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“It always bothers me that, according to the laws as we
understand them today, it takes a computing machine an
infinite number of logical operations to figure out what
goes on in no matter how tiny a region of space, and

no matter how tiny a region of time. How can all that be
going on in that tiny space? Why should it take an infinite
amount of logic to figure out what one tiny piece of
space/time is going to do? So I have often made the
hypothesis that ultimately physics will not require a
mathematical statement, that in the end the machinery will
be revealed, and the laws will turn out to be simple, like
the chequer board with all its apparent complexities.”

— Richard Feynman, The Character of Physical Law

Abstract—In 2017 Terry Rudolph proposed a method of teach-
ing quantum mechanics and quantum computing using only the
simple rules of arithmetic to students as early as sixth grade. The
method is incredibly effective and in a series of papers we showed
how we use it to introduce superposition, phase, interference
and entanglement with virtually no mathematical overhead.
Furthermore we showed that a complete eight week introductory
course (for computer science sophomores) has been built around
this approach with the following milestones: quantum gates and
circuits, phase kickback, the Deutsch-Josza algorithm, Bernstein-
Vazirani and the extended Church-Turing thesis, the GHZ game
and quantum teleportation. There is general consensus that
the actual mathematics behind quantum computation is an
inevitable and desirable destination for our students. But for
those students that lack an adequate mathematical background
(HS and younger students) one can reliably use Terry’s method
(i.e., computing with misty states, also referred to here as The
Quantum Abacus) to communicate a visual and entirely opera-
tional understanding of key quantum computing concepts without
resorting to complex numbers or matrix multiplication. Here
we present concrete evidence that the approach can also create
a genuine bridge to the actual mathematics behind quantum
computation. We start with superdense coding and Grover’s
algorithm (to illustrate how effective the original system is) then
we identify an elementary break-even point when creating a W-
entangled state. Terry’s abacus is based on a paper by Shih
that Toffoli plus Hadamard gates are universal. To create the
We-entangled state we need to accommodate rotations and we
must use controlled-Hadamard gates. And this is what allows for
an elementary break-even point in the formalism: A Hadamard
gate controlled by the output of another Hadamard gate breaks
the ubiquitous symmetry in Terry’s system, and from then on
one has to carry around (i.e., specify) the actual probability
amplitudes in misty states. This means that students can proceed
to developing, in parallel, with (extended) misty states and Dirac
notation. And after crossing that bridge we have an entirely
conventional Quantum Computation course, but the intuition we
acquired while computing with misty states remains with us.
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I. THE QUANTUM ABACUS

A classical bit is much like the side of a coin that sits on
the table: it is either head or tails (i.e., 0 or 1) no matter how
many times you look at it. A quantum bit is more like a coin
that’s spinning on the table: the only thing you can hope to
know is the set of outcomes and their associated probabilities.

A qubit is written as «|0)+5|1) with a, 8 € C and such that
|e|2+4-| 3|2 = 1. This linear superposition specifies the expected
outcomes (i.e., |0) and |1)) the probability amplitudes (« and
() and states that the two probabilities should add up to 1.

In “Q is for Quantum” ([7], [8]) Terry Rudolph “teaches
[quantum mechanics] to an audience presumed only to know
basic arithmetic.” The book uses a simple (but very effective)
string-rewriting technique that starts [0) = () and [1) = @
and represent{] superposition as “misty states”:

O APPEARS 2 TIMES
@ APPEARS 3 TIMES

9 e Bl =1
F=2x3=19
PROB, OF OBSERIING (D) =4 =14
4+9 13
PROB. OF OBSERVING @ =9 =9
4+9 13

Here {0,009 @ @} = \/%K)} + \/%H), clearly.

A misty state is just an un-normalized quantum state. Note
that a state like {(), (), @, @, @} is not written in the book
as {2x (), 3x @} or{2-(),3 @} oreven {20), 3@} by
choice. We refer to the misty state formalism from [7] as the
“Quantum Abacus”. The quantum abacus is simply a different
way of representing a subset of the quantum formalism which
is actually universal for quantum computing, a fact first proven
by Shih [9]. Syntactically, within the abacus, misty states are
shown always only in white and black and no numbers are
used (as coefficients) anywhere in the formalism. Since misty
states always contain a whole number of black and white balls,
it follows that % |0)+ % |1) does not admit a representation as
a misty state, something that will prove very important shortly.

