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Jumpstarting Quantum Computing in the Middle and  
High-School Classroom: A Guide for Teachers and Learners 

 

Experiential Learning 
 
Catching a frisbee is not easy but both dogs and Computer Science (CSCI) sophomores seem to be good at it. How 

they actually do it is still very much subject for debate [6, 7]. That they might be calculating trajectories in real time, 

using Newton’s equations, remains a very unlikely hypothesis. And yet it is undeniable that catching a frisbee 

demonstrates a working knowledge of Physics. How is this knowledge acquired? It seems safe to say that neither dogs 

nor CSCI sophomores learn their frisbee physics in the classroom. Both groups are comprised of very intelligent 

individuals but most individuals in these groups have a clear preference for experiential learning techniques (i.e., learn 

by doing) not to mention that their relatively short attention span sometimes presents a real challenge.  Recently the 

concept of “embodied heuristics” [6] has been proposed as a possible operational explanation. Such a heuristic is a 

distillation of evolved sensory and motor abilities and is the result of practice and evolution. We conclude that if you 

want to be good at catching a frisbee you need to practice. And if you keep at it, you get good at it. Catching a frisbee 

is classical physics. Classical physics is all around us. Interaction with is is inevitable, ubiquitous, vital and fun.  

Building an Intuition 
 

Our experiences and the basic nature of systems that obey classical mechanics allow us to develop a working intuition 

for the behavior of many things we see about us (and interact with) daily. But, classical physics is a limiting case of 

quantum physics and as Dirac taught us, there is a minimum disturbance that accompanies a measurement, a 

disturbance that is inherent in the nature of things and can never be improved by experimental technique. “If the 

disturbance is negligible, then the object is large in an absolute sense, and it can be described by classical physics. 

However, if the minimum disturbance accompanying a measurement is nonnegligible, then the object is absolutely 

small, and its properties fall in the realm of quantum mechanics. The quantum properties of absolutely small particles 

are not strange; they are just unfamiliar and not subject to our classical intuition.” [4] Thus it may be accurate to say 

that a quantum object is produced as a particle, propagates as a wave and is detected as a particle with the probability 

distribution of a wave but what difference does that make to a computer scientist? Why do we need quantum 

mechanics?  

Quantum Computing 
 
The UN has named 2025 the International Year of Quantum Science and Technology on the occasion of 100 years of 

Quantum Mechanics. Quantum computers harness quantum mechanics to compute by different rules than classical 

computers do. They don’t perform operations faster than a classical computer but they perform different operations 

that a classical computer can’t, and sometimes those operations offer a faster route to a solution.    
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At the foundation of our field we have two rewriting systems: Turing machines and lambda calculus. Turing machines 

are important for many reasons, but especially because of two long-held beliefs regarding computation: first, the 

Church-Turing thesis says that everything that is computable can be computed with a Turing machine, although it 

could in some cases  take a very long time (i.e., exponential time in the size of the input). This correctly suggests that 

there are problems that cannot be computed—they are called undecidable problems, the most famous of which is the 

halting problem. Aside from such uncomputable problems, everything else can be computed, and it can be computed 

using a Turing machine.  

 

Second, the extended Church-Turing thesis is a(nother) foundational principle of computer science that says that the 

performance of all computers is only polynomially faster than a probabilistic Turing machine. In other words, any 

model of computation, be it the circuit model or something else, can be simulated by a probabilistic Turing machine 

with at most polynomial overhead. A probabilistic Turing machine is a Turing machine where the state of the system 

can be set probabilistically, such as by the flip of a coin. The strong (or extended) Church-Turing thesis says that a 

probabilistic Turing machine can perform the same computations as any other kind of computer, and it only needs at 

most polynomially more steps than the other computer. In 1993, Bernstein and Vazirani showed that quantum 

computers could violate the extended Church-Turing thesis. Their quantum algorithm offered an exponential speedup 

over any classical algorithm for a certain computational task called recursive Fourier sampling. Another example of a 

quantum algorithm demonstrating exponential speedup for a different computational problem was provided in 1994 

by Dan Simon. Quantum computation is the only model of computation to date to violate the extended Church-Turing 

thesis, and therefore only quantum computers are capable of exponential speedups over classical computers.  

 

It's equally important here to understand that quantum computers would not violate the regular Church-Turing thesis. 

