to remove:
xxxRemoving 1 marbles from
Pile of marbles is now: 2
x Now Queen has to move.
Pile of marbles of height:
Queen, please enter number
**xxRemoving 1 marbles from
Pile of marbles is now: 1
*xx Computer moves.

Pile of marbles of height:
Computer chooses to remove:
**xxRemoving 1 marbles from

13
5 marbles.
the pile for: Computer

8

of marbles you want to take:

the pile for: Queen

7
2 marbles.
the pile for: Computer

5

of marbles you want to take:

the pile for: Queen

3
1 marbles.
the pile for: Computer

2

of marbles you want to take:

the pile for: Queen

1
1 marbles.
the pile for: Computer

*x*End of game. Computer loses.

Oh, Nim is so easy. I like Nim.

175

176

frilled.cs.indiana.edu%java Nim

Hello, and welcome to the game of Nim!

What is your name: |Mary-Ann

Game starts with a pile of height: 11

**xx Computer moves.

Pile of marbles of height: 11

Computer chooses to remove: 4 marbles.
*x*xRemoving 4 marbles from the pile for: Computer
Pile of marbles is now: 7

% Now Mary-Ann has to move.

Pile of marbles of height: 7

Mary-Ann, please enter number of marbles you want to take: [:J
*x*xRemoving 6 marbles from the pile for: Mary-Ann
*x*Bad move for Mary-Ann. Mary-Ann loses.
frilled.cs.indiana.edu,

“Why, Mary Ann, what are you doing out here?”

i
.

“Run home this moment, and fetch me a pair of gloves and a fan! Quick, now!”

Designing Fractions

Designing Fractions.

You mentioned De Morgan’s name yesterday.

Augustus De Morgan (1806-1871), indeed.

http://www-groups.dcs.st-andrews.ac.uk/ history/Mathematicians/De_Morgan.html

De Morgan was the one that, in 1838, defined and
introduced the term mathematical induction, thus
putting a process that had been used without clar-
ity on a rigorous basis.

I don’t know if he ever played Nim, but here’s how he
was described by some of his colleagues: ” A dry dog-
matic pedant I fear is Mr De Morgan, notwithstanding
his unquestioned ability.”

In 1866 he was a co-founder of the London Mathemat-
ical Society and became its first president.

De Morgan was never a Fellow of the Royal Society
as he refused to let his name be put forward. He
also refused an honorary degree from the University
of Edinburgh.

He recognised the purely symbolic nature of algebra
and he was aware of the existence of algebras other
than ordinary algebra.

He introduced De Morgan’s laws and his greatest con-
tribution is as a reformer of mathematical logic.

Very interesting. What other mathematicians were
involved in the lecture notes of yesterday?

Charles Lutwidge Dodgson (1832-1898).

http://wuw-groups.dcs.st-andrews.ac.uk/ history/Mathematicians/Dodgson.html

Charles Dodgson is known especially for Alice’s ad-
ventures in wonderland (1865) and Through the look-
ing glass (), children’s books that are also dis-
tinguished as satire and as examples of verbal wit.

He invented his pen name of Lewis Carroll by angli-
cizing the translation of his first two names into the
Latin ’Carolus Lodovicus’.

As a mathematician, Dodgson was conservative.

He was the author of a fair number of mathematics
books, for instance A syllabus of plane algebraical ge-
ometry (1860).

177

178

None of his math books have proved of enduring Didn’t he write “The Hunting of the Snark”?
importance except for Fuclid and his modern rivals
(1879) which is of historical interest.

You bet he did. As a logician, he was more interested in logic as a
game than as an instrument for testing reason.

“I know what you’re thinking about,” said Tweedle- “Contrariwise,” continued Tweedledee, “if it was so,
dum: “but it isn’t so, nohow.” it might be; and if it were so, it would be: but as it
isn’t, it ain’t. That’s logic.”

Here’s a picture of him. Yes, he’s the one in the middle.

He contributed in Jabberwocky, the word chortle (a
word that combines snort and chuckle) to the English
language.

frilled.cs.indiana.edu)webster chortle
chor-tle vb chor-tled; chor-tling
[blend of chuckle and snort]

v1i
(ie72)

1: to sing or chant exultantly <he chortled in his joy --Lewis
Carroll>

2: to laugh or chuckle esp. in satisfaction or exultation

” vt :to say or sing with a chortling intonation

-- chortle n

-- chor-tler n

frilled.cs.indiana.edu’,

Yet momeraths and brillig didn’t quite make it.

179

Today we’re going to implement Fractions.

And in the process mention Euclid (325-265).

http://www-groups.dcs.st-andrews.ac.uk/ history/Mathematicians/Euclid.html

Have you noticed the numbers?

Yes, that was a long time ago!

Euclid’s most famous work is his treatise on mathe-
matics The Elements.

The book was a compilation of knowledge that became
the centre of mathematical teaching for 2000 years.

The Elements is divided into 13 books.

Books one to six deal with plane geometry.

Books seven to nine deal with number theory.

In particular book seven is a self-contained introduc-
tion to number theory and contains the Euclidean al-

gorithm for finding the | greatest common divisor | of

two numbers.

Which we will use today.

Very good.

A fraction is of course the ratio of two integers:
e a numerator and

e a denominator

We will define a class Fraction, which will supply the
necessary operations on fractions.

There are many ways in which we could do this.

Here’s a summary, to be augmented with a more de-
tailed explanation in class.

Let’s look first at the new part.

class Fuclid {
static int gcd(int a, int b) {
a = Math.abs(a);
b = Math.abs(b);

Of which there are two parts, as well.

if (a == 0) return b; // 0 is error value

if (b == 0) return a;
int temp;
while (b > 0) {

temp = a % b;

a = b;

b = temp;
}
return a;

} // there are other ways too...

We need to get the hang of it, first.

Then, when we become comfortable using it, we need Proof is the bottom line for everyone.

to become sure it always works right.

180

That’s from Paul Simon, isn’t it? Yes, but it applies here.
Both goals may take a long time. But when you’re done you can write Fraction.
Like this. That’s a lot.

class Fraction {
private int numerator;
private int denominator;
public Fraction(int num, int den) {
int divisor;
if (den == 0) {
System.out.println(" Fraction with denominator zero!");
System.exit (1) ;

}
if (num == 0) { numerator = 0; denominator = 1; }
else {
if (den < 0) {
num *= -1;
den *x= -1;
}
if ((divisor = Euclid.gcd(num, den)) != 1) {
num /= divisor;
den /= divisor;
}
numerator = num;
denominator = den;
}

}
public String toString() {
String fraction;
if (denominator == 1) { fraction = numerator + ""; }
else { fraction = numerator + "/" + denominator; }
if (denominator * numerator < 0) {
return "(" + fraction + ")";
} else {
return fraction;

}
}
public boolean isZero() {
return (denominator == 1 && numerator == 0);
}
public boolean isInt() {
return (denominator == 1);
}
public boolean equals(Fraction other) {
return (numerator == other.numerator && denominator == other.denominator) ;
}

public boolean greaterThan(Fraction other) {
return (numerator * other.denominator >

181

denominator * other.numerator);

}

public Fraction minus(Fraction other) {

return new

}

Fraction(
numerator * other.denominator - other.numerator * denominator,
denominator * other.denominator

)

public Fraction plus(Fraction other) {

return new

}

Fraction(
numerator * other.denominator + other.numerator * denominator,
denominator * other.denominator

)

public Fraction times(Fraction other) {

return new

}

Fraction(numerator * other.numerator, denominator * other.denominator);

public Fraction divideBy(Fraction other) {

return new

}

Fraction(numerator * other.denominator, denominator * other.numerator);

public static void main(String[] args) {

Fraction f
Fraction g
System.out
System.out
System.out
System.out
System.out
System.out
System.out
System.out
Fraction h
System.out
System.out

= new Fraction(6, 9);
= new Fraction(-4, 6);

.println("Test of operations: ");

.println(" Add: "+ £+ "+ " + g+ " ="+ f plus(g));
.println(" Sub: " + £+ " - " + g+ " =" + f.minus(g));
.println(" Mul: " + £+ " * " + g+ " =" + f times(g));
.println(" Div: "+ £+ " /" + g+ " =" + f.divideBy(g));

.println("Test of predicates: ");
.print(" 1. Does " + f + " equal " + g + "? ");
.println(" The answer is: " + f.equals(g));

= new Fraction(8, -2);

.print(" 2. Is " + h + " an integer? ");
.println("The answer is: " + h.isInt());

Fraction i, j;
i = (f.minus(g)).times(f.plus(g));
j = f.times(f) .minus(g.times(g));

System.out.
System.out.
System.out.
System.out.

print(" 3. Does " + i + " equal " + j + "7 ");

println("The answer is: " + i.equals(j));

print(" 4. Is 5/8 greater than 2/37 The answer is: ");
println((new Fraction(5, 8)).greaterThan(new Fraction (2, 3)));

There are two parts to it.

First, the blueprint.

Then, the main.

Both important.

When you’re done you can improve it.

182

boolean equals(Fraction other) {
return (this.minus(other)).isZero();

}

That’s a different equals.

Here’s a different greaterThan.

boolean greaterThan(Fraction other) {
return (this.minus(other)).isPositive();

}

That wouldn’t work just yet.

I know, you need another predicate. Can I write it?
Sure, what’s its signature? boolean isPositive() is it’s signature.
It’s a simple one. I agree.

boolean isPositive() {
return numerator * denominator > 0;

}
This was a long example. Long, but useful.
And interesting. If you say so...

"Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.

Milestones

More about methods.

We’ve reached an important milestone now.

Although you may not realize it now,

...it will become apparent in about a week.

Meanwhile T think it’s reasonably safe to say that
we're halfway through now.

I think so. Diagrams like the ones presented in the
previous sets of lecture notes are important.

They can help you understand what’s happening in-
side a program when it’s compiled and run.

You should not expect to use diagrams all the time,
always, for each and every program.

Their purpose is mostly to help you understand the
concepts, the basics, by providing a very detailed pic-
ture, as if under a microscope.

Once you understand those, you’re all set.

And you can think Java without drawing diagrams.
You’d be manipulating them in your mind, almost
without knowing it.

Today in class we’ll touch on lecture notes of Wednes-
day and then start talking (again) about methods.

We’ll finish them quickly, although there will be one
important new thing we will touch on.

Recursion.

The saying goes that ”"to understand recursion you
first need to understand recursion”.

That’s just a humorous saying.

Recursion, in fact, is easy, and thoroughly useful.

Once you have a fixed point.

(But we’ll get to that shortly.)

Not to mention that we have already seen it.

Yes, it was that method in lab five.

That method, what’s its name?

Well, what was its name, but we changed it.

That we did.

Now let’s start the chapter on methods.

183

184

Methods.

What about them?

All about them.

You have already implemented several simple methods
and are familiar with the basic concepts.

Let’s go over parameters, return values, and variable
scope in a more systematic fashion.

We will also review some of the more technical issues,
such as static methods and variables.

When we implement a method we define the parame-
ters of the method.

public class BankAccount {
public void deposit(double amount) {

X

Here’s an example:

The deposit method has two parameters: one is ex-
plicit, called amount, and has type double.

We expect to receive a value in it to be deposited in
the account.

The other one is implicit, and can be referred to by
the the keyword this.

What we mean by that is that inside an instance
method (like deposit) the keyword this will always
refer to the host object.

So if it’s always available and always in the same way,
the this reference is not even mentioned in the list of
parameters.

But from any instance method we can use the keyword
this to refer to the object that contains the method,
always.

Therefore amount is called a formal parameter for the
method deposit.

When we want to deposit some money we need to
know two things:

a) the account’s name, and

b) the amount of money

...and we need to actually invoke the method,

// somewhere in main (or another method)
myChecking.deposit(allowance - 200);

...in order to deposit the money.

