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Abstract

This is a collection of milestones to share with potential co-authors
for a paper (whose structure is thus communicated/proposed) for sub-
mission to ACM InRoads on “Quantum Computing Education: A
Curricular Perspective.” The submission to InRoads is a recommen-
dation from the CS2023 Curricular Guidelines Task Force & Report.
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We represent classical bits 0 and 1 as and .

As qubits =

(
1
0

)
and =

(
0
1

)
.

An elementary quantum operation is analogous to an elementary
gate in a classical circuit. One of the most important examples is the
Hadamard gate, denoted by H, which operates on a single qubit as
follows:

H( ) = { , } = 1√
2
(|0〉+ |1〉) = |+〉

H( ) = { , } = 1√
2
(|0〉 − |1〉) = |−〉

Normally H is represented by the unitary matrix H = 1√
2

(
1 1
1 −1

)
.

The definitions above effectively extract the two columns of this ma-
trix. The misty state formalism introduced by Terry Rudolph elim-
inates the need to use matrices and Dirac algebra while accurately
describing quantum phenomena.
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The Hadamard gate is a genuinely quantum gate, since it creates
a superposition of states. Two other gates that we will use (X and Z)
are more classical in nature, for example: X( ) = and X( ) = .
The X gate is also known as the NOT gate. Meanwhile Z( ) = and
Z( ) = . The Pauli Z gate is also known as the phase-flip gate.
Three very well-known properties of the gates shown thus far can be
expressed as follows: Z(H( )) = H(X( )) while H(H( )) = and
H(H( )) = . To prove them we need additional rules, such as:

f({s1, s2, . . . sn}) = {f(s1), f(s2), . . . f(sn)}

The property above is called linearity and holds for any quantum
gate f applied to a quantum state that is a superposition of states
s1, s2, . . . sn. As an example the phase operator is linear:

{s1, s2, . . . , sn} = {s1, s2, . . . , sn} and f(s) = f(s)
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Two or more superpositions of states can be combined via set union
if they’re at the same depth level and have the same number of states:

{{s1, s2, . . . , sn}, {t1, t2, . . . , tn}} = {s1, s2, . . . , sn, t1, t2, . . . , tn}

Same depth level means that {s1, {s2, s3}} cannot be reduced.
To illustrate how our rules work we write the following:

H(H( )) = H({ , }) = {H( ), H( )} = {{ , }, { , }} =

= {{ , }, { , }} = { , , , } = { , } =

We see that s = s and that {s1, s2, s1, s2} = {s1, s1} as expected.
We also see that {s1, s1} = s1 in other words a superposition of

two (or more) identical states can be reduced to that state as a certain
(i.e., sure) measurement outcome.

4



A misty state is just an unnormalized quantum state.

For example { , , } can be represented by the vector
(
2
1

)
.

After normalization { , , } = 1√
5

(
2
1

)
= 2√

5
|0〉+ 1√

5
|1〉.

Because misty states don’t need to be normalized their formalism
is entirely pure, that is, devoid of numbers (coefficients). There is
however one subtlety to be careful about in going between the mist
and the quantum state—in the misty formalism we can only incorpo-
rate boxes (gates) whose representation in the traditional (quantum)
formalism is via a unitary matrix which is proportional to a matrix
of integer entries. For example H ×

√
2 contains only integers. We

will examine how the misty formalism can be extended but, for now,
we need to point out that it is a remarkable and nontrivial feature of
quantum computation that such unitaries can be universal, i.e. used
to simulate all unitaries, even ones with irrational complex entries.
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Given an arbitrary misty state, how can one determine the proba-
bility of each outcome in the state upon measurement? The “squaring
rule” is the only rule with numbers in the original (pure) misty state
formalism and says:

{ . . .︸ ︷︷ ︸
n

,

m︷ ︸︸ ︷
. . . } = n√

n2 +m2
|0〉+ m√

n2 +m2
|1〉

Now consider the following quantum snack: { , { , }}.
Can you calculate the probability of getting each piece of fruit?
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Since misty states always contain a whole number of black and
white balls the following state does not admit a representation in the
(original, pure) misty state formalism:

1√
3
|0〉+

√
2

3
|1〉

This follows from the “squaring rule” and because 3 cannot be ex-
pressed as a sum of two perfect squares.
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Since every quantum gate is represented by a unitary matrix we
can introduce the notion of eigenvector. In simple terms an eigenvec-
tor is a state that is a fixed point (up to a coefficient) for the quantum
operator under consideration. One can easily prove that:

X({ , }) = { , } and X({ , }) = { , }

This way we’d prove using misty states that |+〉 and |−〉 are in fact the

eigenvectors of X =

(
0 1
1 0

)
and that the corresponding eigenvalues

are ±1.
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Now using the quantum flytrap environment, let’s perform the
following experiment using individual photons:

If we associate the horizontal direction with |0〉 and the vertical
direction with |1〉 each beam splitter acts as a Hadamard gate and the
mirrors are acting as NOT gates. Thus the experiment is equivalent
to H(H( )) = . One can trace it using the misty state formalism
on the interferometer’s branches.
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Likewise this is the proof that H(H( )) = .