That is, what is impossible to compute will remain impossible. The hope, however, is that quantum computers will 

efficiently solve problems that are inefficient on classical computers. One such problem is the factoring of very large 

numbers. Another one is simulating nature with computers. Nature appears to be following the laws of quantum 

mechanics. Quantum mechanics is complex and sometimes classical computers can struggle to crunch the numbers to 

figure out what nature is doing. But quantum computers play by different rules. Quantum computers don’t need to 

crunch these numbers per se, they can simply mimic nature rather than approximate it numerically like the classical 

computers need to. And that’s because, just like nature, quantum computers are quantum. And the potential here is 

enormous not just for understanding physics but for designing new materials, and medicines, for instance. 

Student Agency 
 
Having decided that the topic is important we now ask ourselves what learner-sighted teaching technique is best suited 

here (and in general). Student agency is the ability to manage and advance one's learning. What we want to see is the 

learner in pursuit of knowledge, not knowledge in pursuit of the learner (at all levels). Education should foster 

independent exploration and construction of knowledge, rather than passive acceptance of instruction. Though we 

agree that a motivated student will always be in pursuit of knowledge, all too often in school we find that knowledge 
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is in fact in heavy pursuit of the student. Furthermore, we believe all students are intrinsically motivated to learn but 

learn to be unmotivated if they repeatedly fail. Every student has the basic needs to belong, to be competent and to 

influence what happens to them; motivation to learn only exists when these three conditions are satisfied. This is true 

at both the elementary level as it is in higher education. With this in mind we have developed and present an operational 

approach to jumpstarting quantum computing education to learners as early as middle school (or HS). Here we will 

restrict ourselves to present the phase kickback phenomenon and the Bernstein-Vazirani algorithm using just the basic 

rules of arithmetic. Our approach is based on a string-rewriting system invented by Terry Rudolph and introduced in 

his 2017 book "Q is for Quantum" [10, 11, 12]. We start from classical bits and little by little we introduce phase, 

superposition, interference. We show the simple rules that can help a middle school student trace qubits through a 

quantum circuit. We show how to verify what we do using the misty states formalism with circuits implemented in 

Qiskit. The reader is invited to read along with a pen and some paper. A laptop would come in handy as well. 

Misty States 
 
The 12-year-olds of today may well have access to large quantum computers before they leave their teenage years. 

Yet a standard educational trajectory would see them still several years away from learning enough quantum theory 

to explore this technology’s amazing potential meaningfully. In addition to barriers of convention (“This is the order 

in which things have always been taught”) there are math-related barriers (“You can’t understand quantum theory 

until you have mastered linear algebra in a complex vector space”). But, as has been shown, and in true CSCI spirit, 

it is possible to replace linear algebra with some string-rewriting rules [10] which are no more complicated than the 

basic rules of arithmetic. These rules are very simple indeed but we have to warn the reader of underestimating them. 

In class we emphasize that mastery of any system, no matter how simple it may appear to be, requires both attention 

and practice. With these two conditions satisfied we’re convinced that the reader will be very succesful.  

 

It is important to note that our focus is quantum computing (QC) and not quantum mechanics (QM) or quantum 

physics in general. Learning QC is much easier [3] than learning QM because QC deals with a very simple subset of 

QM as follows: (a) a qubit—the foundation of quantum computing—is the simplest non-trivial quantum system; (b) 

you never have to solve the Schrödinger equation, or even learn what it is, because the quantum systems that carry out 

quantum computations evolve in a controlled manner based on the quantum gates applied to them; and (c) there’s 

already a model of quantum computation, so the most difficult aspect of quantum mechanics—the art of applying it 

to real systems—is absent. We approach presentation from the mindset of maker-centered learning: “What I cannot 

create I cannot understand” is a good description of that persuasion and a quote from Richard Feynman. From here 

on, whether we discuss single or multiple qubit systems; entanglement; teleportation; quantum states, quantum gates 

and measurement; evolving quantum states with quantum gates; quantum circuits; primitives for a quantum processing 

unit; reversible computation and/or quantum algorithms, we advocate an environment of concrete representations via 

Python, Qiskit and the misty states formalism (the method developed and introduced by Terry Rudolph).  
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Maker-Centered Learning 
 
According to Piaget “children in the early years of primary school need concrete1 objects, pictures, actions, and 

symbols to develop mathematical meanings.” The same is true of students who lack a certain background or affinity 

for the pure structures of mathematics. This is where the simplicity of the misty state formalism shines through. Piaget 

also said “[l]ogic and mathematics are nothing but specialized linguistic structures.” The misty state formalism can 

facilitate access to both. Another quote, from Seymour Papert, is relevant here: “If people believe firmly enough that 

they cannot do math, they will usually succeed in preventing themselves from doing whatever they recognize as math.” 