In this example myChecking is an object of type
BankAccount...

...and allowance is probably a double.

Both (are names, and the names) should be declared
and initialized before we use them.

185

When deposit starts its work, the value of the
allowance - 200
expression becomes the
e actual parameter or
e argument

to the method. ..

...and will be known by the name of amount

... while deposit is running (working on it).

When the method returns (or ends) the formal pa-
rameter variables are abandoned (they’re disposable)
and their values are lost.

The entire process is like a phone call: you call
myChecking’s deposit method and you give it some
input: the amount that you want to deposit.

Once it has that it immediately starts working for you
and you stay on the line, waiting for it to tell you: I
am done, and your transaction is completed.

You can’t write your checks before that.

When it’s done it says so, before you hang up.

Sometimes a method also returns a value before the
end of conversation, but not deposit.

deposit only says when it’s done, without returning
anything. It is declared as void.

void is its return type.

Yes: it does not return anything to its caller.

Hence: void.

It only does what it is supposed to do, and then it
says: "I'm done.” And balance has changed.

One could also call this returning except it’s not as in
? returning a value”, but rather. ..

... more like in ” returning from a trip”.

A trip to the bank.

Explicit parameter variables (the formals) are no dif-
ferent from other variables.

You can modify them during the execution of a
method: but unless you have a good reason for that,
that is considered bad style.

Let’s now consider a more complicated example:

public class BankAccount {

public void transfer (BankAccount other, double amount) {

withdraw (amount) ;
other.deposit (amount) ;

¥

This method can be used to transfer money from one
account to another.

186

Here’s how we can use it:

momsSavings.transfer (myChecking, allowance);

I have one question before we go further though. ..

Yes, what is it?

Weren’t we supposed to write
this.withdraw(amount)

in the definition of the transfer method?

Yes, since we decided to always put an object reference
in front of any instance variable name, so please make
the correction in your notes.

OK, I've updated mine.

But why does it work though?

Because it defaults to it, anyway.

But I think that using this makes the code more uni-
form and explicit.

And I think so too.

How many formal parameters does this new function
(method) have?

Two of them are explicit: other and amount.

The first one is a BankAccount.

The second one is a double.

And in addition to that the method will be able to
access the object to which it belongs using this.

Yes, this is always available in an instance method
and means: “the object that contains this method”, or
”this method’s host”.

What happens when the method is invoked?

When the method is invoked the reference to
myChecking is copied into the method’s other formal
parameter.. .

...and allowance will be copied into amount.

Note that both the object references and the numbers
are copied into the method.

After the method exits, the two bank account balances
have changed.

The method was able to change the accounts because
it received copies of the object references.

Of course, the contents of the allowance variable was
not changed.

In Java no method can modify the contents of a num-
ber variable that is passed as a parameter.

Or the contents of any other variable of primitive type,
for that matter.

Yes: parameters are always passed by value.

What names should we give to the parameters?

You can give them any names you want.

As a rule, choose explicit names for parameters that
have specific roles. Choose simple names for those
that are completely generic.

Your goal is to make the reader understand the pur-
pose of the parameter without having to read the
method’s description.

187

The compiler takes the types of the method parame-
ters and return values very seriously.

Very very very seriously.

It is an error to call a method by passing it a value of
incompatible type,

...or to use the method in a context that is not com-
patible with its return type (if any).

Java is a strongly typed language.

That, it is.

The compiler automatically converts from int to
double and from ordinary classes to superclasses (as
we will see when we talk about inheritance).

But it does not convert when there is a possibility of
information loss, as we have seen when we discussed
casting,

...and does not convert between numbers and strings
and objects.

This is a useful feature, because it lets the com-
piler find programming errors before they create havoc
when the program runs.

A method that accesses an object and returns some
information about it, without changing the object, is
called an accessor method.

Such as getBalance.

In contrast, a method that modifies the state of an
object is called a mutator method.

deposit and withdraw are mutator methods.

You can call an accessor method

...as many times as you like.

If that’s all you do, you will always get the same an-
swer, and it does not change the state of the object.

Some classes have been designed such that objects of
that kind have only accessor methods and no mutators
at all.

Such classes are called immutable.

An example is the String class.

Once a String has been constructed, its contents
never change.

For example, the substring method does not remove
characters from the original string.

Instead it constructs a new string that contains the
substring characters.

public class BankAccount {

Here’s another example of an accessor method that
simultaneously looks at two objects:

public boolean equals(BankAccount other) {
return (this.getBalance() == other.getBalance());

X
}

It makes use of two other accessors (or, rather, the
same accessor invoked on two different objects) and
compares the values that they return, to come up with
an answer.

And the answer that it returns is the truth value that
comes out of (and describes) the comparison.

188

So we could use it as follows:

if (accountl.equals(account2)) {

// they have the same balance...
} else {

// they do not have the same balance...
}

Very good.

In general the expectation is that accessor methods
do not modify any parameters, ...

...and that mutaetor methods do not modify any pa-
rameters beyond this.

This ideal situation is not always the case.

Like the transfer method discussed before.

It changed its this, ...

... while also updating the other account.

Such a method is said to have a side effect.

A side effect of a method is any kind of observable
behaviour outside the object.

In an ideal world, all methods would be accessors.

They would simply return an answer without chang-
ing any value at all.

In fact, programs that are written in so-called func-
tional programming languages, such as Scheme or ML,
come close to this ideal.

Scheme is the best! Java is also good.

In an object oriented programming language, we use
objects to remember state changes.

Therefore, a method that just changes the state of its
implicit parameter is certainly acceptable.

A method that does anything else is said to have a
side effect.

While side-effects cannot be completely eliminated,
they can be the cause of surprises and problems and
should be minimized.

Sometimes you write methods that don’t belong to
any particular object.

Such a method is called a static (or class) method
and needs to be declared as static.

In contrast, methods such as getBalance, withdraw,
and deposit in the preceding sections are often called
instance methods,

...because they operate on particular instances
of an object. There’s one getBalance for each
BankAccount (object) that gets created.

Have we seen any static methods?

Math.sqrt is a static method.

And every application must have a static method
where processing begins, called

...main.

Correct.

189

Here’s another example, that involves only numbers:

class NumericMethods {
public static boolean approxEqual (double x, double y) {
final double EPSILON = 1E-14;
double xymax = Math.max(Math.abs(x), Math.abs(y));
return Math.abs(x - y) <= EPSILON * xymax;
}
// more numeric methods could come here...

}

This method encapsulates computation that involves
no objects at all, only numbers (and booleans), hence
only primitive types.

To call (or use) a static method you need to supply
the name of the class, for example:

double r = Math.sqrt(2);
if (NumericMethods.approxEqual(r * r, 2))
System.out.println("Math.sqrt(2) is approx. 2");

...same as we do with Math.sqrt.

Now it should be clear to you why the main method ...when the program starts there may not be any ob-
is a static method. jects at all.

Therefore the first method to be called in a program Good enough.
must be a static method.

To summarize our knowledge about static methods we ...a static method is a method that does not belong

can say that... to any object, and that has only explicit parameters.
(No this!)

Let’s look at some examples now. What does the following example illustrate?

public class Example {
public static void addOneToIt (int number) {
System.out.println(number) ;
number = number + 1;
System.out.println(number) ;
}
public static void main(String[] args) {
int value = 3;
System.out.println(value);
Example.addOneToIt(value);
System.out.println(value);
}
}

Let’s walk through the method call. When the call is made the parameter value is set to
the same value as the argument.

190

The value is copied.

Changes to it are not seen outside.

That’s all there is to it.

Easy.

Is there a moral to it?

In Java method parameters are copied into the param-
eter variables when a method starts.

Computer scientists call this call mechanism ”call by
value”, and we mentioned it in lab 2.

As you have just seen there are some limitations to
the ”call by value” mechanism.

It is not possible to implement methods that modify
the contents of number variables.

Other programming languages support an alternate
mechanism, called by reference”.

This involves passing only the address to where the
number variable is stored.

This is what happens when you pass an object as an
actual parameter.

Let’s see an example.

class NumberHolder {
int value = 1;
}
class Example {
public static void main(String[] args) {
NumberHolder n = new NumberHolder();
System.out.println(n.value);
Example.addOneToIt(n);
System.out.println(n.value);

}

Oh, boy. I like examples best.

public static void addOneToIt (NumberHolder n) {

n.value =
}
}

n.value + 1;

But we’ve seen this before, haven’t we?

Yes, when we discussed copying of variables.

Primitive types are copied by wvalue, while reference
types are copied by reference.

Good enough.

References though are still passed by value.

Understood. Can we see an example?

class Pair {

double x;

double y;

Pair(double x, double y) {
this.x = x;
this.y = y;

}

void report() {

Oh boy — that’s what I like best.

191

System.out.println("Hello! I’m at: (" + x + ", " +y + ")");

¥
}

class Testing {

public static void main(String[] args) {

Pair a = new Pair (100, 0);
Pair b = new Pair(0, 100);
a.report();
b.report();
Testing.swap(a, b);
a.report();
b.report();
}
static void swap(Pair a, Pair b) {
Pair temp = a;

Easy and understandable. But it still gives you a level
of indirection.

a = b;
b = temp;
}
}
I like it.
Yes. You can, at least in principle, get inside those
Pairs.

Let’s summarize: a Java method can update an ob-
ject’s state using the reference to it, but it cannot
change the contents of a reference any more it can
change a variable of primitive type.

This shows that object references are passed by value
in Java, although we can safely say that

...objects themselves are passed by reference.

Except that the reference itself is copied.

Copied, yes — but pointing to the same thing that the
original one was.

Fair enough.

The distinction is clear now.

A method that has a return type other than void
must return a value, by executing a statement of the
form:

return |<expression>|;

Been there, done that.

Yes, but let’s see if we can come up with something
new.

Well, for one thing, you can return the value of any
expression.

You don’t need to store the result in a variable and
then return the variable.

When a return is processed, the method exits imme-
diately.

This is convenient for handling exceptional cases in
the beginning.

192

Oh, yes, here’s an example:

public static int fibo (int n) {
if (n == 1)
return 1;
else if (n == 2)
return 1;
else {
int f0lder
int f01d = 1;
int result f01d + fO0lder;
for (int i = 3; i <= n; i++) {
result = f01ld + f0lder;
f0lder = £f01d;
f01ld = result;

1;

=

}

return result;

These are Fibonacci numbers!

http://wwwu-groups.dcs.st-andrews.ac.uk/ “history/Mathematicians/Fibonacci.html

Or rather, the method that computes them. Picky, picky, picky! What can I say.

Can you give me an example? Sure, how about add, below.

class Fraction {
int num;
int den;
Fraction(int a, int b) {
this.num = a;
this.den = b;
}
public String toString() {
return " (n + num + n/n + den + u) n;

}

Fraction add(Fraction other) {
return new Fraction(this.num * other.den + this.den * other.num,

this.den * other.den);

}

public static void main(String[] args) {
Fraction a = new Fraction(1, 3);
Fraction b = new Fraction(2, 3);
System.out.println(a.toString());
System.out.println(b);
System.out.println(a.add(b));

193

That’s a good example, and so is.toString. But I like add better.

It is important that every branch of a method return a Also, a method whose return type is not void always
value, that is, a method cannot end without returning needs to return a value. Oh, you just said that! Nev-
a value (if its return type is other than void). ermind, although reinforcement is good.

If the method contains several if/else branches make At the end of every possible path through a non-void
sure that each one of the branches returns an adequate method there should be a return statement, return-
value. ing the value of an expression of compatible type.

For example is this right? It is not.

public static int fibo (int n) {

(n <= 0)

System.out.println("Incorrect argument!");

it (n == 1)

return 1;

else if (n == 2)
return 1;

else {
int fOlder 1;

int f01d = 1;
int result = f01d + f0lder;
for (int i = 3; i <= n; i++) {
result = f01d + fOlder;
f0lder = £014;
f01d = result;
}

return result;

It is not, because if the argument is negative we don’t ~ What should we return, then?
return anything.