What happens if we introduce a delay on one of the branches?
(We’ll come back to this question later.)
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Another basic gate is the controlled-NOT, or CNOT. It operates
upon two qubits, with the first acting as a control qubit and the second
as the target qubit (for us CNOT ≡ −→X and we will explain the arrow
shortly: it basically points from the control qubit to the target qubit)
The CNOT gate flips the second bit if and only if the first bit is .
So we have: −→

X ( ) =

−→X ( ) =

−→
X ( ) =

−→
X ( ) =
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The only prerequisites for an introductory class to quantum com-
puting using the misty states formalism (as shown here) should be:

• access to “Q is for Quantum” and to Google Colab,
• basic knowledge of how to write simple programs in Python.

To define “simple” consider the following problem:

We could be asked to solve this problem in Google Colab in three
different ways. The first approach could be writing down the actual
answer (mathematical argument) in LATEX as follows:
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Second approach would be to simply model (simulate) it in Python:

Of course, in this case, we’d get a slightly different answer every time
we run the program but careful choice of parameters would ensure
that the experiment converges by the time our result is printed so the
answer is close to the (expected) theoretical result.
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Finally, a third approach would be to write a program to help
us determine the probability of getting a 7 (assuming it’s otherwise
difficult to calculate). This is a middle ground approach between the
two shown thus far, and since calculating the probability of rolling a
7 with two dice is easy let’s illustrate this with a different problem:

“You roll three dice. What is the probability that the sum
of the three dice is not a prime number?”

Here’s the Python code:
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Now following Andrew Helwer we can put together a unit circle
state machine that can help us determine transitions between (misty)
states for one-qubit quantum circuits constructed with H and X gates:

The X gate has two eigenvectors, and both are visible in this diagram.
One of them is { , } as discussed earlier. The other one (has already
been revealed and) is not { , } = −|+〉 since X({ , }) = { , }
simply means:

X(−|+〉) = X({ , }) = X({ , }) = { , } = −|+〉

which simply states that X({ , }) = { , } so it refers to the same
exact eigenstate. What then is the second eigenvector of X as seen in
this state diagram?
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We can now create a simple circuit in Qiskit and test our predictive
(theoretical) powers against the quantum circuit simulator:

Starting from we can trace the transitions on the unit circle state
diagram to confirm the result. We have just shown how using the
misty state formalism we built a useful tool that is general (i.e., it is,
in fact, mist agnostic).
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Now consider the following two-qubit circuit:

It implements: −→X (
←−X (
−→X (X( ) ))) ≡ SWAP( ) = . This

illustrates the meaning (and necessity) of the over arrows (as they
point from the control qubit to the target). This also reminds us that
Qiskit reports the output backwards (i.e., from left to right once the
entire picture has been rotated clockwise with 90◦).
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The superposition operator is a set operator; the order of states
(outcomes) inside does not matter, although an order might be pre-
ferred. As a reminder the phase operator acts as follows:

−{s1, s2, . . . , sn} = {s1, s2, . . . , sn} = {s1, s2, . . . , sn}

A multi-qubit state is written as a tensor product and the order
now matters, i.e. 6= . The good news is that the notation
simplifies even further to the point where it now closely matches Dirac
notation, e.g. = |01〉, = |110〉, etc.

Phase acts on a multi-qubit state like in a multiplication:

−(s1s2 . . . sn) = s1s2 . . . sn = s1s2 . . . sn = s1s2 . . . sn = s1s2 . . . sn

Other properties (either clear by now, or that can be easily proved):

{s1s2, s3s2} = {s1, s3}s2

s3{s1, s2} = s3{s1, s2}

s1 s2 . . . s2n = s1s2 . . . s2n

s1 s2 . . . s2n+1 = s1s2 . . . s2n+1

{s1, s2, s3, s2} = {s1, s3}

In a superposition, states in antiphase cancel each other like in a sum.
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So now let’s prove this property (also known as phase kickback):

In our misty state formalism it can be restated as follows:

Here’s how the proof proceeds:

−→
X ({ , }{ , }) =

−→
X ({ { , }, { , }}) =

= {
−→
X ( { , }),

−→
X ( { , })} =

= { { , }, { , }} =

= { { , }, { , }} =

= { { , }, { , }} =
= { { , }, { , }} =
= {{ , }{ , }}
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We can now discuss the Bernstein-Vazirani algorithm:
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Notice that if the gates in the black box had been reversed there
would have been no challenge. As they are, though, we would need
to convert the inputs to superpositions (using Hadamard gates) so we
can then apply the phase kickback phenomenon that we just proved
a bit earlier:
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Here’s the implementation in Qiskit. Taking into account the order
in which Qiskit prefers to report the output the implementation of the
black box below is an exact reflection of our initial diagram:

Reminder that these milestones are just pictures. In the text (nar-
ration) we’d mention that “Quantum computation is the only model
of computation to date to violate the extended Church-Turing the-
sis, and therefore only quantum computers are capable of exponen-
tial speedups over classical computers.” (from Quantum Computing:
Progress and Prospects, National Academies of Sciences, 2019).
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The code for the Qiskit circuit we just presented:

And here’s how we obtain the answer (in one step):
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So far, we have established that one reason to study quantum com-
putation is that it is the only model of computation that violates the
extended Church-Turing thesis. It does not violate (see also Tommy
Wong’s book) the original Church-Turing thesis: what is impossible
to compute remains impossible to compute, just that some things
could be computed faster by quantum computers. The other reason
is that this model of computation makes use of physical concepts for
which we (as humans, at our scale) have no intuition. One of them is
entanglement, capable of superluminal correlations (Bettina Just).
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Here’s how we create (and measure) an entangled state in Qiskit:
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One can set up and perform experiments in the Quantum Flytrap
to better understand quantum entanglement:

In the experiment above a measurement on the lower branch re-
sulted in the photon being absorbed (as the 7-th such photon on
that branch). That instantaneously collapsed the state of the other
photon which will now enter the detector on the right (and change its
counter from 6 to 7—in this environment no photon is ever lost).
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The alternative situation is when the photon on the bottom branch
does not get absorbed, instead passes through:

The state of the other photon immediately collapses to its other state.
The photon on that branch will be collected in the detector at

the top, whose counter will change from 4 to 5—something that will
happen with the detector at the very bottom, as well.

27



Since we brought up the fact that every gate can be represented by
a matrix we can now reveal that Qiskit can provide that information
for individual gates as well as whole circuits.

Two circuits are equivalent when they have the same (composite) ma-
trix. This can lead into the ZX calculus and Quantum in Pictures.
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More circuits created on the fly via abstractions (procedures) de-
signed specifically for that purpose, with associated matrices:

Second example introduces tensor product with the identity matrix.
Now we can bring Burd’s book into the course too.
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The controlled Hadamard is a gate that does not fit into the orig-
inal (pure) misty state formalism (and now we also know why):
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Here’s a circuit that creates a three qubit W-entangled state:

Recall that our goal is to become fluent in the original misty state
formalism so we can then extend it (if it needs to be extended, and in
any way that that may be necessary) so we can then graduate to the
regular (conventional) mathematical apparatus.
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Take a look at the first gate in the preceding circuit. It’s time to
remind you that we already talked about it (albeit indirectly) a long
time ago at the beginning of this document.

So, now, how do we process this gate in our formalism (in class)?
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One solution is to add coefficients and we can then calculate:

The coefficients are the probability amplitudes:

Transition to Dirac notation is now accessible/possible.
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We can now discuss teleportation:

As an aside, by now in the course the following topics will have
been covered: Bernstein-Vazirani (as shown earlier in this document),
Deutsch-Josza, Grover search, superdense coding and now teleporta-
tion. We also have a module based on Mathematica demonstrating
the CHSH game (as put together by John McNally from Wolfram Re-
search) and we have also discussed W-entangled states and referred
to John Watrous’ online IBM course (videos). The last section in the
course discusses the GHZ game (using three different approaches).
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Here’s how we implement teleportation in Qiskit:

This is the most comprehensive implementation out there. Note
that probability amplitudes of the teleported state (α, β ∈ R) are real.
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In the original (pure) misty state formalism two or more separate
mists can be combined when (and only when) they (a) are at the same
level and (b) have the same cardinality. This leads us to states that
are irreducible. For example:

The picture above shows three things: (a) there is a straightforward
conversion from a misty state to an algebraic expression; (b) that the
original, irreducible state can be approximated reasonably well within
the original (pure) misty state formalism and (c) that the state we
have chosen (smallest irreducible state with mist inside mist) is in
fact one of the eigenvectors of the Hadamard gate.
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Below we see the first two levels of a construction (so, the circle on
the right should in fact be on top of the other) that reaches irreducible
states immediately but is able to get (in the limit) arbitrarily close
to (and thus approximate) any vector in the space. The construction
resembles the Stern-Brocot tree that use exclusively rational numbers
to approximate all irrationals. Two important consequences to this:
first, we can get arbitrarily close to any state on the unit circle. The
construction converges to a countably infinite set of states that ef-
fectively approximates the (uncountably) infinite set of states with
real probability amplitudes. Second, the string representation of the
quantum states involved in this expansion grows exponentially.

The construction is clearly recursive (like the recursive definition of a
line via midpoints when endpoints are reasonably far apart). Transi-
tions shown are for the Hadamard (dotted blue lines), X (red lines)
and Z (dotted green lines) gates. One of the states shown here is an
eigenvector of the Hadamard (PETE) gate. What is the other?

37



As we may have mentioned before this is an intermediary extension
of the original (pure) misty state formalism that we have been able
to crystallize only recently and have yet to appreciate fully, namely
that arbitrary embeddings of superposition states (see diagrams on
previous two pages) lead to irreducible states, of which these are the
simplest cases: { , { , }} and { , { , }}.

Notice that these two states are, in fact, the two eigenvectors of
the Hadamard (PETE) gate. Even though these states stretch a little
the syntax (and semantics) of the original misty state formalism it is
easy to prove what we said: first, H({ , { , }}) = { , { , }},
as can be seen in the Figure on page 36 (and below) and then:

H({ , { , }}) = {H( ),H({ , })} =
= {{ , }, } =
= { , { , }} =

= { , { , }} = −{ , { , }}

Notice also that { , { , }} =
√

2+
√
2

2 |0〉 +
√

2−
√
2

2 |1〉 has prob-
ability amplitudes that cannot result directly from calculations asso-
ciated with those mentioned in the “squaring rule” (pp. 83-84 in the
book). They are the result of the embedded mist. Furthermore, the
state appears to be (and is) irreducible. This has several meaningful
consequences, but first let’s see how we motivate the transition to this
new syntax from the initial formalism.

In other words, now that we know what the second eigenvector of
the Hadamard gate is—what good is that?
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Terry proposes1 that we should start by getting students used to
the simplified notation {a , b } where a, b ∈ N are integers repre-
senting the number of copies. Although not strictly necessary one
could also emphasize that ultimately when we calculate probabilities
if a, b share any common factors they can be cancelled, just like when
reducing fractions to lowest form, because cancellation doesn’t change
the probability calculations for what we can actually observe.

We then ask the interesting question: “Is there any mist which
passes through the PETE box unchanged?” At first glance the an-
swer seems “obviously not!”, because a PETE box does the evolution
{a , b } → {(a+ b) , (a− b) } and the equations{

a = a+ b

b = a− b

do not have nontrivial solutions. So we need to change the question
to: “Is there any mist which passes through the PETE box such that
the probabilities of observing or are unchanged?” For that we
have to solve 

a2 =
(a+ b)2

(a+ b)2 + (a− b)2

b2 =
(a− b)2

(a+ b)2 + (a− b)2

and the solution for this is that the ratio a
b needs to be an irrational

number. That is yet another aspect that makes these “irreducible”
misty states interesting (besides the construction that resembles the
Stern-Brocot tree). Tell the story of poor Hippasus.

This leads to the first eigenvector of the Hadamard gate.

1This is not in the book, it’s from an email dated October 4, 2024.
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Now consider the following well-formed (but irreducible) misty state:

{ , { , }}

It says that three type of fruit are possible for a snack: apple, wa-
termelon and cherries. The specific item that we end up with is de-
termined probabilistically (via measurement). We do know it will be
one of the three items listed. In this misty state the watermelon and
cherries are in equal superposition with each other (let’s call that state
s1) and the apple is in equal superposition with the state s1. When
we estimate the probability of each outcome we find that the proba-
bility of receiving an apple is p( ) = 1

2 while for the other two items
p( ) = p( ) = 1

4 (so each has a probability of 0.25).
If we modify the misty state to { , { , }} we have a minimal

non-classical situation. One would expect the probability of getting
an apple to still be 0.75, when in effect it becomes 0.853 (thus lowering
the chance of receiving cherries to 0.147). The reason, of course, is
that the probability amplitudes add up, but the probabilities do not.