IThis diagram appears on p. 83 in the book.



The remaining of the paper is structured as follows: we
first introduce one- and two-qubit gates and prove some basic
properties using the misty state formalism to better describe its
syntax and to give the reader a feel for how it works. We then
present superdense coding and the Grover search algorithm
using this formalisnﬂ to show how incredibly convenient and
efficient it is. In the process we point out earlier papers where
we demonstrated in detail how to use the misty state formalism
to prove (trace, understand) phase kickback, entanglement
(both Bell and GHZ states) and the Deutsch-Josza algorithm.
Through /NOT = HSH and S = \/Z we propose an extension
to the misty formalism and show that in certain circumstances
(i.e., the break-even point) the extension becomes a necessity.
We conclude the paper by using the extended formalism to
trace the formation of a three qubit W-entangled state and
introduce arbitrary rotations. We give complete references
to papers where we have used the extended formalism to
present in detail quantum phenomena like teleportation and
the GHZ game. All our examples involve a small number
of qubits so our calculations can be readily tested via Qiskit
simulations. The overall arching goal of this paper is to show
how we can lead students with limiting backgrounds in math
to the actual math used in Quantum Information Science
(QIS) and Quantum Computation (QC). We argue that using
this approach, students can develop an intuition as they start
thinking in terms of the math they don’t know yet and proceed
to actually learn it.

II. THE MISTY STATE(S) FORMALISM (MSF)

Let’s use this terminology to describe the system presented
by Terry Rudolph in his book. It represents qubits as sets of
possible outcomes where the probability of each outcome can
be calculated as shown earlier. The system in the book does
remind one of an abacus because all the calculations are done
using exclusively sets and combinations of () and @@).

We start by describing these building blocks and the rules
by which they evolve. The () and @ are essentially classical
values. They represent the two sides of a coin that is sitting
on a table. It’s what you get if you measure a qubit in the
computational basis. We write [0) = () and |1) = @ and
it’s a remarkable fact that we can reduce the understanding of
virtually all introductory concepts in QC to manipulation of
these symbols as if they were beads on an abacus.

In this formalism embedded superpositions of states can
be resolved by taking their set union. We will see examples
shortly. Quantum gates are linear maps that keep the total
probability equal to 1. Classical reversible gates are valid
quantum gates. Some common one-qubit quantum gates are
I,X,Y,7%,S, Tand H. The MSF calls them ‘boxes’ and in a
note posted on the book’s website [22]] Terry says: “[u]nitary
evolution in the quantum formalism just gives the ‘boxes’.
In the misty formalism we can only incorporate boxes whose
representation in the quantum formalism is via a unitary matrix
which is proportional to a matrix of integer entries. [...] It is

2Since we haven’t presented them elsewhere.

a remarkable and nontrivial feature of quantum computation
that such unitaries can be universal, i.e. used to simulate all
unitaries, even ones with irrational complex entries.”

Let’s introduce some of the gates. The NOT gate is defined
as follows: X(()) = @ and X(@) = (0. The Hadamard gate
creates a superposition of equally likely outcomes:

5HO) ={O.@} ad @) ={0.@}

These are essentially all the one-qubit gates used in the
book. The line on top of the qubit represents phase and acts

like a unary minus: z2(() = () and z(@) = @.

To capture the linear evolution of these gates we say that for
any quantum gate f acting on a superposition of n states we

have f({s1,...,sn}) = {f(s1),..., f(sn)}. Now the reader
has all the tools to prove, for example, that the following
commutative diagram holds:

X
0) ——— [1)
H H
+)—1)

The top part involving the NOT gate already checks out,
from definition. We remind ourselves that {O), @} = [+)
and likewise {O), @} = |—) and we have:

2(l+) = 2({0. @) = {z(0). 2( @} = {O. @} = I-)
Keeping in mind that the phase (acting as a unary minus) is

also linear we write: (@) = z(@) = @ = @ which gives
us the reverse relationship z(]—)) = |+) as follows:

2({0.@) = {02 @)} = {O.2(@)} = {O. @

We now note that H(|0)) = |+) and H(|1)) = |—) follow
from the definition of the Hadamard gate (see above on this
page), so to complete the diagram we need only to prove the
transitions H(H(]|0))) = |0) and H(H(|1))) = |1).