I don’t know, what do you think of this one?

return Math.round((Math.pow((1 + Math.sqrt(5))/ 2, n) -
Math.pow((1 - Math.sqrt(5))/ 2, n)) / Math.sqrt(5));

Ha, that was a good one!

Or we should throw an Exception. Yes, but about those perhaps some other time. ..

We have now encountered the four kinds of variables 1. Instance variables
that Java supports. . .
2. Static variables
3. Local variables

4. Parameter variables

194

The lifetime of a variable defines when the variable is
created and how long it stays around.

When an object is constructed, all its instance variable
are created.

As long as the object is around its instance variables
will also be there, inside the object.

A static variable is created when its class is first
loaded, and it lives as long as the class.

A local variable is created when the program enters
the statement that defines it.

It stays alive until the block that encloses the variable
definition is exited.

Here’s an example:

public void withdraw (double amount) {
if (amount <= balance) {
double newBalance = balance - amount;

// local variable newBalance created and initialized

balance = newBalance;

} // end of lifetime of local variable newBalance

}

If you tried to print newBalance right before the end
of the method you’d get an error.

Yes, and the reason is: it’s known only in the then
branch of the if statement.

Inside the inner pair of curly braces.

Can you say that again?

Inside the inner pair of curly braces, only.

Very good.

Good to remember.

Finally, when a method is called, its parameter vari-
ables are created.

They stay alive until the method returns to the caller.
They’re disposable. Every time a new set is used.
Fresh. New scratch paper, as in what.

Next, let us summarize what we know about the ini-
tialization of these four types of variables.

Instance variables and static variables are automati-
cally initialized with a default value. ..

...which is
e 0 for numbers (and chars),
e false for boolean and

e null for objects (ref. types),

Yes. So instance variables and static variables are
automatically initialized with a default value unless
you specify another initial value.

So constructors are not essential.

They’re hygienic instead: convenient and clean.

Parameter variables are initialized with copies of the
actual parameters.

That’s when the method gets called.

Local variables are not initialized by default.

For local variables you must supply an initial value,
and the compiler complains if you try to use a local
variable that you never initialized.

195

The scope of a variable is that part of a program that
can access it.

The part of the program in which you can access it,
the variable, is the scope of the variable, yes.

OK. As you know, instance and static variables are
usually declared as private, and you can access them
only in the methods of their class.

I see...Scope answers the question: can I see it?

The scope of a local variable extends from the point
of its definition to the end of the enclosing block.

The scope of a parameter variable is the entire body
of its method.

Now let’s look a bit closer to a few situations.

We’re going to go through a few examples.

It sometimes happen that the same variable name is
used in two methods:

public static double area(Rectangle rect) {

= rect.getWidth() * rect.getHeight();

return r;

}
public static void main(String[] args) {

= new Rectangle(5, 10, 20, 30);

double a = area(r);

These variables (the two r’s) are independent of each
other.

You can have variables with the same name r in dif-
ferent methods,

...just as you can have different motels with the same
name (let’s say, "Super 8") in different cities.

In this situation the scopes of the two variables are
disjoint.

Problems arise, however, if you have two or more vari-
able names with overlapping scope.

Like when you have two Kroger’s in the same city.

Almost, but not exactly. In Java this situation is

called shadowing.

There are rules in the language that tell you which
one of the variables you will be referring to if you use
the ambiguous name.

Can we see some examples?

Certainly.

class Employee {
String name;
Employee (String name) {
this.name = name;

// this is mandatory not just good style here!!

¥
}

196

The parameter, which is like a local variable, shadows
the instance variable.

The Java language specifies that when there is a con-
flict between a local variable name and an instance
variable name the local variable wins out.

This sounds pretty arbitrary but there is actually a
good reason.

You can still refer to the instance variable using this

Which you should do anyway.

Do you have any questions?

No, but I have something close to that.

An example!

You bet.

Consider this:

class Puzzle {

public static void main(String[] args) {

Puzzle p = new Puzzle();

System.out.println("Final result: " + p.fun(6));

}

int fun(int n) {
int result;
if (n == 0) return 0;

else {
// [1]
result = n + fun(n - 1);
// [2]
return result;
}

}
}

Neat. What do we do with it?

Well, what’s the program computing?

This is our old friend what.

Yes, what’s its name.

But notice the new name of the method.

I know, I know, this is a lot of fun.

Well, isn’t it?

I could make it real fun, you know.

How.

I could show you the real power of recursion.

I’d like to see that.

Consider the Tower of Hanoi problem.

I keep hearing about this problem. ..

Yes. Let me state it here briefly.

197

This is a neat little puzzle invented by the French mathematician Edouard Lucas?2.

We are given a tower of eight disks, initially stacked in decreasing size on one of the three pegs. The
objective is to transfer the entire tower to one of the other pegs, moving only one disk at a time and
never moving a larger disk onto a smaller one.

Let’s solve the problem in general. Base case first: one disk is easy.

Now for all other cases by induction. Assume we can solve the problem for n-1 disks.
Then the general case becomes easy. Place the top n-1 disks on middle peg first.
Then move the largest disk. Then bring the n-1 disks back on top of it.
Can I see the program? Here it is:

frilled.cs.indiana.edu’cat Hanoi.java
class Hanoi {
public static void main(String[] args) {
int size = 4; // number of disks
move(size, "source", "middle", "target");
}
static void [move|(int height, String pegl, // from
String peg2, // using
String peg3 // to
) {
if (height == 1) {
System.out.println("Move disk from " + pegl + " to " + peg3);
} else {
[move |(height-1, pegl, peg3, peg2);
System.out.println("Move disk from " + pegl + " to " + peg3);

[move |(height-1, peg2, pegl, peg3);

}
}
frilled.cs.indiana.edu)javac Hanoi. java
frilled.cs.indiana.edu%java Hanoi
Move disk from source to middle
Move disk from source to target
Move disk from middle to target
Move disk from source to middle
Move disk from target to source
Move disk from target to middle
Move disk from source to middle
Move disk from source to target
Move disk from middle to target

22http:/ /www-groups.dcs.st-andrews.ac.uk /history /Mathematicians/TLucas.html

198

Move
Move
Move
Move
Move
Move

disk
disk
disk
disk
disk
disk

from
from
from
from
from
from

middle
target
middle
source
source
middle

to
to
to
to
to
to

frilled.cs.indiana.edu’

Now that was a lot of fun!

source
source
target
middle
target
target

I sure think so.

Java Arrays

Part One.

Suppose that you want to write a program.. .

I have a feeling of deja vu.

...that reads a set of prices offered by 10 (ten) ven-
dors for a particular product, and then prints them,
marking the lowest one.

Sounds interesting.

Of course, you need to read in all data items first,
before you can start printing them.

You can’t print them as you read them, can you?

No, your program has to wait until the last of the ten
prices has been entered,

...and then print all the items.

Exactly.

If T could be sure that it’s always the case that there
are exactly ten data items, ...

...then you could store the prices in ten variables:
datal, data2, ...datalo.

Hey, that was my idea!

But such a sequence of variables is not very practical It isn’t?
to use.
Well, what if you had a hundred data items? Ugh. ..

Or a thousand? You would have to write quite a bit
of code. ..

Or what if the number of vendors is unknown,

... to be specified by the user of your program at run-
time.

Then what do we do?

Wouldn’t it be nice if you could call the entire set of
prices by just one name. ..

...such as price

...denoting the entire sequence?

199

It would, but only if we could easily get to the in-
dividual elements of the sequence, like this: price,

pricesy, ..., pricey,,

200

...where n could be even specified by the user, at
run-time (when the program is run).

Boy, that would be nice!

That would be a better way of storing such a sequence
of data items, wouldn’t it?

Yes, it would be.

Fortunately Java has a construct that is designed just
for such a circumstance.

The array construct.

An array is a collection of data items of the same type.

Every element of the collection can be accessed sepa-
rately.

Here’s how you define an array of ten floating-point
numbers:

double[] price = new double[10];

That was a mouthful. Can we take it apart?

Yes, let’s do it in stages.

In Java, arrays are objects.

We’ll get to that in a second.

Essentially we want to define a variable with the name
of price.

Exactly, but this variable is of type array of doubles.

We use the square brackes ([1) to denote array.

So an array of doubles is declared as

double[]

And to declare a variable price of this type you need
to say:

double[] | price;

I see you put the in blue, and the name of the
variable in red.

Entirely correct.

Now you have a variable (or an array name) but there
is no array as of yet.

Have we seen this before?

How about

Rectangle a;

Same thing.

A variable a is defined, that could store references to
a Rectangle object,

... but there’s no actual Rectangle as of yet.

I could create one like that:

a = new Rectangle(5, 10, 15, 20);

Can you do the same with the an array?

Yes, in the following way:

price = |new doublel[10;

And do we have the array now?

201

Yes, the call new double[10] creates the actual array
of 10 numbers.

Every element of the collection can be accessed sepa-
rately.

When an array is first created all values are initialized
with 0

...for an array of numbers such as int[] or double[],

...false for a boolean array,

...or null for an array of objects.

You mean you could create an array of Rectangles
too?

Of course, how many Rectangles do you anticipate
you might later need?

How about also 107

Rectangle boxes = new Rectangle[10];

Then it looks almost the same:

Very good.

All ten slots in array boxes are currently null.

Indeed.

To get some values into the array you need to specify
which slot in the array you want to use.

That is done with the [] operator.

It must follow the name of the array and enclose an
integer-valued expression

...called an indez or a subscript.

Now you need to remember a thing about Strings.

Why Strings?

Because it is the same for arrays, and very important
here.

What is that?

The first element in an array has index 0.

Just like the first character in a String s is accessed
with s.charAt(0) (we’ve discussed this before).

So the actual elements in my price array will be iden-

tified as: priceo, pricey, ..., price,_1 then.

Yes, and n is 10

... s0 the subscripts go from 0 to 9.

Also, Java syntax for price;

...is really price[il],

...where i is an integer-valued expression.

In this case, an int variable.

You can’t use long, can you?

Only if you cast it to int.

int works for me.

The index in an array reference has a major restric-
tion.

What is that?

Trying to access a slot that does not exist in the array
is an error.

202

So price[10] would be such an error?

Yes, it would be, in our case.

Good. Now that we have reviewed all this let’s start
on the program.

double lowest = pricel[0];

for (int i = 1; i < |price.length|; i++)

if (price[i] < lowest)
lowest = price[i];

Here’s how you could find out the lowest price in an
array of prices:

What’s that: |price.length|?

You’ve seen something similar with Strings.

Note that there are no parentheses following length
and so we can tell about length this:

...it is an instance variable of the array object,

...not a method.

Oh, man, this is nifty!

However, you cannot assign a new value to this in-
stance variable.

In other words, length is a final public instance vari-
able.

This is quite an anomaly.

Normally, Java programmers use a method to inquire
about the properties of an object.

You just have to remember to omit the parentheses in
this case.

Using length is a much better idea than using a num-
ber such as 10,

...even if you know that the array has ten elements.

Note that i is a legal index for an array a if 0 <= i
and i < a.length

Therefore the for loop

for (int i = 0; i < a.length; i++)
do something with ali]

...is extremely common for visiting all elements in an
array.

Can we write the program now?

class Price {

Yes, let’s do that:

public static void main(String[] args) {

double[] price = new double[10];

ConsoleReader c¢c = new ConsoleReader (System.in);
System.out.println("Please specify the ten prices:");

for (int 1 = 0; i < 10; i++) {
System.out.print(i + "> ");

price[i] = c.readDouble(); ‘

// the user presses enter!
}
System.out.println("Thank you!");

double lowest = |pricel0];

}

203

for (int i = 0; i < |price.length|; i++) {

}

if (< lowest) {

System.out.println("*** Lowest price computed.");
System.out.println("Here are the

for (int i = 0; i < |price.length

prices: ");
;i) Ao

System.out.print ("Price " + (i + 1) + ": ");

System.out.print () ;

if (lowest == M) }

System.out.println(" *** lowest price");

} else {
System.out.println();
}

This program illustrates the points discussed thus far.