The resulting state is:

|Ψ〉 =
√

2 +
√
2

2
| 〉+

√
2−
√
2

2
| 〉 = cos π

8
| 〉+ sin π

8
| 〉
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Here’s an experimental setup in Quantum Flytrap that tries to
clarify what is happening in the quantum snack situation. First, as
we mentioned a long time ago, we now have a delay on one of the
branches. Furthermore, when we measure probabilities of occurrence
on each branch we still obtain the classical values: 50%, 25% and 25%.
If we know where the apple is coming from, then, nothing unusual
happens and calculations are as expected (i.e., classical).

The second part of the experiment will bring up the “indistin-
guishability” argument of Scarani: we’re going to let the paths come
together. The horizontal direction means the snack is “apple” and the
vertical: “cherries.”
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Now the paths are coming together so we no longer know where
the apple is coming from: is it transmitted through the first beam
splitter and then reflected by the second one, or is it reflected by the
first beam splitter and then transmitted through the second one?

Since we can’t know (and given the specific delay on the top branch)
the probability of getting an apple changes: it increases to 85%.
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Let’s now address two things as we finalize this document. The
first one is obtaining confirmation from Qiskit that what we think
happens in that circuit does indeed happen as expected:

For this we calculate:

{ { , { , }}, { , { , }}}

This translates to:

1√
2
|0〉

(
1√
2
|0〉+ 1√

2

(
1√
2
|0〉+ 1√

2
|1〉
))

+
1√
2
|1〉

(
1√
2
|0〉− 1√

2

(
1√
2
|0〉+ 1√

2
|1〉
))

Which then becomes:

1

2
|00〉+ 1

2
√
2

(
|00〉+ |01〉

)
+

1

2
|10〉 − 1

2
√
2

(
|10〉+ |11〉

)
And finally:

1

2

(
1 +

1√
2

)
|00〉+ 1

2
√
2
|01〉+ 1

2

(
1− 1√

2

)
|10〉 − 1

2
√
2
|11〉

Which is what Qiskit reports (modulo their ordering for qubits).
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From here, how do we graduate to the full conventional mathemat-
ical apparatus? Let’s simplify {{{ , }, }, { , { , }}} below:

This is what we’re actually trying to calculate and simplify:

1√
2

(
1√
2

(
1√
2
|0〉+ 1√

2
|1〉
)
+

1√
2
|1〉

)
+

1√
2

(
1√
2
|0〉+ 1√

2

(
1√
2
|0〉+ 1√

2
|1〉
))

We apply these simple, pre-algebra reductions:

Notice in the process we eliminate nodes, weights get updated.
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This particular expression is symmetrical:

So what we do on the left we also do on the right2.

2Note that as the graph is being reduced the expression is getting reduced too. This
process can be automated (and animated) and we have plans to do that in Mathematica
soon. For now it is a good exercise to trace the evolution of the mathematical expression
as the graph is being reduced (simplified). But I am not doing it here, in this draft.
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We continue the process:

We are now left with two more nodes to eliminate in this graph (one
creates a triangle on the left and the other one a triangle on the right).
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We first proceed on the right side of the graph

Then the same thing on the left and we’re finished:

This procedure is entirely general and despite the fact that the
constituent states are irreducible in the original (pure) misty state
formalism we were in fact able to prove that:

{{{ , }, } , { , { , }}} = { , }
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As I said at this point in the semester (or six weeks daily summer
session) we have three different ways in which we discuss the GHZ
game and then we’re done with what we wanted to present in class.

After that we cover topics in general (e.g., error correction, Simon’s
algorithm, Shor, entanglement swapping, QKD etc.) or revisit class
material that has already been presented but this time with linear
algebra, matrices, etc. We look through Nielsen and Chuang, Rieffel
and Polak, Mermin, the online book by Ekert and others (IBM Wa-
trous videos) to see what we have learned and know already so we can
then learn (or practice) the traditional mathematics on those topics.
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This document ends here. I do not attach a bibliography at this
time but these three papers are relevant to what was said above:

• the original3 CS2023 knowledge unit proposal
• discussion/analysis4 of QED-C data collected
• the very brief summary5 included in CS2023

The first paper was presented at SIGCSE 2023 in Toronto, Canada.
The second one (as a poster) to ITiCSE 2023 in Turku, Finland. The
third is part of the official, final CS2023 report.

3https://dl.acm.org/doi/pdf/10.1145/3545945.3569845
4https://legacy.cs.indiana.edu/~dgerman/2023/curricular-maps/cs2023-quantum.pdf
5https://legacy.cs.indiana.edu/~dgerman/2024/abstract-reformatted-jan-5.pdf
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