The consequences of such self-sabotage is personal failure, and each failure reinforces the original belief. Papert also 

said: “My basic idea is that programming is the most powerful medium of developing the sophisticated and rigorous 

thinking needed for mathematics.” So our approach is trying to scaffold the knowledge needed to understand quantum 

computing and quantum information science starting from computing in Python in a notebook (Google Colab). We 

build an understanding of the misty state formalism and then use it to define, recognize and synthesize (operationally, 

in Qiskit/Python) the following concepts: superposition, phase, interference, entanglement, quantum gates and 

quantum circuits, the Deutsch-Josza algorithm, the Grover search algorithm, the Bernstein-Vazirani algorithm (and 

the phase kickback phenomenon that makes it possible) along with superdense coding and the GHZ game (quantum 

pseudo-telepathy via quantum entanglement). We then need to extend the system and present quantum teleportation 

and the phenomenon known as entanglement swapping (which allows qubits that have never met to become 

entangled). In this paper we only present the Bernstein-Vazirani algorithm via phase kickback and misty states. The 

rest has been presented and is available elsewhere and is now essentially part of the CS2023 report as a separate 

knowledge unit (KU).   

 
Quantum Flytrap 
 
We emphasize again that our central goal is not quantum mechanics. However we also need to stress that “[s]tudents 

and professionals interested in quantum information sciences need to adopt a different way of thinking than the one 

used to construct today’s (classical) algorithms. This certainly presents tremendous challenges, since, for many years, 

computer science students have been led to believe that they can get by with some knowledge of discrete mathematics 

and little understanding of physics at all. [In quantum computing w]e are going back to the age when a strong 

relationship between physics and computer science existed.” [8] Having said all of this we also need to point out that 

we don’t consider detailed knowledge of QM a necessity for a CSCI student unless they decide to choose a career in 

building quantum computing hardware. Here (as is done in the CS2023 KU) we only promote an appreciation of (and 

familiarity with) the main quantum concepts: qubit, state, phase, interference, entanglement, teleportation, 

measurement, sensing, coherence,  quantum communication and the main differences between QIS and QM. An 

environment facilitating direct interaction with these concepts is the Quantum Flytrap [2] which self-describes as a 

no-code IDE for quantum computing and we hereby strongly encourage its extensive use in the classroom and in labs. 

 
1 Our brains need to interact with something in order to create a model of it. As Papert puts it: “You can’t think about 

thinking without thinking about thinking about something.” 
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We will be giving two brief examples a bit later explaining why we think the use of such an IDE in the QC classroom 

(at all levels) is extremely beneficial.  

 

In conclusion we consider experiential learning a sine qua non feature of learning for the kind of learners and topics 

we have in mind. In such a process building an intuition via embodied heuristics is fundamental but, as we have said, 

direct interaction with the world of the very small is expensive and it has to be mitigated since we’re so big. John 

Preskill once remarked along the same lines: “Perhaps kids who grow up playing quantum games will acquire a 

visceral understanding of quantum phenomena that our generation lacks.” With this in mind we advocate the use of 

Quantum Flytrap as a tool to complement the system developed and introduced by Terry Rudolph (misty states 

formalism) which we proceed to introduce next.  

 
Bernstein-Vazirani 
 
In presenting this simplified version of the celebrated algorithm we want to make very clear from the outset what is 

so remarkable about it. The problem states that we have a circuit in which we have placed a number of (quantum) 

gates. We will carefully define their kind and behavior shortly, along with their associated  connectivity. The circuit 

will be presented to us as a black box. It will have a number of inputs and an equal number of outputs. We will be 

asked to determine the internal connectivity of the black box by just interacting with it from the outside. Using only 

classical physics (gates and principles) we conclude that the task of determining what the black box looks on the inside 

is linear in the number of inputs. But if we are allowed to use quantum physics (both hardware and principles) the 

same task can be solved in just one step, regardless of how many inputs the circuit has. Here’s an example: 

 

 
 

Figure 1. Bernstein-Vazirani challenge. Musical score is from “Close Encounters of the Third Kind” (Truffaut). 

 
We now proceed to define the gates and the formalism we need. Familiarity with the material in the first part of ”Q is 

for Quantum” is desirable but won’t be assumed. As a result we will first introduce some of the material already in 

the book (NOT and C-NOT gates along with the Hadamard (PETE) gate) and the associated misty state formalism. 

We will then proceed to prove the phase kickback phenomenon and use it to solve the Bernstein-Vazirani challenge.  
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The NOT Gate 
 
An excellent resource here is the 20-minute video [12] available on the book’s [11] website.  

 

 
 

Figure 2. How the NOT gate works.  