I could improve on it, and in many ways.

We’ll do that in a few minutes.

May I, at least, show you a sample run?

Certainly.

frilled.cs.indiana.edu%java Price
Please specify the ten prices:

0> 3
1>
2>
3>
4>
5>
6>
7>
8>
9> 4

W oo wo O

Thank you!
*** Lowest price computed.
Here are the prices:

Price
Price
Price
Price
Price
Price
Price
Price

1:

O ~NO O WwN

3.
.0

OO WO O
O O OO OO

0

***% lowest price

***% lowest price

Here it is:

204

Price 9: 3.0 **x lowest price
Price 10: 4.0
frilled.cs.indiana.edu’

Looks good. I thought so too.

How do you copy an array? How do you copy a Rectangle?

Array variables work just like object variables. They hold a reference to the actual array.

If you copy the reference, ...you get another reference to the same array.

double[] prices = new double[10];
// ... f£ill array

double[] copy;

copy = prices;

Both prices and copy ...point to the exact same thing.
If you were to change copy[i] ...you would see the change in prices[i]
...and that’s because both copy and prices ... are different names for one and the same array.
Here’s a picture: I like that.
prices
L~ CopY
|

If you want to make a true copy of an array, you must ...of the same length as the original,
make a new array

...and copy over all values. Like this?

1;

double copy[] = new double[|prices.length

for (int i = 0; i < prices.length; i++)
copy[i] = prices[i];

205

Yes. You can specify the size of the array through any

integer-valued expression,

...50 prices.length works just fine.

Instead of the for loop you can also use the

System. arrayCopy method.

It will be my pleasure to look it up in the API.

http://java.sun.com/products/jdk/1.2/docs/api/overview-tree.html

Writing the for loop should also be pleasurable.

Plus I need to practice.

How do you initialize an array?

Like we did above.

Indeed, we can allocate it, then fill each entry.

What if we know the elements at the time we write
the program?

Then there’s an easier way.

You can list all the elements that you want to include
in the array,

...enclosed in braces,

int[] primes = { 2, 3, 5, 7, 11 };

...and separated by commas.

Can we do it in two steps?

int[] primes;
primes = { 2, 3, 5, 7, 11 };

Try it.

Can you also tell me why?

What was the error message?

Then the answer is: no.

And we need to remember that array constants can
be used only in initializers.

Sounds good so far.

Now a challenge.

What is it?

frilled.cs.indiana.edu%java Price
How many prices?

3

Please enter the 3 prices.
Enter1> 3.45

Enter2> 1.20

Enter3> 6.34

Thank you!

**x* Lowest price computed.
Here are the prices:

Price 1: 3.45

Price 2: 1.2 *xx lowest price

Could you improve Price. java to behave in the fol-
lowing way:

206

Price 3: 6.34
frilled.cs.indiana.edu’,

I could try. Here’s the solution, just in case.

class Price {
public static void main(String[] args) {
ConsoleReader c = new ConsoleReader (System.in);
System.out.println("How many prices?");
int size = c.readInt(); }
double[] price = new double[size];
System.out.println("Please enter the " + size + " prices.");
for (int i = 0; i < size; i++) {
System.out.print ("Enter" + (i + 1) + "> ");
pricel[i] = c.readDouble();
// the user presses enter!
}
System.out.println("Thank you!");
double lowest = price[0];
for (int i = 0; i < price.length; i++) {
if (pricel[i] < lowest) {
lowest = pricelil;
}
}
System.out.println("*** Lowest price computed.");
System.out.println("Here are the prices: ");
for (int i = 0; i < price.length; i++) {
System.out.print ("Price " + (1 + 1) + ": ");
System.out.print(price[il);
if (lowest == pricel[i]) {
System.out.println(" *** lowest price");
} else {
System.out.println();
}

}

I have a feeling of deja vu. And I was the first to say that.

Java Arrays

Part Two: Partially filled arrays.
Array parameters and return values.
Simple array algorithms.

Have we ever seen an array of Strings? Apparently main receives one as a parameter.
Really? Where do those Strings come from? From the command line.
Can you give me an example? That’s what I like best:

frilled.cs.indiana.edu)java One one two three
Hello! You have 3 arguments on the command line.

Arg 0: one
Arg 1: two
Arg 2: three
Thank you!

frilled.cs.indiana.edu’

OK. Now how do you write this program? Here’s how:

class One {
public static void main(String[] args) {
System.out.println("Hello! You have " + args.length +
" arguments on the command line.");
for (int i = 0; i < args.length; i++) {

System.out.println("Arg " + i + ": " + args[il]);
}
System.out.println("Thank you!");
}
}
Looks good. It usually does.
Now let’s go back to our price check program. We have improved on it by asking the user to set the

size first.

207

208

Yes, but I don’t think it’s reasonable to ask the user
to count the items for us before entering them.

After all, this is exactly the kind of work that the user
expects the computer to do.

Unfortunately we now run into a problem.

Yes, we need to set the size of the array before we
know how many elements we need.

But notice how passing the command line arguments
to main makes that transparent to you, as a user.

Yes, we need to find a solution for our price check
program too.

In Java once an array size is set, it cannot be changed.

Other programming languages have smarter arrays
that can grow on demand,

...and Java also has a Vector class that can overcome
this problem.

Unfortunately the Vector class is not as easy to use
as an array.

We will discuss Vectors before too long.

To solve this problem, you can sometimes make an
array that is guaranteed to be larger than the largest
possible number of entries,

...and then partially fill it.

For example you can decide that the user will never
need more than 1000 data points.

Then allocate an array of size 1000.

Then keep a companion variable that tells how many
elements in the array are actually used.

It is an excellent idea always to name this companion
variable by adding the suffix Size to the name of the
array.

class Two {

Here’s the program so far.

public static void main(String[] args) {

final int DATA_LENGTH = 1000;

double[] price = new double[DATA_LENGTH] ;

int priceSize = 0; /x first available index,
also representing number of elements
being stored in the array already. */

Now price.length is the capacity of the array price

...and priceSize is the current size of the array.

Notice how starting with indexing at 0 gives us an
alternative semantics for the index.

The alternative semantics is that there are exactly i
elements in the array stored before the array element
pricel[i].

For any i, index of price.

That is, for any i >= 0 and i < price.length

Keep adding elements in the array, incrementing the
size variable each time.

This way, priceSize always contains the correct ele-
ment count as well as the next available index in the
array.

209

Two meanings in one variable. When inspecting the array elements, though
...you must be careful to stop at priceSize, ...not at price.length
Also be careful not to overfill the array. Insert elements only if there is still room for them!

Here’s what I have so far:

class Two {
public static void main(String[] args) {
final int DATA_LENGTH = 1000;
double[] price = new double[DATA_LENGTH] ;
int priceSize = 0;
ConsoleReader console = new ConsoleReader (System.in);
System.out.println("Hello, please start entering prices.");
while (true) {
if (priceSize < price.length) {
double data = console.readDouble();
price[priceSize] = data;
priceSize += 1;

System.out.println("New element entered: " + data);
for (int i = 0; i < priceSize; i++) {
System.out.println("** " + i + ": " + price[i]);

X

} else {
System.out.println("Sorry, ran out of memory!");
break;

}

}
}
}
And how does it work? Here’s how:

frilled.cs.indiana.edu%javac Two.java
frilled.cs.indiana.edu%java Two
Hello, please start entering prices.

3.45

New element entered: 3.45
** 0: 3.45

7.12

New element entered: 7.12
** 0: 3.45

*k 1: 7.12

0.34

New element entered: 0.34
*% 0: 3.45

*k 1: 7.12

*k 2: 0.34

5.00

210

New element entered: 5.0

**x 0: 3.45
*k 1: 7.12
*¥x 2: 0.34
*¥*x 3: 5.0

~“Cfrilled.cs.indiana.edu¥

What happens if the array fills up?

Then, there are two approaches you can take.

The simple way out is to refuse additional entries.

That’s what we have done above.

I have seen that.

But, of course, refusing to accept all input is often
unreasonable.

Users routinely use software on larger data sets than
the original developers ever dreamt of.

In Java, there is another approach to cope with data
sets whose size cannot be estimated in advance.

When you run out of (allocated) space in an array

...you can create a new, larger array.

Can you also create a new smaller array?

Yes, but that’s the second case.

If you want to trim it.

Let’s get back to the array overflow case.

When you run out of allocated space in an array

...you can create a new, larger array;

copy all elements into the new array;

and then attach the new array to the old array vari-
able.

An array that grows on demand is often called a dy-
namic array .

If you find that growing an array on demand is too
tedious you can use vectors.(We’'ll get to that in next
week’s lectures).

We now have all the pieces together to implement the
program.

class Two {

Here it is:

public static void main(String[] args) {

final int DATA_LENGTH = 1000;

double[] price = new double[DATA_LENGTH] ;

int priceSize = 0;

ConsoleReader console = new ConsoleReader(System.in);
System.out.println("Hello, please start entering prices.");

while (true) {

if (priceSize < price.length) {

double data = console.readDouble();

price[priceSize] = data;
priceSize += 1;

System.out.println("New element entered: " + data);
for (int i = 0; i < priceSize; i++) {

211

System.out.println("** " + i + ": " + price[i] +
" (" + price.length + ")");
}
} else {
double[] newData = new double[2 * price.length];
for (int i = 0; i < price.length; i++) {
newDatal[i] = price[i];

}
price = newData;
}
}
}
}

I think you should study this program carefully. Yes, it’s a bit tricky.

The loop executes once every time ...except when the storage limit is reached it is exe-
cuted one more time, quickly, to reallocate the array,
then waits for user input.

How can we experience the reallocation of the array ... without having to set DATA_LENGTH to some small
value?

Read it from the command line. Very good.

class Two {
public static void main(String[] args) {
final int DATA_LENGTH = ‘ Integer.parselnt(‘args [0];
double[] price = new double[DATA_LENGTH];
int priceSize = 0;
ConsoleReader console = new ConsoleReader (System.in);
System.out.println("Hello, please start entering prices.");
while (true) {
if (priceSize < price.length) {
double data = console.readDouble();
price[priceSize] = data;
priceSize += 1;
System.out.println("New element entered: " + data);
for (int i = 0; i < priceSize; i++) {
System.out.println("** " + i + ": " + price[i] +
" (" + price.length + ")");

}
} else {
double[] newData = new double[2 * price.length];
for (int i = 0; i < price.length; i++) {
newDatali] = pricel[il;
}

price = newData;

212

}

Of course, this program is for testing, not for distri-
bution.

Indeed. Let’s now talk about trimming.

That’s the easier case.

Yes. We just create a new smaller array with size
priceSize

...then copy all the elements into the new array.

Then attach the new array to the old array variable.
This way we keep the data and its size in just one
place.

The array itself.

But we assume the array won’t change after that.

Methods often have array parameters.

Such as main, for example.

This method computes the average of an array of float-
ing point numbers.

To visit each element of the array data, the method
needs to determine the length of data.

public static double average(double[] data) {

if (data.length == 0) return 0;

double sum = 0;

for (int i = 0; i < data.length; i++)
sum += datal[i];

return sum / data.length;

}

It inspects all elements, with index starting at 0

...and going up to, but not including, data.length.

Note that this method is read-only. It strives to be
that way.

If changes were made to the array the caller would see
that.

How come?

You pass arrays as if you're passing Rectangles.

Or any other object for that matter.

The invoked method simply receives a copy of the ar-
ray’s address.

Or reference.