We are now in a position to illustrate something we said
earlier (that embedded superpositions of states can be resolved
by taking their set union). Here’s an example:

{{O’ .}v {07 i}} = {O’ .v Ovi}

This could be further used to show the effects of both
destructive and constructive interference:

{Oa .’ Ovi} = {07 O} = {O} = O

The unary minus (i.e., change of phase) applied to a
superposition of states changes the phase on each outcome:

{Ov .} - {67 i}

The rest follows by linearity of H{(), @}) = {H(O), H(@)}
and H{O), @}) = {#(0),2(@)} and everything that was

discussed above. We hope this offers a first glimpse into why
the system devised by Terry Rudolph in “Q is for Quantum”
is so accessible and suitable for even middle school students.




As Andrew Helwer showed us in his Feb. 14, 2016 talk [23]
(and the accompanying, updated slides [24]) we can organize
some of the most important transitions performed by the H
and X gates in a very convenient unit circle state machine:

He uses this state diagram to calculate:

« -SRI

from qiskit.quantum_info import Statevector
sv = Statevector.from_instruction(qc)
sv.draw('latex')

—|0)

Starting from the () state (east on the unit circle) we can

trace the effect of the gates as alternative transitions leading

into state () (situated on the west side of the unit circle).
We now need to introduce two-qubit gates.

ITI. TWO-QUBIT GATES

In the context of the previous diagram a good exercise is
to prove the transitions between the states on the unit circle.
You will then be reminded that the superposition operator is
in fact a set operator, so the order of outcomes in the set does
not mattelﬂ When considering systems of more than one qubit
that is no longer the case. Furthermore, phase acts differently,
since the mult-qubit system is considered as a whole.

x({O. @) = {xO).x @)} = (@O} ={O.@

The state of multiple qubits is written as a tensor product.
For us that simplifies even further, and closely matches Dirac
notation, e.g. ( )@ = |01), @@ = |110), etc.

The order of qubits is important, i.e. (O )@) # @) and the
following will communicate reliably how phase acts on such
an ensemble:

080 - 080~ 080 - 080 - 80

3 Although, in general, an order is preferred.

Now there’s one more aspect regarding the order (or num-
bering) of qubits in such a system that we need to clarify
before going further. It has to do with the way we draw a
circuit and reason about it on paper (or on a board) and the
conventions used by Qiskit for same.

Consider the following Qiskit circuit: We know that this

o -

a1

sv = Statevector.from_instruction(qgc)
sv.draw('latex")

|10

circuit is equivalent to a SWAP so if go = ¢; = |0) then after
the NOT gate the state is |10) which means that at the end,
after the three C-NOT gates will have performed their intended
functions the state should be |01). Yet Qiskit reports the final
state as |10) Is there a mistake somewhere?

Everything is correct but Qiskiﬂ reports the qubits left
to right if you rotate the circuit clockwise 90 degrees. That
means the exact inverse ordering we use when we draw the
circuit on paper. So the result checks out but we need to keep
this convention in mind from now on when comparing our
calculations with Qiskit, so as to not get confused.

A two-qubit gate has two parameters. In the case of C-NOT
one of them is the control qubit. As we can see from the circuit
above—no matter how we look at it—sometimes the control
qubit is the first qubit sometimes it is the second. We introduce
a little arrow on top of the X to indicate where the controlled
qubit is. Then, we have:

@0 -0® bt X(@D) =@0

And the entire circuit could be described as follows:

XX EHEOO)) =0

We now need to show the misty state formalism in action
and before we start the next section we need to state two
theorems’| Theorem 1: The amount of information extractable
from one qubit is 1 bit. Theorem 2: An EPR pair cannot carry
any information. We are now ready for superdense coding.

IV. SUPERDENSE CODING

Superdense coding is a procedure that allows someone to
send two classical bits to another party using just a single
qubit of communication. It is a form of quantum advantage.