 

The classical bits are 0 and 1. We can represent them as W and B and draw them as a white or black ball. Indeed they 

are classical values. A quantum bit (qubit) is a more complex entity but when we measure a qubit we only get one of 

these two values, W or B. So we start from them. We define the behavior of the NOT gate as in the picture. The effect 

of the gate is consistent with our knowledge of (classical) logical gates: the NOT gate flips its input. We could also 

write NOT(W) = B and NOT(B) = W to describe what happens in these two pictures.  

 
The C-NOT Gate 
 
The controlled-NOT (C-NOT) gate has two inputs: a target and a control. It works by flipping the target when the 

control is a black ball. Here’s the diagram from the book: 

 

 
 
Figure 3. Behavior of the two qubit gate C-NOT. 

  
A Simple Circuit 
 
The next thing we consider is that by stacking boxes on top of each other, we can use the output of one box as the 

input to another. For example, we can stack two NOT boxes, with the result that the output now matches the input: 
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Figure 4. Stacking two NOT boxes recovers the initial input. 

 
We can now set up a Google Colab session and write a simple Python program to solve a sample probability problem. 

The statement of the problem is: “You roll three dice, then sum the three outcomes, what is the probability of not 

getting a prime number?” Here’s the code and the answer: 

 

 
 
Figure 5. Calculating probabilities with Python in Google Colab. 

 

 
Figure 6. Another way of solving a probability question in Google Colab.  
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Another way of solving a probability problem in Google Colab is by writing the argument using LaTeX as shown in 

Figure 6. Here the problem is: “Craps is a game played with two dice. You decide to play. Each bet is one chip. The 

goal is to roll a seven (with two dice). The house pays 4 chips plus your original chip if you win. Is this fair? (If not, 

define fair).” A third way to solve such a problem is to have the computer run a simulation for you: 

  
 

Figure 7. Simulating a game with two dice (left) and three dice (right). 
 

 
 

Figure 8. Stacking two NOT boxes in Python (Qiskit). The input is recovered, as expected. 
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The assumption here is that the students already have some familiarity with Python and with the Google Colab 

interactive notebook environment. Access to the quantum emulator is immediate. Let’s now introduce a most 

important quantum gate: the Hadamard gate. 

 
A Necessary Detour 
 
The Hadamard gate is a fundamental single-qubit quantum gate. We take a brief detour to discuss its role in quantum 

computing where it is used to create superposition states. In the book [10] it is known as the PETE box and the reason 

for why it’s called that way can be deduced from the discussion below. Our goal in this paper is to introduce the misty 

state formalism from [10] in its pure form and use it to prove the phase kickback phenomenon. We have already 

mentioned all the gates we need (NOT, C-NOT and the Hadamard (PETE) box). We are in the process of defining 

(and using) the last of these three gates, the PETE box. At this point we want to stress why the misty state formalism, 

which will be used unchanged, that is, without any coefficients whatsoever, throughout this paper is so effective. It is 

true that one needs to extend this formalism to properly deal with phenomena such as W-entangled states and 

teleportation but that does not diminish the surprising effectiveness of the formalism as initially proposed in “Q is for 

Quantum.” Without any changes to what is introduced in the book one can successfully present entanglement, 

Deutsch-Josza, Grover search, superdense coding and the GHZ game. To understand that part and how and when we 

need to provide the extension we quote from Terry Rudolph’s FAQ on the book’s website: 

“In the book I used only a single ‘actually quantum’ box, the PETE box. By this I mean it is the 

only box that has ‘mist-creating’ properties. All the remaining boxes introduced are things that just 

shuffle colors around—they would be at home in a classical computer for example. Only having to 

introduce a single new mysterious thing is very nice pedagogically. […] Now for the […] genesis 

of the whole misty-method: You may wonder whether my reliance on only the single PETE box is 

limiting, in the sense of […] does it limit the calculations you could do, and the phenomena you can 

demonstrate? […] The answer is that it is not limiting, that every calculation can be done (to good-

enough accuracy, and again, perhaps with a small overhead) using only PETE boxes and the 

classical boxes. This is a remarkable mathematical result due to [Yaoyun] Shih, leveraging another 

powerful result (I think due to Kitaev). There is a citation at the end of the book. A few years ago I 

was in the middle of pondering this result when I realized I was running late to give a talk at a math 

camp for 12-14 year olds which was being run in part by my friend PETE Shadbolt. I raced for the 

tube, and while on it thought about what could I explain to these kids that wasn’t the usual jargon-

filled quantum fluff. And so here we are.” 