When an array is passed to to a method, the array
parameter

...double[] data in our case,

...contains a copy of the reference to the argument
array.

The process is identical to that of copying array vari-
ables

... which we have discussed yesterday.

Or, to that of passing Rectangles as parameters to
objects.

Indeed.

Because an array parameter is just another reference
to the array,

a method can actually modify the entries of any
array you give to it.

213

A method can also return an array. This is useful if a method computes a result that con-
sists of a collection of values

...of the same type. Here’s an example: a method ...that returns a random data set, perhaps to test a
chart-plotting program.

public static int[] randomData(int length, int n) {
Random generator = new Random() ;
int[] data = new int[length];
for (int i = 0; i < data.length; i++)
datal[i] = generator.nextInt(n);
return data;

}

We will discuss several very common ...and very important

...array algoritms. More complex algorithms are We will also look at sorting before too long.
based on what we do now.

Meanwhile let’s look how we find a value (also known Here’s an example: suppose we want to find the first
as searching). price that is lower than 1000 dollars.

int i = 0;
boolean = false;
while (i < prices.length &&) {

if (prices[i] <= 1000)
= true;

else
i+=1;

}
it (Foumd)

System.out.println("Item " + i + " is the first.");
} else {

System.out.println("Not found.");
}

Note that the loop may fail to find an answer, namely At the end of the loop though, either found is true, in
if all prices are above $1,000. which case prices[i] is the first price that satisfies
our requirements,

or i is prices.length, which means that you So you have to give up smoking.
searched the entire list without finding a match.

Or buy a lighter. Note though that you should not ...if you want to have the correct value of i after
increment i if you had a match — exiting the loop.

Next comes counting. Suppose you want to find out

... how many prices are below $1,000. TMTOWTDI, but here’s one:

double[] prices;
double targetPrice = 1000;
// ... initialize the array

214

int = 0;
for (int i = 0; i < prices.length; i++) {
if (prices[i] <= targetPrice)
-1
}

System.out.println(count + " prices under $1,000.");

Yes. Now you don’t stop on the first match (if any)

... but keep going to the end of the list,

...counting how many entries do match.

How do we remove an element?

There’s more than one way to do it.

I know, but what cases do you have in mind?

If the elements of the array are not in any particular
order,

...simply overwrite the element to be removed with
the last element of the array.

Unfortunately, an array cannot be shrunk to get rid
of the last element.

In this case, you can use the technique of a partially
filled array together with a companion variable.

I don’t like this method.

Neither do 1.

The situation is more complex if the order of the ele-
ments matters.

Then you must move all the elements

...beyond the element to be removed

... by one slot.

Then trim the array.

class Three {

Let’s implement that:

public static void main(String[] args) {

int[] price = new int[Integer.parseInt(args[0])];
for (int i = 0; i < price.length; i++)

price[i] = i + 1;

(price) ;

price = |removeElementAt |(price, 3);

(price) ;

price = |removeE1ementAt |(price, 5);

(price) ;
}

public static int[] |removeE1ementAt|(int [1 a, int index) {
System.out.println("--> Attempting to remove element at index "
+ index + " in the array.");

if (a.length > 0) {

int[] = new int[[a].length - 1];

for (int i = 0; i < index; i++)

copyl[i] = alil;
for (int i = index;
copyl[i] = al[i + 1];

i < a.length - 1; i++)

}

215

return ;

} else {
System.out.println("Sorry, array is empty.");
return a;

public static void (int [1a)}

for (int i = 0; i < a.length; i++)
System.out.println("*x " + i + ": " + a[i]);

How does this work? There you go:

frilled.cs.indiana.edu%java Three 10

% %
* %
* %
* %
* %
* %
* %
* %
* %
* %

* %
* %
* %
* %
* %
* %
* %
* %
* %

* %
% %
% %
% %
% %
% %
% %

0: 1
1: 2
2: 3
3: 4
4: 5
5: 6
6: 7
7: 8
8: 9
9: 10
--> Attempting to remove element at index 3 in the array.
0: 1
1: 2
2: 3
3: 5
4: 6
5: 7
6: 8
7: 9
8: 10
--> Attempting to remove element at index 5 in the array.
0: 1
1: 2
2: 3
3: 5
4: 6
5: 8
6: 9
7: 10

* %

frilled.cs.indiana.edul

I think there’s a lot we can learn from this program. I think so too; plus, inserting an element in an array

is done in the same way.

You’re right. Tomorrow we’ll start on Vectors.

216

Among other things. Can I give you a small challenge?

Yes. What’s a good name for this method?
public static void (int 1 a {

for (int i = 0; i < a.length - 1; i++)
for (int j = i + 1; j < a.length; j++)
if (alil < al[jl) {

int temp = al[il;

alil = aljl;
alj]l = temp;
}
}
You mean second best name. . . Yes, that’s what I mean.

T’ll have to think about it. Great. See you tomorrow.

The Bald Soprano

Inheritance and the class extension mechanism.

You don’t realize it, but you’re constantly enjoying
the benefits of science.

For example, when you turn on the the radio, you take
it for granted that music will come out;

But do you ever stop to think that this miracle would
not be possible without the work of scientists?

That’s right: there are tiny scientists inside that radio,
playing instruments.

A similar principle is used in automatic bank-teller
machines, which is why they frequently say: ” Sorry,
out of service.”

They’re too embarassed to say: ” Sorry, tiny scientist
going to the bathroom.”

Speaking of banks and ATMs, let’s use the
BankAccount class to study the class extension mech-
anism, or inheritance (in Java).

Inheritance is a mechanism for enhancing existing,
working classes.

If you
e need to implement a new class, and

e a class representing a more general concept is
already available,

...then the new class can inherit from the existing
class. For example, suppose you need to define a
class SavingsAccount to model an account that pays
a fixed interest rate on deposits.

You already have a class BankAccount

...and a savings account is a special case of a
BankAccount.

Ask any tiny scientist!

So, in this case, it makes sense to use the language
construct of inheritance.

Here is the syntax for the class definition:

class SavingsAccount |extends BankAccount| {

<new methods>
<new instance variables>

And the set union of features kicks in.

217

218

Exactly. In the SavingsAccount class definition you specify
only new methods and instance variables.

All' methods and instance variables of the I see...Concatenation of blueprints (almost).

BankAccount class are automatically inherited

by the SavingsAccount class.

The more general class that forms the basis for inher-
itance is called the superclass.

That would be BankAccount.

The more specialized class that inherits from the su-
perclass is called the subclass.

Here, this is SavingsAccount.

In Java, every class that does not specifically extend
another class,

...extends the class Object.

Whoal. .. that explains everything!

Yes. It’s been a well kept secret until now.

The Object class has a small number of methods that
make sense for all objects,

. such as the toString method that you can use to
obtain a string that describes the state of an object,
any object.

I remember the other day we had this code.

class Vehicle {
String owner;
Vehicle (String owner) {

this.owner = owner;
X
public String toString() {

return "I belong to: " + this.owner;
X

public static void main(String[] args) {
Vehicle a =
System.out.println(a.toString());
}
}

And we asked two questions about it.

new Vehicle("Michael Jordan");

First off, if you run it now, no mistery.

class Vehicle {
String owner;
Vehicle (String owner) {
this.owner = owner;

X
public String toString() {

return "I belong to: " + this.owner;
X

public static void main(String[] args) {

Yes. All’s copacetic now. But do this:

219

Vehicle a = new Vehicle("Michael Jordan");

System.out.println(a);
}
}

Yes, that’s the minor mistery.

The toString is invoked by default.

Very good.

class Vehicle {
String owner;
Vehicle (String owner) {
this.owner = owner;

}

public static void main(String[] args) {

Now do this:

Vehicle a = new Vehicle("Michael Jordan");

System.out.println(a.toString());
}
}

Yes, that’s the major mistery.

A toString is already there from Object.

Doesn’t work that well, but it’s there.

And 0Object is responsible for providing it.

That’s called inheritance.

It’s a side-effect of the class extension mechanism (for
efficiency of expression).

When you extend a set of features provide the name
of the set your starting from (extends) followed by
the list of features you’re adding.

One important reason for inheritance is code reuse.
By inheriting from an existing class, you do not have
to replicate the effort that went into designing and
perfecting that class. For example ...

... when implementing the SavingsAccount class, you
can rely on the withdraw, deposit and getBalance
methods of the BankAccount class without touching
them.

Let us see how our savings account objects are dif-
ferent from BankAccount objects. But before that let
me just say this again: For example, ...

... when implementing the SavingsAccount class, you
can rely on the

e withdraw,
e deposit and

e getBalance

methods of the BankAccount class

... without touching them.

OK. Let us now see how our savings account objects
are different from BankAccount objects.

We will set an

e interest rate in the constructor,

...and then we need a

e method to apply that interest periodically.

220

That is, in addition to the three methods that can be
applied to every BankAccount...

...we now have an additional method, addInterest
which will only work for the new type of
SavingsAccounts.

These new methods and instance variables must be
defined in the subclass.

Here’s the definition:

public class SavingsAccount BankAccount {

double interestRate;

public ‘SavingsAccount‘ (double rate) {
this.interestRate = rate;

}

public void addInterest() {
double interest;

interest = this.getBalance() * this.interestRate / 100;

this.deposit(interest);
}
}

Given this definition, what is the structure of a
SavingsAccount object (as far as fields go)?

It inherits the balance instance variable from the
BankAccount superclass, and it gains one additional
instance variable.

Which is...interestRate.

Exactly.

It’s nice to be able to develop things in stages.

Yes, we will have a longer example later.

Next we need to implement the new public void
addInterest () instance method.

We have in fact already implemented it, but we pre-
tend not to have done, just to discuss it.

This method computes the interest due on the current
balance,

...and then deposits that interest to the account.

Note how the addInterest() method calls the
getBalance() and deposit() methods of the super-
class (BankAccount).

Hot ziggity, you're right!

public class SavingsAccount extends {

double interestRate;

public SavingsAccount (double rate) {
this.interestRate = rate;

}

public void addInterest() {
double interest;

interest = this.|getBalance()| * this.interestRate / 100;

this. intere st;
}

221

Thanks for emphasizing, I would have missed it.

You’re very welcome.

Let’s now draw a picture to illustrate. .. _ ...what each type of object has and why:
Object étostring' ()
Ebaﬁance
Edeﬁasit{___}
BankAccount |
gw;ﬁhdraw{___}
EgEﬁBalancel}
: | Etoﬂtring{}
SavingsAccount |
Eintereétﬂéte
‘addInteredt ()
: Eba#ance
Edeﬁcsit[___}
Ewiﬂhdraw{___}
EgEﬁBalance{}
| Etcﬂtring{}
Boy, that looks good! I sure think so.
The class SavingsAccount extends the class ...by default). A SavingsAccount object is a spe-
BankAccount (which extends Object... cial case of BankAccount, just as a BankAccount is a
special kind of Object.
A special case has more features. When I define a variable collegeFund of type

SavingsAccount how do you anticipate using it?

Here are all possible uses: Very good.

222

collegeFund |.deposit(___);

collegeFund |.withdraw(___);

collegeFund |.getBalance() ;

collegeFund |.addInterest();

When I define a variable anAccount of type
BankAccount how do you anticipate using it?

Here are all possible uses:

anAccount |.deposit(___);
.withdraw(___);

.getBalance();

anAccount

anAccount

One less.

Very good.

Get ready for a subtle question now.

Hit me.

OK, here (it) goes:

Like this?

BankAccount b = new SavingsAccount(10);

Can you store a reference to a
SavingsAccount

object into an object variable of type BankAccount?

Yes. Can you do that?

You would never utilize b fully,

... but perhaps you don’t need that.

So the answer is: yes.

You can store the reference to a SavingsAccount ob-
ject into an object variable of type BankAccount

And the reason is that you’re just saying;:

I will not need the extra features that the class
SavingsAccount is defining,. ..