In superdense coding [20] the process starts with a third
party, that we’ll refer to as Charlie. Two qubits are prepared
by Charlie in an entangled state. Charlie sends the first qubit

4As explained by John Watrous in [23]
SSee page 2 of the Peter Shor lecture notes at [26]].



to Alice and the second qubit to Bob. The goal of the protocol
is for Alice to send two classical bits of information to Bob
using her qubit. Based on the theorems stated before this
section, that should not be possible. First, we said that a
maximally entangled pair of qubits carries no information [27].
Furthermore the amount of information extractable from one
qubit is 1 (one) bit. So how are we going to be able to send
two bits of information if we put together these two resources?
They just don’t seem to add up.

Here’s the plan: Alice needs to apply a set of quantum gates
to her qubit depending on the two bits of information that she
wants to send. In [21] circuit diagram looks as follows:

Sender Encodes Bits

Prepare and Share : ;
a Bell Pair vba by

___________

puUss

A similar diagram can be found in the Qiskit textbook [20]:

e}

o1
/ Alice encodes message
DR o BN

,/"Send to Alice

Third party
encodes qubit

o %
[0y = ~
10 ——P~

*\._send to Bob

\
Y Send to Bob
\

\ I
\ Lo/
%I— H H ) rr— Message recieved

< [¢]
D =k

Bob decodes message

Let’s calculate the four cases and then compare one of
them with Qiskit. Charlie starts with (O)O) always. After the
Hadamard gate the state is: H(()() = {O), @} which boils
down to {0, } which is the input to the C-NOT gate.

We then have X ({00, @O} = (¥ (O0). ¥ (@O)}
which is {0, @@)}} namely the Bell state that we were
expecting. Now Alice needs to take one of four courses of
action based on the intended message she wants to send.

If the intended message is 00 Alice needs to apply the
identity gate I, that is, she needs to leave the qubit alone. You
can see this in the first picture on this page where the message
Alice wants to send (two bits) represents the controls of the X
and Z gates. When the control is 0 such a gate does nothing.
In that case the Bell state reaches Bob and after the C-NOT

we have: X ({00, @@} = {X(O0), ¥ (@@)} which
becomes {O), @O} = {O,@}). Now the Hadamard
gate acts as follows: H{O), @} = O0.

If the intended message is 01 Alice needs to apply an X
gate. It’s easy to check that the pictures are in fact consistent;

but while the second picture shows a black box that Alice
controls, the first picture clearly numbers the control bits and
matches them with the outputs. The first picture also shows
the contents of the black box. After the action of the X gate

the quantum state is {X(())), X(@)@} = {@, O@} and

that’s what Bob receives. After the C—NOT this becomes:

Y (@0.00) - (00.00) - [0.0)0
After the Hadamard we have: H({@, O} @ = O@.

qc = QuantumCircuit(2)
qc.h(@)

qc.cx(0, 1)

qc.x(@)

qc.cx(@, 1)

qc.h(@)
qc.draw(output="mpl")

do

a1

sv = Statevector.from_instruction(qc)
sv.draw('latex')

10)

The picture above is a reminder of how Qiskit produces the
answer: backwards (as q1qo, and we have explained why).

If the intended message is 10 (i.e., g0 = 1 and ¢; = 0, which
in Qiskit convention would be reported as 01) Alice needs to

apply a 2 gate: {2(0)0.2(@)@} = {OO. @@} Bob

receives this. The effect of the C-NOT gate is:
({00 00 = {00.00}) = {O.@)0
The Hadamard gate makes this: H({O), @} = @)

If the intended message is 11 Alice needs to apply an X
gate and then a Z gate. After the X gate we already calculated
the state to be: {@),(O@}. The effect of the z gate on this

state is: {Z(@),2(0))@} = {@), O@} and that’s what

Bob receives. After the C—NOT the state becomes:
(@000 = X @0). X (Oe) - (00 .08}

Now this further becomes: {@.O}@ = {O.@}@ and

after the Hadamard gate we have H({), @} @ = @@ so
all checks out as originally announced. This concludes our

description of superdense coding.

Superdense coding and teleportation are dual phenomena.
Teleportation can be described as entanglement-assisted quan-
tum information transfer over a classical channel; superdense
coding can be described as entanglement-assisted classical
information transfer over a quantum channel. In both cases
entanglement plays a crucial role. We have addressed the topic
in general [17] and with respect to very specific phenomena



(e.g., the GHZ game, [18]) in the context of the misty states
formalism and the quantum abacus in other papers [19]]. Quan-
tum particles seem to influence each other with superluminal
speed over arbitrarily long distances [16]. Quantum algorithms
make use of this property. Entanglement swapping, another
important protocol, allows particles that never interacted in the
past to become entangled. In that sense entanglement swapping
is a sort of teleportation of entanglement.