We said that later, after the content of the book [10] is mastered, we will need to (and we actually do) extend the 

original, “pure” misty state formalism. For us it happens (in a 6-8 week class entitled “Introduction to Quantum 

Advantage” [5] that also serves as a boot camp to our accelerated Master’s program in QIS) when we try to implement 

W-entangled states which rely on the use of controlled-Hadamard gates and arbitrary qubit rotations. It happens again 
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when we discuss teleportation, since the input to the quantum teleportation algorithm is an arbitrary2 quantum state. 

Here’s how this extension of the formalism is anticipated by Terry Rudolph in the FAQ of [10, 11]  (where the previous 

quote came from):  

“[T]he misty formalism is ‘universal’, in as much as you can use it to do any quantum calculation 

with only a small overhead. I should reiterate I am not advocating that we should recast all of 

quantum theory into this formalism. The misty state picture is a good way of getting people to the 

heart of some nontrivial quantum theory without them having to absorb a boatload of irrelevant 

math. But that math is not largely irrelevant if you actually want to work in the field, it makes many 

things much easier.”  

Math, which is essential if you actually want to work in the field, because it makes many things much easier is our 

ultimate goal here as well. For example we’d like our readers to be able and ready to read [1, 9, 13] as soon as they 

master the contents of our class.  

 

The PETE Box 
 

 
Figure 9. Behavior of the Hadamard gate (also known as the PETE box in [10]). 

 

We capture the behavior shown in Figure 9 by introducing the superposition operator. As a drawing it is represented 

as a cloud (hence, the name “misty state” used for a superposition state). This, again, would be a great opportunity to 

watch (or rewatch) Terry’s video [12] off  the book website at [11]. In text we can use the following two representations 

corresponding to each one of the situations shown above: H(W) = [W, B] and H(B) = [W, -B]. The notation says, in 

essence, that there are two outcomes and each one is equally likely to be measured.  

 
2 We emphasize then that we cannot clone but we can teleport an unknown, arbitrary quantum state. 
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Here's how we represent these two transformations graphically:  

  
 

Figure 10. Misty states are superposition states. A negative sign (phase) shows on the right. 

 
The Z Gate 
 
The Z gate is introduced here as an exercise. Its definition is Z(W) = W and Z(B) = -B. Show that, just like for NOT, 

stacking two Z boxes leaves the input unchanged. We will soon learn that this is a general property of quantum gates 

and our next goal will be to prove it for PETE boxes (or Hadamard gates). That H(H(W)) = W and H(H(B)) = B is 

both non-trivial and very instructive. We can also demonstrate that experimentally in the Quantum Flytrap. In the end 

we would like to be able to show that this diagram commutes: 

 
Figure 11. Exercise: complete this diagram and show that it commutes.  

 

Linearity of Quantum Operators  
 

We should first say that a misty state, so far, is in fact a sum of two states with probability amplitudes that are equal 

to each other. The phase we encountered thus far is simply a multiplication with the scalar -1. In quantum mechanics 

linearity of operators means that they satisfy two key properties: (a) they preserve the sum of states and (b) they 

preserve scalar multiplication. This property is fundamental to the superposition principle and the way quantum states 

evolve over time. Therefore we shall enforce it here.  
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As a result we have the following diagram showing how a NOT gate acts on a superposition of states: 

 
Figure 12. The effect of NOT gate on superposition of states. 

We can describe what happens in Figure 12 as follows:  

NOT( [W, B] ) = [ NOT(W), NOT(B) ] = [ B, W ] = [ W, B ]. 

We take the opportunity to point out here that like in a sum the order of factors (that is, the states in a superposition 

operator) does not matter so the NOT gate in effect leaves the first misty state unchanged. In the case of the second 

diagram we have: 

NOT( [W, -B] ) = [ NOT(W), NOT(-B) ] = [ B, -NOT(B) ] = [ B, -W ] = -[ -B, W ] = - [ W, -B ] 

We have in fact proved that these are the two eigenvectors of the NOT gate. In the process we illustrated linearity of 

phase and superposition operators with respect to the NOT gate. By a similar process we show how stacking two 

PETE boxes (or as everybody else knows them, Hadamard gates) leaves the input unchanged.  

 
 

Figure 13. The effect of the PETE box (Hadamard gate) on two superpositions of states. 
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This part further uses the fact that a superposition operator is a sum and under certain conditions (i.e., when the 

superpositions are at the same depth and have the same number of distinct states) we can combine two mists by fading 

their boundaries so they can combine (join together) into a larger mist. Here’s how this happens (in Fig. 13) in the 

notation we used to restate what was going on in Figure 12: 

H( H(W) ) = H( [W, B] ) = [ H(W), H(B) ] = [ [W, B], [W, -B] ] = [ W, B, W, -B ] = [ W, W ] = W 

Please look at Figure 13 as it shows (diagramatically) what we wrote above, and below:  

H( H(B) ) = H( [W, -B] ) = [ H(W), -H(B) ] = [ [W, B], [-W, B] ] = [ W, B, -W, B ] = [ B, B ] = B 

The next two figures show these relationships as diagrams, as seen in Quantum Flytrap.  