I will just attempt to work with the features defined
in BankAccount — that’s all I need in this particular
case”

Almost like casting a double to an int.

Almost but not exactly.

Yes, because the new feature is (still) there.

OK. Can you do the opposite?

SavingsAccount a = new BankAccount(___);

You mean this?

Yes.

The answer is: no.

223

Why?

Well, what’s the intended use of a?

I'd say: if I try to compute the added interest the
object won’t have an adequate instance variable, nor
the capability to do that. That is,

a.addInterest ()

does not make sense.

So we can’t let that happen.

And the compiler will complain.

Why doesn’t it complain in the previous situation?

Because in that situation we are only giving up on
some amenities,

... which is fine with the compiler for as long as it’s
fine with us,

... whereas here we might ask for the impossible,

. which the compiler can’t accept,

...even if it’s fine with us.

Therefore,
a.addInterest()
is what it wants to guard us against.

SavingsAccount

BankAccount | anAccount =

collegeFund |;

So, going back to our original example,

collegeFund| = new SavingsAccount(10);

an0bject = |collegeFund|;
...these are all OK.
Now the three object references stored in ..all refer to the same object, of type
collegeFund, anAccount, and anObject, SavingsAccount, that much is clear.
However, the object variable anAccount knows less Because anAccount is a variable of type
than the full story about the object to which it refers. |BankAccount| you can use it to refer to the

(The object only knows the truth).

deposit | and |withdraw | methods used to change

the balance of the actual ‘ SavingsAccount | object.

You can’t use the addInterest method, though.

It is not a method of the BankAccount superclass.

You can’t see it when you decide to ignore it.

Exactly. And, of course, the variable anObject knows
even less.

You can’t even apply the deposit method to it.

deposit is not a method of the Object class.

Why would anyone want to know less about an ob-
ject and store a reference to it in a variable of the
superclass’s type?

For generality and uniformity.

224

Have any example?

I have two of them.

Let’s see the first one.

Consider the transfer method which transfers money
from one account into another.

void transfer (BankAccount other, double amount) {

this.withdraw(amount) ;
other.deposit (amount) ;

}

You can use this method to transfer money

...from one BankAccount to another,

...and you can also use the method to transfer money
into a SavingsAccount.

The transfer method expects a reference to a
BankAccount, which it will use to deposit.

Any SavingsAccount object can do that too, so it can
be passed as the first explicit argument to transfer.

The transfer method doesn’t actually know (or care,
for that matter) that, in this case, other refers to an
actual SavingsAccount.

It knows only that other is a BankAccount,

...that is, that it can
e deposit
e withdraw, and

e getBalance

...and it doesn’t need to know anything else.

Precisely.

I liked your first example.

Thank you. I liked it too.

What’s the second example?

It involves arrays, but we need to discuss inheritance
hierarchies first.

Very good, let’s do that.

Occasionally, it happens that you convert an object to
a superclass reference then, later, you need to convert
it back.

Suppose you captured a reference to a savings account
in a variable of type Object:

Object my0bj = new SavingsAccount(10);

A variable reference is like a pair of binoculars.

Or a pair of blinkers

... of the type that’s used on skittish racehorses.

If you put it on,

...you can only see what it lets you see.

Much later, if you want to
e add interest or

e deposit to the account,

...you can do that, with care.

225

The object still has all the features,

...you just need to put the right pair of binoculars on
to see them.

That’s called casting.

As long as you are absolutely sure that my0Obj really
refers to a SavingsAccount object,

...you can use the cast notation to convert it back,
like this:

SavingsAccount x = | (SavingsAccount) byObj

-

What if you’re sure but wrong?

If you are wrong, and the object doesn’t actually re-
fer to a savings account, your program will throw an
exception, and terminate.

You will see examples of casting soon now.

In real world, we often categorize concepts into hi-
erarchies. Hierarchies are frequently represented as
trees,

... with the most general concepts at the root of the
hierarchy, and the more specialized ones towards the
branches.

I think I get that.

Let’s see an example in Java.

Suppose that we have more than just one extension
to BankAccount.

Consider a CheckingAccount class that describes ac-
counts with no interest,

...gives you a small number of free transactions per
month,

...and charges a transaction fee for each additional
transaction.

I can visualize that.

Good. All accounts have something in common.

They are all bank accounts with a balance and the
ability to deposit money,

...and (within limits) to withdraw money.

This leads us to the following inheritance hierarchy:

Bankaccount

/N

A simple, very basic class hierarchy.

SavingsAccount CheckingAccount

Now suppose that you have 100 bank account objects,
and half of them are checking accounts and the other
half are. ..

...savings accounts? That’s plausible.

Can you keep them all in an array?

Only if the array is declared as having an interest
in (being concerned with describing) only their most
general, common features.

226

BankAccount[] a = new BankAccount[100];

Like this:

This strategy, in its most general form, is used by the
Vector class.

Which makes use of arrays of Objects.

To store something in a Vector it must be of type
Object. I mean: that’s it!

So you can’t store an int?

Not directly.

But you can store a Rectangle

If you do, it will get stored as an Object.

Vector| v = new |Vector |();

v | addElement |(new Rectangle(_,_,_,_));

(V.(O)) .translate(_,_);

Vector| v = new |Vector|();

v | addElement |(new Rectangle(_,_,_,_));

And when you retrieve it,

...it comes back as an Object and not as a
Rectangle. So you will need to cast the reference
to a Rectangle or it won’t work.

((Rectangle) (v.|elementAt |(0))) .translate(_,_);

Whatever you want to do with it as a Rectangle, you
need to cast it to a Rectangle from the Object that
it comes back as.

Not casting it, will give you an error first time you try
to use it as a Rectangle.

In most situations of this kind, though, it is better
to play it safe and test whether a cast will succeed,
before carrying out the cast.

For that purpose one can use the instanceof opera-
tor.

That’s right, it tests whether an object belongs to a
particular class.

if (anObject instanceOf SavingsAccount) {
// ... do savings account type of work

For example, when retrieving one of our accounts from
the array we could take the appropriate type of action
depending on the type of account:

} else if (anObject instance0f CheckingAccount) {

// ...
} else {
/...

do checking account type of work

}

in which case the tiny scientist reports an error

Is that all there is to it?

Almost.

Can you give me a complete summary?

Yes. Complete for all practical purposes.

Let’s start.

OK.

227

We first defined class Point. A Point has a position (x, y).

class Point {
int x;
int y;

}

These are the features of any Point object:
e an x coordinate, and
e a y coordinate

together defining the position of any Point. A Pixel is a Point with Color. In Java this is easy to write:

class Pixel |extends Point| {

Color?® c;

}

The features of a Pixel are three:

. ‘an x coordinate (which is an int) ‘

o ‘a y coordinate (which is an int) ‘

e 3 Color, call it color

This set of features is the union between
e the features of a Point and
o the one new feature that class Pixel is defining

in other words:

Point = {z,y}

Point = Point U {color}

That is, the resulting blueprint (for Pixel) is a putting together of the two descriptions. That’s fine, but set
union means that names should be kept distinct. (We’ll come back to this in a second.) How do we use Point
and Pixel? Nothing unusual. We use new and expect the blueprints to define the resulting structures.

// somewhere in a method...
Point a = new Point();
Pixel b = new Pixel();

a.x = 2;
a.y = -10;
b.x = 3;
b.y = 24;

b.color = Color.blue;

23http:/ /java.sun.com/products/jdk/1.2/docs/api/java/awt/Color.htmlColor

228

Notice that the Color class is defined in the java.awt package. Next we asked: have you ever seen a Horse?
The answer was: yes. Can you describe a Horse? The answer was: that’s actually quite complicated. OK, so
fortunately we know what we’re talking about:

class Horse {
// lots of features ...
}

Next we asked: have you ever seen a Unicorn? The answer was: no. Can you describe a Unicorn though?
Everybody said: yes, that’s easy.

Here’s a picture to get the idea:
So a definition is almost immediate.

class Unicorn extends Horse {
Horn h;

}
And we had the following situation:

e everybody had seen horses, but nobody felt it was easy to describe them

e nobody had seen unicorns, but everybody thought it was easy to describe them

That’s because we factored out the Horse. Now we said: let’s write a play with horses and unicorns. In our play
we could have:

Horse h = new Horse();

Unicorn u = new Unicorn();

Both h and u are special kinds of binoculars. If you put them on you should see the features that their type
is defining. So h.mane and u.mane make sense. So does u.horn but h.horn doesn’t. For this reason it’s not
adequate to say:

Unicorn g = new Horse();

It is OK, however, to ignore some features, for the sake of being more general. From our description it follows
that all Unicorns are Horses. That’s called polymorphism. So writing something like this is acceptable:

Horse z = new Unicorn();

You can never access the Horn with z but sometimes you don’t even need that. We could come up with the
following similar example:

class Shape {
// two coordinates

}

class Circle extends Shape {
// add a radius

}

229

class Rectangle extends Shape {
// add a width and a height
}
class Triangle extends Shape {
// add two other points relative to location

}
Why is this useful? If you want to create an array that can store
e Circles,
e Triangles, and

e Rectangles,
the only thing you can do that is by relying on their generality as Shapes.
Shape p[] = new Shape[100];

I’ve got room for 100 such shapes (circles, triangles, or rectangles). There’s no other way around it, as far as
arrays are concerned. Now we want to explore the name collision problem. Consider this example:

class Horse {
void neigh() { System.out.println("Horse: Howdy!"); }
}
class Unicorn extends Horse {
void neigh() { System.out.println("Unicorn: Bonjour! "); }

}

Unicorn is listing a feature: neigh. If Horse had not had it already listed things would’ve been easy. But
Horses already know how to neigh. They say: "Howdy!”. So Unicorns redefine the feature by saying ”Hello!”
in French. (Unicorns are from Paris, TX)? That’s called overriding. The mechanism is that no matter how you
look at a Unicorn,

e as the Unicorn that it is, or

e as the Horse that it is
you are guaranteed to obtain the French greeting out of it. Here’s the proof:

frilled.cs.indiana.educat Ionesco.java
class Horse {
void neigh() { System.out.println("I am a Horse: Howdy!"); }
}
class Unicorn extends Horse {
void neigh() { System.out.println("I am a Unicorn: Bonjour! "); }
}
class Ionesco {
public static void main(String[] args) {
Unicorn a = new Unicorn();
Horse b = new Unicorn();
a.neigh(Q);
b.neigh();
Horse ¢ = new Horse();

230

c.neigh();

}
}
frilled.cs.indiana.edu)%javac Ionesco.java
frilled.cs.indiana.edu)java Ionesco
I am a Unicorn: Bonjour!
I am a Unicorn: Bonjour!
I am a Horse: Howdy!
frilled.cs.indiana.edu’

That’s all we need to know before we go into applets.

class Vector {

Object[] localStorage = new Object[0];

int size() {
return localStorage.length;

}

void addElement(Object obj) {
int currentlength = this.size();
Object[] aux = new Object[currentLength + 1];
aux[currentLength] = obj;
for (int i = 0; i < currentLength; i++) {

aux[i] = localStoragel[il]; // transfer elements

}
localStorage = aux;
}
public String toString() {
String returnString = "Vector of size " + size() + ": (";

for (int i = 0; i < localStorage.length; i++)

returnString += " " + localStorage}[i]; // delay printing...

return returnString + ",

}

public static void main(String[] args) {
Vector v = new Vector();
System.out.println(v); // convenient printing
v.addElement (new Integer(2));
System.out.println(v);
v.addElement (new Integer(4));
System.out.println(v);
v.addElement (new Integer(6));
System.out.println(v);

Utilities

Vectors, Hashtables, Leftovers.