V. GROVER SEARCH ALGORITHM

Grover’s algorithm [28]], [29] can speed up an unstructured
search problem quadratically, but its uses extend beyond that;
it can serve as a general trick or subroutine to obtain quadratic
run time improvements for a variety of other algorithms. This
is called the amplitude amplification trick. Suppose you are
given a large list of NV items. Among these items there is one
item with a unique property that we wish to locate; we will call
this one the winner w. Think of each item in the list as a box
of a particular color. Say all items in the list are gray except
the winner w, which is purple. To find the purple box—the
marked item—using classical computation, one would have
to check on average % of these boxes, and in the worst
case, all of them. On a quantum computer, however, we can
find the marked item in roughly N stepsﬁ with Grover’s
amplitude amplification trick. Grover’s algorithm consists of
three main algorithmic steps: state preparation, the oracle, and
the diffusion operator. The state preparation is where we create
the search space, which is all possible cases the answer could
take. In the list example we mentioned above, the search space
would be all the items of that list. The oracle is what marks
the correct answer, or answers we are looking for, and the
diffusion operator magnifies these answers so they can stand
out and be measured at the end of the algorithm.

The first step of Grover’s algorithm is the initial state
preparation. As we just mentioned, the search space is all
possible values we need to search through to find the answer
we want. Here our ‘database’ is comprised of all the possible
computational basis states our qubits can be in. For example,
if we have 2 qubits, our list is the states |00), |01), |10}, |11)
(i.e the states |1) to |4)). So, in this case the size of our search
space will be N = 22 = 4. For two qubits we can imagine
there are four cards face-down on the table only one of which
is an ace. To find the ace we would have to turn face up on
average more than two cards. Grover’s algorithm finds the card
in just one iteration, alway The second and most important
step of Grover’s algorithm is the oracle. Oracles add a negative
phase to the solution states so they can standout from the rest

A quadratic speedup is indeed a substantial time-saver for finding marked
items in long lists. Additionally, the algorithm does not use the list’s internal
structure, which makes it generic; this is why it immediately provides a
quadratic quantum speed-up for many other classical problems.

7 Another game associated with the two qubit Grover’s algorithm is ‘money
or tigers’ by Ed Barnes from Virginia Tech: imagine you have four doors, and
behind one of them there’s a large sum of money, while behind each one of
the other three there is a hungry tiger. Grover’s algorithm shows you which
door to open to get to the money in one iteration, thus eliminating the risk
of running, in the process, into any of the tigers.

and be measurecﬂ For our two-qubit example we have four
oracles. We show them below and start with the one for |00):

-

o

sv = Statevector.from_instruction(oracle_ee)
sv.draw('latex')

—00)

We know that the controlled-Z (C-Z) gate adds a phase only
when both qubits are @). That should be enough to realize why
this is indeed the oracle for (Y): any other state would fail
to produce the needed prerequisite for an added phase. It is
now easy to determine the other three oracles:

-

sv = Statevector.from_instruction(oracle_10)
sv.draw('latex')

—lo1)

First off we note again, here, that the name of the quantum
oracle (circuit) is chosen with the traditional numbering con-
vention of qubits in mind (i.e., qo first, then g;) whereas the
reporting is done using Qiskit numbering convention, that is,
q1 is listed first, then go. Then the state that is identified by
the oracle, in Qiskit, as the solution, is consistent with @().

m—n

sv = Statevector.from_instruction(oracle_e1)
sv.draw('latex')

~J10)

Meanwhile the oracle for ()@ = |01) or, in Qiskit notation
|10), is exactly symmetric. With input ()@@ to the oracle the
state after the controlled-Z gate is C-Z(X(())@)) = @@:

8What makes Grover’s algorithm so powerful is how easy it is to convert a
problem to an oracle of this form. There are many computational problems in
which it is difficult to find a solution, but relatively easy to verify a solution.



all other inputs do not acquire a phase. Then what comes
out of the oracle in this case is X(@))@ = (O@) and Qiskit
is reporting that as —|10). All other inputs are reconstructed
unchanged, and are not marked as solution(s).