Figure 14. Experimental verification/proof in Quantum Flytrap 

(via a Mach-Zehnder Interferometer) that stacking two PETE 

boxes leaves the input (vertical is B, horizontal is W) unchanged. 
 

  
  

 
Systems of Two Qubits 
 
There are four possible combinations of two qubits: WW, WB, BW and BB. We can represent this with white and 

black balls (or blobs) and we say that while they resemble multiplication they lack one important property of 

multiplication as they are not commutative. Thus WB and BW are different so order matters but other than that we 

can carry over some of the other properties encountered in multiplication: B [W, B] for example is the same as [BW, 

BB]. This, in effect, is how we define entanglement. Two (or more) particles are entangled when they are all described 

by the same wave function. For us this means that the expression that representes the state of the two (or more) qubits 

can’t be separated as a product of factors each representing an individual qubit. Thus, because [BW, BB] = B [W, B] 

this equation does not describe a system of two entangled qubits. However a state like [BW, WB] cannot be split into 

a product of two states and thus represents an entangled state of two qubits (it’s one of the Bell states). There is no 
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entanglement in the Bernstein-Vazirani challenge that we discuss but we will be working with systems of two qubits 

and so we wanted to clarify this up front.  

 

The phase kickback is the following situation (that is, this is what we need to prove):  

 
Figure 15. In quantum computing, operations have the ability to introduce phase changes to quantum states. When a 

controlled operation is applied to two qubits, the phase of the second (target) qubit is conditioned on the state of the 

first (control) qubit. Because here the phase of the second qubit is being “kicked back” to the first qubit, this 

phenomenon was coined “phase kickback” in 1997 by Richard Cleve, Artur Ekert, Chiara Macchiavello and Michele 

Mosca through a paper that solved the Deutsch-Josza problem. 

 

How do we prove that that’s what happens above? Let’s start by writing the input as a system of two qubits. It is 

convenient here to keep  the second qubit as a superposition and work with it as such. We have:  

 

 
Figure 16. The input [ W, B ] [ W, -B ] = [ W [ W, -B ] , B [ W, -B ] ] in diagrammatic form. 
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Now that we have the input expressed as such let’s pass it through the C-NOT gate and transform it using the rules of 

engagement already mentioned for this gate. We have:  

 
Figure 17. The effect of the C-NOT gate on our two qubit input. As shown in figure 17 each pair of qubits passes 

through the C-NOT gate. The first one is placing a W on the control which means the gate will leave the second qubit 

unchanged. The second pair has a B on the control which means that the second qubit is flipped. The rule for flipping 

a superposition of states (via NOT) has been shown before and it’s like in Figure 18.  

 

 
 

Figure 18. The effect of the NOT gate on a superposition of states.  
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The purpose of Fig. 18 is to support the transformation shown in Fig. 17. Thus, some readers might consider the 

picture to be be redundant while some might prefer to use shorthand to describe it, e.g. NOT( [ W, -B ] ) = [ -W, B ]. 

We’ve gone over this earlier when we said that the input here is one of the two eigenvectors of the NOT gate. Since 

the superposition operator is actually a sum (as we said before) the order of states in a mist is not important but an 

order is usually preferred and the phase distributes over the constituent states, as shown in the picture below: 

 
Figure 19. A negative phase applied to a mist distributes over its constituent states.  
 

Now we can rewrite the second state in the output of Figure 17 as follows:  

 

 
 

Figure 20. Moving the sign (phase) from the second qubit to the first has this effect. 

 

 

Figure 21. The output state from earlier (Fig. 17) is 

shown on the left. It can be reformulated as mentioned 

and rewritten (reverse FOIL method) as a product of 

states, each one a superposition.  We’re now finished.  

 

 
 
So now we have proved the following: 

 

 
 

Figure 22. Phase kickback, conventional notation.  
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We’re now ready to solve the Bernstein-Vazirani challenge.  