First here’s a Selection Sort that we have developed in class.

class One {
static void sort(int[] a) {
for (int start = 0; start < a.length - 1; start++) {
for (int j = start; j < a.length; j++) {
if (alstart] > al[j]) { // sorting in ascending order

int temp = a[start];
al[start] = al[jl;
alj] = temp;

}
}
public static void main(String[] args) {
int[] numbers = new int[args.length];
for (int i = 0; i < numbers.length; i++) {
numbers[i] = Integer.parselnt(args[i]);
}
System.out.println("Here’s the initial array: ");
One.show(numbers) ;

System.out.println("Let me sort it in ascending order... ");
One.sort (numbers) ;
System.out.println("... Done\nHere it is sorted: ");

One.show(numbers) ;
}
static void show(int[] a) {
for (int i = 0; i < a.length; i++) {
System.out.print(ali] + " ");
}
System.out.println();

Here’s how it runs:

231

232

frilled.cs.indiana.edu%javac One.java
frilled.cs.indiana.edu’java One 3 4 1 2 6 7
Here’s the initial array:
341267
Let me sort it in ascending order...
. Done
Here it is sorted:
123467
frilled.cs.indiana.edu’

Here’s a second method of sorting: Bubble Sort.

class Three {
static void sort(int[] a) {
|boolean done;
do {
for (int i = 0; 1 < a.length - 1; i++) {

if (alil > al[i + 1]) { // sort in ascending order

int temp = alil;

a[i] = a[i + 1];
ali + 1] = temp;
‘done = false;

}
}
} while (! done);
}
static void main(String[] args) {
int[] numbers = new int[args.length];
for (int i = 0; i < numbers.length; i++) {
numbers[i] = Integer.parselnt(args[i]);
}
System.out.println("Here’s the initial array: ");
Three.show(numbers) ;

System.out.println("Let me sort it in ascending order... ");
Three.sort (numbers) ;
System.out.println("... Done\nHere it is sorted: ");

Three.show (numbers) ;

}
static void show(int[] a) {
for (int i = 0; i < a.length; i++) {
System.out.print(al[i] + " ");
}
System.out.println();

It runs just like the other one, but the mechanism is different.
The outer do-while loop is normally added at the end.

For this reason I find the following method much more intuitive.

233

class Four {
static void (int[] a) {
boolean done = true;
for (int i = 0; i < a.length - 1; i++) {
if (alil > al[i + 1]1) { // sort in ascending order
int temp = alil;
ali] = al[i + 1];
ali + 1] = temp;
done = false;
}
}
if (! dome)

}

static void main(String[] args) {
int[] numbers = new int[args.lengthl;
for (int i = 0; i < numbers.length; i++) {
numbers[i] = Integer.parselnt(args[i]);
}
System.out.println("Here’s the initial array: ");
One.show(numbers) ;

System.out.println("Let me sort it in ascending order... ");
One.sort (numbers) ;
System.out.println("... Done\nHere it is sorted: ");

One.show(numbers) ;
}
static void show(int[] a) {
for (int i = 0; i < a.length; i++) {
System.out.print(a[i] + " ");
}
System.out.println();

Yes, recursion, in some cases, amounts to just a loop.

One could improve on the Bubble Sort technique above.

Here’s an @:‘ applet?* that illustrates the differences between three sorting methods:
e quick sort (not selection sort)
e regular bubble sort

e improved bubble sorting

The applet, I believe, is very exciting.

Let’s move on.

24http: //www.cs.indiana.edu/classes/a348-dger/lectures/tsort /examplel.html

234

Last time we talked about: (a) inheritance and (b) the class extension mechanism. These are more or less the
same topic. We can illustrate them both by this example:

class Horse {
int numberOfLegs;
void fun() {
System.out.println("I am a Horse.");
}
}
class Unicorn extends Horse {
void fun() {
System.out.println("I am a Unicorn. Like a horse, but with a horn.");
}
}
class Experiment {
public static void main(String[] args) {

Horse a = new Horse();

System.out.println("A horse has " + a.numberOfLegs + " legs.");
Horse b = new Unicorn();

Unicorn ¢ = new Unicorn();

System.out.println("A unicorn has " + c.numberOfLegs + " legs.");
// Unicorn d = new Horse(); // Not allowed.

System.out.print ("First test: ");

a.fun(); // a horse, of course

System.out.print("Second test: ");

c.fun(); // a unicorm, of course

System.out.print ("Third test: ");

b.fun(); // what will this be?

Here also the example promised on developing things in stages:

frilled.cs.indiana.eduj,cat Stages.java
class One {
int add(int n, int m) {
if (m == Q) return n;
else return add(n+1, m-1);
}
}
class Two extends One {
int mul(int n, int m) {
if (m == 1) return n;
else return add(n, mul(n, m-1));
}
}
class Three extends Two {
int pow(int n, int m) {
if (m == 0) return 1;
else return mul(n, pow(n, m-1));

235

}
class Calculator {
public static void main(String[] args)

Three calc = new Three();
int n = 3, m = 5;
System.out.println(n + " + " + m + " = " + calc.add(n, m));
System.out.println(n + " * " + m + "
System.out.println(n + " = " + m + "

-~

" + calc.mul(n, m));
" + calc.pow(n, m));

}
frilled.cs.indiana.edu’javac Stages.java
frilled.cs.indiana.edu’java Calculator

3+5 =28
3 *x5 =15
3 " 5 =243

frilled.cs.indiana.edu’%

Here’s a different, somewhat similar, example on interfaces.

frilled.cs.indiana.educat Example.java
interface Multiplier {
int mul(int n, int m);
}
class Alpha implements Multiplier {
public int mul(int n, int m) {
return n * m;
}
}
class Beta implements Multiplier {
public int mul(int n, int m) {
int result = 0;
for (int i = 0; i < m; i++)
result += n;
return result;
}
}
class Gamma implements Multiplier {
public int mul(int n, int m) {
if (m == 1) return n;
else return n + mul(n, m-1);
}
}
class Example {
public static void main(String[] args) {
Alpha a = new Alpha();
Beta b = new Beta();
Gamma g = new Gamma();
int n = 5, m = 3;
System.out.println(n + " * " + m + " =" + a.mul(n,m) + " (by Alpha)");
System.out.println(n + " * " +m+ " =" + b.mul(n,m) + " (by Beta)");
System.out.println(n + " * " +m+ " =" + g.mul(n,m) + " (by Gamma)");

236

}
}
frilled.cs.indiana.edu)%javac Example. java
frilled.cs.indiana.edu)java Example
5 x 3 = 15 (by Alpha)
5 * 3 = 15 (by Beta)
5 % 3 = 15 (by Gamma)
frilled.cs.indiana.edu’

It often happens that you want to store collections
that have a two-dimensional layout.

Such an arrangement, consists of rows and columns
of values, and is called (not surprisingly) a two-
dimensional array.

...or matriz (sometimes).

When constructing a two-dimensional array, you spec-
ify how many rows and columns you need.

If you want 10 rows and 8 columns:
int[][] matrix = new int[10][8];

A 10 x 8 matrix of ints.

To access a particular element in the array
matrix[3][4] = 5;

... specify two subscripts, in separate brackets.

In Java, two-dimensional arrays are stored as arrays
of arrays.

And three dimensional arrays are stored as arrays of
two-dimensional arrays.

That means arrays of arrays of arrays.

Yes, arrays of (arrays of arrays).

And n-dimensional arrays will be stored as arrays of
(n-1)-dimensional arrays.

What a recursive definition!

We won’t use more than two-dimensions.

Let’s take a closer look at them though: because a
two-dimensional array is really an array of the row
arrays,

...the number of rows is:

int nrows = matrix.length;

And the number or columns?

Because a two-dimensional array is really an array of
the row arrays,

...the number of elements in each row can vary.

But it doesn’t have to.

If it doesn’t, the number of columns is the same as
the length of the first row:

int ncols = matrix[0].length;

Can I see an example of a two-dimensional array that
has rows of various lengths?

int[10] b = { {1},

{2, 3},

{4, 5, 6},
{7, 8, 9, 10}
};

Yes, you can quickly create one with an array initial-
izer:

237

Can you do the same thing without it? Sure, I thought you’d ask:

int[J[] b = new int[4][];
int count = 1;
for (int i = 0; i < 4; i++) {
b[i] = new int[i + 1];
for (int j = 0; j <= i; j++) {
b[i] [j] = count;
count += 1;
}
}

I see you have to work harder. Yes, first you allocate space to hold four rows.

You indicate that you will manually set each row by Then you need to allocate (and fill) each row sepa-
leaving the second array index empty. rately.

You can access each array element as b[i] [j], ...but you must be careful that j is less than
b[i].length as illustrated below:

class Testing {
public static void main(String[] args) {
int[J[] b = new int[4]1[];
int count 1;
for (int i = 0; i < 4; i++) {
b[i] = new int[i + 1];
for (int j = 0; j <= i; j++) {
b[i] [j] = count;
count += 1;

}
}
for (int i = 0; i < b.length; i++) {
for (int j = 0; j < b[i].length; j++) {
System.out.print(b[i][j] + " ");
}
System.out.println();

Naturally, such "ragged” arrays are not very common. Except when you need them.

Then they become very natural. And they’re no longer "ragged”.

Exactly, because they fit that problem ... perfectly.

Events

Applets, Events, and FEvent Handling.

Today in class I would like to discuss this code:

import java.applet.x*;
import java.awt.x;
import java.awt.event.x;
public class Game extends Applet {
int i = 0;
public void paint(Graphics g) {
this.i = this.i + 1;
System.out.println("Paint called: " + i);
}
public void init() {
Umpire ump = new Umpire();
this.addMouseMotionListener (ump) ;
}
}
class Umpire implements MouseMotionListener {// wearing the uniform...
public void mouseDragged(MouseEvent e) {
System.out.println("Ha! You’re dragging the mouse.");
}
public void mouseMoved(MouseEvent e) {
System.out.print ("Mouse seen being moved at: (");
System.out.println(e.getX() + ", " + e.getY() + ")");

We’d like to understand this code very well.
When that is done we move on to this code:
import java.applet.x*;
import java.awt.x;

import java.awt.event.*;
public class Example extends /*NoFlicker*/Applet {

239

240

Circlel] circles;
public void init() {
circles = new Circle[100];

for (int i = 0; i < circles.length; i++) {
circles[i] =
new Circle(

(int) (Math.random() * (280 - 20) + 20), // x
(int) (Math.random() * (280 - 20) + 20), // y
(int) (Math.random() * (20 - 10) + 10), // radius

new Color((float)Math.random(),
(float)Math.random(),
(float)Math.random()
)

} // end of for
Broker peterPan = new Broker(this);

addMouseListener (peterPan) ;
addMouseMotionlListener (peterPan) ;

} // end of init

public void paint(Graphics g) {
for (int i = 0; i < circles.length; i++) {
// System.out.println(circles[i]);
circles[i].draw(g) ;

}
class Broker implements MouseMotionListener,
MouselListener {

Example customer;
Circlel] a;
Circle c;

Broker (Example someone) {
this.customer = someone;
this.a = this.customer.circles;
this.c = null;

241

public void mouseDragged(MouseEvent e) {
int x = e.getX(), y = e.getY();
if (¢ !'= null) {
c.move(x, y);
customer.repaint();
}
}

public void mouseMoved(MouseEvent e) { }

public void mouseClicked(MouseEvent e) { }
public void mousePressed(MouseEvent e) {

int x = e.getX(), y = e.getY();
System.out.println("Mouse pressed at (" +
X + Il’ n + y +||)Il);
for (int i = a.length - 1; i >= 0; i--) {
if (alil.contains(x, y)) {

c = alil;
break;
}
}
System.out.println("Currently on... " + c);

}
public void mouseReleased(MouseEvent e) { ¢ = null; }
public void mouseEntered(MouseEvent e) { }
public void mouseExited(MouseEvent e) { }
}
class Circle {
int x; int y; // center, not top-left corner
int radius;
Color c;

public void move(int x, int y) {
this.x = x; this.y = y;
}

Circle(int x, int y, int r, Color c) {
this.x = x;
this.y = y;
this.radius = r;
this.c = c;

}

public boolean contains(int x, int y) {

double dX = this.x - x,
dY = this.y - y;

242

if (Math.sqrt(dX * dX + dY * dY) <= this.radius)
return true;

else
return false;

}

public String toString() {
return "Circle at (" + this.x + ", " + this.y + ") " +

" size " + this.radius + ", color " + this.c;

}

public void draw(Graphics b) {

b.setColor(this.c);
b.fillOval(this.x - this.radius,
this.y - this.radius,

2 * this.radius,

2 * this.radius);
b.setColor(Color.black) ;
b.drawOval (this.x - this.radius,

this.y - this.radius,

2 * this.radius,

2 * this.radius);

}

<html>
<head>
<title>Circles</title>
</head>
<body bgcolor=white>
<applet code="Example.class" width=300 height=300>
</applet>
</body>
</html>

EF : Why the flicker?

The answer is: because of update(). (We inherit this method, and it is called by repaint()). Every time it’s
called it clears the screen and then calls paint (). To obtain flicker-free screen updates (which is essentially what
we are trying to do here, as in any animation) we will need to override update() such that it creates the new
image somewhere in the background (that is, in memory) and then updates the screen in one fell swoop. It is
easy to implement this as an application of inheritance. Here’s the new definition of update(): turn to page
31 in this book for the definition of the class NoFlickerApplet. Now your program needs to extend this class
instead of Applet directly.

Abstract Classes

Review and Tutorial: Inheritance and Abstract Classes.

When you define a class, Java guarantees that the class’s constructor method is called whenever an instance
of that class is created. It also guarantees that the constructor is called when an instance of any subclass is
created. In order to guarantee this second point, Java must ensure that every constructor method calls its
superclass constructor method. If the first statement in a constructor is not an explicit call to a constructor
of the superclass with the super keyword, then Java implicitly inserts the call super () — that is, it calls the
superclass constructor with no arguments. If the superclass does not have a constructor that takes no arguments,
this causes a compilation error. There is one exception to the rule that Java invokes super () implicitly if you do
not do so explicitly. If the first line of a constructor, C1, uses the this() syntax to invoke another constructor,
C2, of the class, Java relies on C2 to invoke the superclass constructor, and does not insert a call to super ()
into C1. Of course, if C2 itself uses this() to invoke a third constructor, C2 does not call super () either, but
somewhere along the chain, a constructor either explicitly or implicitly invokes the superclass constructor, which
is what is required. What this all means is that constructor calls are ”chained” — any time an object is created, a
sequence of constructor methods are invoked, from subclass to superclass on up to Object at the root of the class
hierarchy. Because a superclass constructor is always invoked as the first statement of its subclass constructor,
the body of the Object constructor always runs first, followed by the body of its subclass, and on down the class
hierarchy to the class that is being instantiated.

There is one missing piece in the description of constructor chaining above. If a constructor does not invoke
a superclass constructor, Java does so implicitly. But what if a class is declared without any constructor at
all? In this case, Java implicitly adds a constructor to the class. This default constructor does nothing but
invoke the superclass constructor. Note that if the superclass did not declare a no-argument constructor, then
this automatically inserted default constructor would cause a compilation error. If a class does not define a
no-argument constructor, then all of its subclasses must define constructors that explicitly invoke the superclass
constructor with the necessary arguments. It can be confusing when Java implicitly calls a constructor or inserts
a constructor definition into a class — something is happening that does not appear in your code! Therefore, it
is good coding style, whenever you rely on an implicit superclass constructor call or on a default constructor, to
insert a comment noting this fact. Your comments might look like those in the following example:

class A {
int i;
public AQ) {
// Implicit call to super() here
i= 3;
}
}

243

244

class B extends A {
// Default comnstructor: public B() { super(); }
}

If a class does not declare any constructor, it is given a public constructor by default. Classes that do not want
to be publically instantiated, should declare a protected constructor to prevent the insertion of this public
constructor. Classes that never want to be instantiated at all (in one particular, specific way,) should define that
particular constructor private. And here’s the last part of this overview.

1. An abstract method has no body, only a signature followed by a semicolon.

For example:
abstract double area();

2. Any class with an abstract method is automatically abstract itself, and must be declared as such. So
we need the blue keyword below, it just has to be there:

abstract class Shape {
abstract double area();

3

3. A class may be declared abstract even if it has no abstract methods.
This prevents it from being instantiated.

For example:

oldschool.cs.indiana.edujls -1
total 1
—rW-—-—---- 1 dgerman 134 Jul 16 12:28 Example. java
oldschool.cs.indiana.edu’,cat Example.java
abstract class Shape {
double area() { return -1; }
public static void main(String[] args) {
Shape a = new Shape();
¥
¥
oldschool.cs.indiana.edu%javac Example.java
Example. java:4: class Shape is an abstract class. It can’t be instantiated.
Shape a = new Shape();

1 error
oldschool.cs.indiana.edul

4. An abstract class cannot be instantiated.
This could be seen in the example above.

It can however have a main method with no problem:

245

oldschool.cs.indiana.edu/ls -1
total 1
“rWw--—-——---— 1 dgerman 172 Jul 16 12:33 Example. java
oldschool.cs.indiana.edu%cat Example.java
abstract class Shape {
double area() { return -1; }
public static void main(String[] args) {
System.out.println("Hello!");
// Shape a = new Shape();
}
}
oldschool.cs.indiana.edu%javac Example. java
oldschool.cs.indiana.edujava Shape
Hello!
oldschool.cs.indiana.edu

. A subclass of an abstract class can be instantiated if it overrides each of the abstract methods of its
superclass and provides an implementation (i.e., a method body) for all of them.

Here’s an example that does that and notice the inherited variables too.

oldschool.cs.indiana.edu%ls -1
total 1
“rWw--—-——---— 1 dgerman 511 Jul 16 12:40 Example. java
oldschool.cs.indiana.edu%cat Example.java
abstract class Shape {
int x, y;
abstract double area();

}

class Circle extends Shape {
int radius;
double area() { return 2 * Math.PI * radius * radius; }
double manhattanDistanceToOrigin() {
return Math.abs(x) + Math.abs(y);
}
}

class Tester {
public static void main(String[] args) {
Circle ¢ = new Circle();
c.radius = 10;
c.x = -3; c.y = 5;
System.out.println("Area is " + c.area() +
" and the distance is " + c.manhattanDistanceToOrigin());
}
}
oldschool.cs.indiana.edu%javac Example. java
oldschool.cs.indiana.edu%java Tester
Area is 628.3185307179587 and the distance is 8.0
oldschool.cs.indiana.edu

246

6. If a subclass of an abstract class does not implement all of the abstract methods it inherits, that subclass
is itself abstract.

To see this in the code above remove the definition of area() in class Circle and recompile:

oldschool.cs.indiana.edu’ls -1
total 1
“rWw-————---— 1 dgerman 577 Jul 16 12:44 Example.java
oldschool.cs.indiana.edu’cat Example.java
abstract class Shape {
int x, y;
abstract double area();

¥

class Circle extends Shape {
int radius;
/**x let’s take area() out, see if it still compiles:
double area() { return 2 * Math.PI * radius * radius;
*kkok /
double manhattanDistanceToOrigin() {
return Math.abs(x) + Math.abs(y);
}
}

class Tester {
public static void main(String[] args) {
Circle ¢ = new Circle();
c.radius = 10;
c.x = -3; c.y = b;
System.out.println("Area is " + c.area() +
" and the distance is " + c.manhattanDistanceToOrigin());

¥
¥
oldschool.cs.indiana.edu%javac Example.java
Example. java:6: class Circle must be declared abstract.
It does not define double area() from class Shape.
class Circle extends Shape {

~

Example. java:18: class Circle is an abstract class. It can’t be instantiated.
Circle ¢ = new Circle();

~

2 errors
oldschool.cs.indiana.edu,

7. It doesn’t compile, and for two reasons, not just one.
8. But the two reasons are closely related.
9. T hope you enjoyed this tutorial.
10. I strongly hope the information presented in it was quite manageable.

11. Please let me know if you have any questions.

Threads

Individual execution paths (with or without sharing).

A thread is a single sequential flow of control within a process. A single process can have multiple concurrently
executing threads. For example, a process may have a thread reading input from the user, while at the same
time another thread is updating a database containing the user’s account balance, while at the same time a third
thread is updating the display with the latest stock quotes. Such a process is called a multithreaded process;
the program from which this process executes is called a multithreaded program. The Thread class is used to
represent a thread, with methods to control the execution state of a thread. To create a new thread of execution,
you first declare a new class that is a subclass of Thread and override the run() method with code you want
executed in this thread. You then create an instance of this subclass, followed by a call to the start () method
(which really is, because of inheritance, Thread.start()). That method will execute the run() method defined
by this subclass. You can achieve the same effect by having the class directly implement the Runnable interface.
Each thread has a priority that is used by the Java runtime in scheduling threads for execution.

There are four kinds of threads programming:
(a) unrelated threads?s,
(b) related (but unsynchronized) threads®® ,
(c) mutually-exclusive threads?”,
(d) communicating and mutually-exclusive threads 28

25The simplest threads program involves threads of control that do different things and don’t interact with each other.

26This level of complexity has threaded code to partition a problem, solving it by having multiple threads work on different pieces
of the same data structure. The threads don’t interact with each other. Here, threads of control do work that is sent to them, but
don’t work on shared data, so they don’t need to access it in a synchronized way. An example of this would be spawning a new
thread for each socket connection that comes in.

27Where threads start to interact with each other, life becomes a little more complicated. In particular we use threads which need
to work on the same pieces of the same data structure. These threads need to take steps to stay out of each others’ way so that they
don’t each simultaneously modify the same piece of data leaving an uncertain result. Staying out of each other’s way is known as
mutual exclusion. A race condition occurs when two or more threads update the same value simultaneously. To avoid data races,
follow this simple rule: whenever two threads access the same data, they must use mutual exclusion. You can optimize slightly, by
allowing multiple readers at one instant. In Java, thread mutual exclusion is built on data objects. Every Object in the system has
its own mutex semaphore (strictly speaking this is only allocated if it is being used), so any object in the system can be used as the
?turnstile” or ”thread serializer” for threads. You use the synchronized keyword and explicitly or implicitly provide an object, any
object, to synchronize on. The runtime system will take over and apply the code to ensure that, at most, one thread has locked
that specific object at any given instant. The synchronized keyword can be applied to (A) a class, (B) a method, or (C) a block of
code. In each case, the mutex (MUTual EXclusion) lock of the name object is acquired, then the code is executed, then the lock
is released. If the lock is already held by the another thread, then the thread that wants to acquire the lock is suspended until the
lock is released.

28Here’s where things become downright complicated until you get familiar with the protocol. The hardest kind of threads
programming is where the threads need to pass data back and forth to each other. This is precisely the case with our Penguin in
the beginning of the book and in class we will carefully go over the four cases, and all the relevant details.

247

Contents

Prelude (Preliminaries)
Problems and Pain

Getting Started (with Feathers)
Your First Java Program
Algorithms

Simple Programs (Truly Basic Java)
ConsoleReader

Types and I/0

Reference vs. Primitive Types
Syntax

Predicates

Classes

Constructors and Instance Variables
Methods

Decisions

Loops

Two-Dimensional Patterns
More Loops

(Computer) Games

Designing Fractions

Milestones

Java Arrays (Part One)

Java Arrays (Part Two)

The Bald Soprano (Inheritance)
Utilities

Events

Abstract Classes

Threads

References

13
17
21
35
41
30
51
63
65
75
89
97
105
113
125
133
149
167
177
183
199
207
217
231
239
243
247