 
 
Figure 23. Bernstein-Vazirani challenge: the solution. If the C-NOT gates inside the black box had been oriented the 

other way the solution would have been immediate. But since they’re as shown above one would need to test every 

input in part, thus establishing a linear lower bound for the complexity of finding the pattern. With the help of the 

previous result and a corresponding number of Hadamard (PETE) boxes we can determine the structure of the black 

box in one step. Note that the order of the gates is irrelevant so the musical score that we included in the initial diagram 

does not really apply (since for the music the order of the notes does indeed matter) but it gives us an opportunity to 

make this point here. Below we show how this challenge can be implemented in Qiskit: 

 

 

 

Figure 24. Creating and measuring the quantum circuit for the Bernstein-Vazirani challenge 
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Note that the order of qubits is reversed in Qiskit so the circuit is reflected: as an example, the third C-NOT in the 

black box in our drawing connects the bottom line (its target) to the third line from the top (the control). In the Qiskit 

circuit it connects the bottom line (target) with the third line from the bottom (Qiskit numbers the qubit lines in reverse 

order). Also, as we mentioned earlier, the order of the gates in the black box is not important; the order of the lines in 

the input and output is (and the output is determined, as predicted, in one shot).  

 
Irreducible Misty States 
 

In the original (pure) misty state formalism two or more separate mists can be combined when (and only when) they 

(a) are at the same level and (b) have the same cardinality. This leads us to states that are irreducible. For example, 

see Figure 25, below: 

 
Figure 25. Irreducible misty states; the one presented here is a Hadamard eigenvector.  

 
The figure above shows three things: (a) there is a straightforward conversion from any misty state to an algebraic 

expression; (b) that the original, irreducible state can be approximated reasonably well within the original (pure) misty 

state formalism and (c) that the state we have chosen (smallest irreducible state with mist inside mist) is in fact one of 

the eigenvectors of the Hadamard gate. As an aside, but an important one, this eigenvector of the Hadamard gate gives 

us an alternative path to extending the original (pure) misty state formalism. We only need ask the question3: “Is there 

any mist which passes through the Hadamard gate such that the probabilities of observing a white ball or a black ball 

are unchanged?”. And if we write the equations and solve them we find that the ratio of white to black balls in that 

state has to be an irrational number. (And now we can also tell the story of poor Hippasus.) 

 
3 Due to Terry Rudolph (personal communication). 
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Abstracting and Representing Non-Classicality 

 

In this section we want to show how misty states lead naturally to situations illustrating minimal examples of non-

classicality. As an example consider the following well-formed (but irreducible) misty state: . 

It says that three types of fruit are possible for a snack: apple, watermelon and cherries. The specific item that we will 

end up with is determined probabilistically (via measurement). We do know it will be one of the three items listed. In 

this misty state the watermelon and cherries are in equal superposition with each other (let’s call that state s1) and the 

apple is in equal superposition with the state s1. When we estimate the probability of each outcome we find that the 

probability of receiving an apple comes up as  .  

 

Meanwhile for the other two items  (so each has a probability of 0.25).   

 

Now if we modify the misty state to we have a minimal non-classical situation. In this new 

state one would expect the probability of getting an apple to still be 0.75, when in effect it becomes4 0.853 (thus 

lowering the chance of receiving cherries to 0.147).   

 

The resulting state is (in standard mathematical notation): 

 

 
 

Of course, the misty state representation of this situation is far simpler (although it properly belongs to the extended 

misty state formalism). Figure 26 and 27 present the same story in Quantum Flytrap: the vertical beam represents 

cherries, the horizontal beam stands for apple. The probabilities of observing each one of these orthogonal states (with 

interference, as shown in Figure 26) are as predicted (i.e., the minimal non-classical situation we have identified).  

 

If we block the interference and (as shown in Figure 27 measure each path independently) we find the evidence that 

when the two arms of the MZI are separated (and we know exactly down which path each photon traveled) our 

measurements will lead to the classical result. But once they combine paths, the probabilities change. This is the 

indistiguishability principle in action: when a photon can take more than one path to the detector and the detector can’t 

determine which actual path the photon has taken we have interference. In Figure 26 there are two ways to get an 

apple but when we do we can’t tell if it’s due to the apple in the outer or the inner mist. 

 
4 The reason, of course, is that the probability amplitudes add up, but probabilities do not. 
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Figure 26. For this quantum snack we first create a superposition (state s1)  via rotation with 45 degrees to control the 

phase difference between the two arms of the Mach-Zehnder Interferometer (MZI). We then add the unrotated vector 

to obtain the final result. Similar experiments are discussed in Scarani’s papers on one-particle quantum interference.  

 

 
 
Figure 27.  Before interference we measure the same values for probabilities as in the classical case. If we remove 

the detector in the top arm of the MZI we obtain the situation from Figure 26.  
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The next section ends the paper and presents our conclusions. Before we do that we would like to share another 

exercise with the reader. Consider the following circuit:  

 
 

Figure 28. Show that this circuit produces both eigenvectors of the Hadamard gate. 

 
Exercise: Prove, using the pure misty states formalism, that the circuit in Fig. 28 produces both eigenvectors of the 

Hadamard gate; also, please explain how it achieves that goal. What is a simplest such circuit? Can you think of 

something simpler than what we have above? Is there a one-qubit circuit that achieves the goal of producing one, or 

the other, eigenvector of the Hadamard gate (also known as the PETE box)? A two-qubit circuit? How does that work? 

 
Conclusions and Acknowledgments 
 
CS2023 makes some excellent recommendations (for the first time ever) on how to include a knowledge unit on 

quantum information science, computing and quantum algorithms. Their proposal is organized in three stages and 

comprises a short (eight-weeks) class, a one semester class and a longer, two semester sequence that (at least in 

principle) makes heavy use of a lab (or fab, depending on resources) in quantum hardware, gates and circuits.  

 

Following those recommendations we have described here our approach of implementing the eight-week syllabus 

with extended material from Terry Rudolph’s groundbreaking “Q is for Quantum”. This material has been tested in 

the classroom, in various conferences in workshops and tutorials, and at many levels – including creating a faculty 

learning community (FLC) for HS and middle school CSCI teachers in the state last summer with significant support 

from the Computer Science Teachers’ Association (CSTA) in our state.   
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Quantum Mysteries 
 

Quantum superposition is a fundamental principle/mystery in quantum mechanics (and at the heart of the solution to 

the Bernstein-Vazirani challenge that was presented in this paper). It states that, much like waves in classical physics, 

any two (or more) quantum states can be added together (“superposed”) and the result will be another valid quantum 

state; and conversely, that every quantum state can be represented as a sum of two or more other distinct states. 

Mathematically, it refers to a property of solutions to the Schrödinger equation; since the Schrödinger equation is 

linear, any linear combination of solutions will also be a solution.  

 

The other fundamental “mystery” in quantum mechanics is entanglement. An entangled system is defined to be one 

whose quantum state cannot be factored as a product of states of its local constituents, that is to say, they are not 

individual particles but are an inseparable whole—if entangled, one constituent cannot be fully described without 

considering the other(s). The state of a composite system is always expressible as a sum, or superposition, of products 

of states of local constituents; thus, it is entangled if this sum necessarily has more than one term. Entanglement is a 

subtle concept and students exposure to it needs to be planned with care (see below). For emphasis, in a system of two 

entangled qubits the quantum system seems to acquire a probability distribution for the outcome of a measurement of 

the second qubit upon measurement of the first qubit in such a way that this probability distribution is different from 

what it would have been without the measurement of the first particle. Two particles whose future is described by one 

single wave function: this may definitely be perceived as quite surprising in the case of spatially separated particles! 

 
Appendix 
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Figure 29. Entanglement is capable of instantaneous (i.e., superluminal) correlations even though information still 

can’t travel faster than light (a classical channel is needed). Another no-go theorem states that an arbitrary quantum 

state can’t be cloned (and the no-broadcast theorem generalizes no-cloning to mixed states). Quantum teleportation is 

then used to move a quantum state from one location to another (and in the process the state is consumed at the source). 

Entanglement is an important part of that protocol and our hope5 that one day quantum repeaters will become reality. 

Quantum Flytrap is a free online environment that provides a wealth of animated and interactive quantum experiments; 

above we show two screen shots from the “spooky action at a distance” module/experiment.  

 

We could also include here the solutions to the two challenges issued to the reader, for example the last one: 

 

 

Figure 30. Proof that the circuit produces both eigenvectors of the Hadamard gate, alternatively. If one measures the 

first qubit and obtains W (that is, a 0 (zero)) the second line has the first eigenvector of the Hadamard gate. If the 

measurement on the first qubit line yields a 1 (that is, a one, indicated by B) the state of the second line resolves into 

the second eigenvector of the Hadamard gate. Note calculation is done entirely in the pure misty state formalism from 

 
5 Teleportation of entanglement is called entanglement swapping.  
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the book (in spite of the fact that the representation of the two eigenvectors is irreducible in that formalism). That 

means that the formalism in the book, as simple as it may appear to be, is not only surprisingly effective over a large 

number of well-known examples that are part of any serious introduction to quantum computing and quantum 

information science but at the same times gracefully transcends the examples in the book. We are now in the process 

of using the misty state formalism to describe the ZX calculus (transformations and results) described in6 Quantum in 

Pictures. These two approaches are orthogonal, complementary not competing and/or conflicting and together are at 

this time the most successful methods used to introduce quantum to teenagers in Europe (UK), US and elsewhere. 
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