Finally, the simplest oracle is the one for |11):

a1

8
o

sv = Statevector.from_instruction(oracle_11)
sv.draw('latex')

—[11)

We will now present the circuit for Grover’s search al-
gorithm when the input consists of two qubits. We put the

(@) [Wa)  |P3)

o
- EmEle

|‘P5 |‘I‘G |‘P7

oracle for |11) in and remind the reader that the oracle
simply recognizes (or validates) the right answer—it does
not attempt to construct it in any way. It is through the
procedure called amplitude amplification that this quantum
algorithm significantly enhances the probability of guessing
the right answer w. This procedure stretches out (amplifies)
the amplitude of the marked item, which shrinks the other
items’ amplitude, so that measuring the final state will return
the right item with near-certainty. We will trace the algorithm
step by step and naturally we start with |¥q) = () = |00).
Then,

W2) = HO)H(O)
={0.@HO @}
={00. 00,00, 00}

1 1 1 1
= —]00) + -|01) + =|10) + |11
5100) + 3101) + 5 [10) + 5 11)
Next stage is after the controlled-Z (C-Z) gate:
[W3) = {c-2(O0), c-z2 (@), ¢-2(O@). -2 (@@®)}
= {00.00.00.00!
1 1 1 1
== —|01) + -|10) — - |11
5100) + 2[01) + 2 [10) = S[11)

And here comes a long (but instructive) calculation:

Wq) = {HO)HO), H@HO), HO)H(@): H @)1 @) }

={H{0.@HO @
{©.@HO @
{O.@HO. @,
O @HO. e

={ 000000 00
oole X oy [ }
@7 Oiv .07 .ia
{C.eHO. @1

={ 000,
OO
oo e '}
00,00 .60 0}

={00.00.00 . 00.
oele X of '}

={ 00,0 .()ﬁ}

= 2100} + 3100 + 2[10) — 711}

As one can see some pairs of terms cancel each other. I
have removed them (please note that the canceling pairs are
conveniently placed one term above the other) but also kept
their place in the original equation for easier tracking.

For the last simplification we recall the calculation of
probability from the first page: if () appears n times in the
misty state and @) appears m times in the misty state then their
probabilities are n212mz and nzﬁm2 respectively. It follows
that if states occur an equal multiple of times (e.g., nk and
mk with k € N) then the probabilities are unchanged (because
k? appears everywhere and consequently it simplifies).

Now |Us5) reflects the action of the Z gates on |W):

Ws) ={z(0)2(0), 2(@)z(O)

\.N
—~
O

N
—
®
\.N
—
®

N
—
®
—

1 1 1
= 2|00) — =|01) — =|10) — =|11
5100) = Sjo1) — S[10) - S 1)

The calculation of |¥g) is similar to the one for |U3) :

We) = {c-2(00), -2 @0), -2O@), -2 [ @@)}
= {m’@vivﬁ}
={00.00.00 00}
1 1 1 1
= 5100) = 5[01) = S}10) + 5 [11)



The calculation for |¥7) also matches the type of steps we
have seen at W, just that the result is, convincingly, different:

W7) = {HO)EO), H@HO), HO)H @) H@H(@)}
= {0 @HO. @
{O.@HO. @}
{C.0HO. @)
{O.0HO @}
={ 00,00 00 0.
{0.0HO @)
{O.HO @
COCe 00 0}

- (@@} =[11)
This time the pairs of items that cancel each other are not next
to each other but they’re still in the same vertical column.
Grover’s algorithm produces the answer in one sterﬂ Using
a quantum oracle that is able to identify (not construct) the

correct answer we know which of the four cards face down
on the table is the w car

VI. THE BREAK-EVEN POINT

Here’s an example constructed with just Hadamard gates:

be = QuantumCircuit(2)
be.h(1)

be.barrier()

be.ch(1, @)
be.draw(output="mpl')

do
o il

sv = Statevector.from_instruction(be)
sv.draw('latex"')

¥2100) + 3[10) + 3[11)

Let’s see if we can calculate the same with the abacus.

9Calculations for the other three cases proceed in a similar manner.

100y, in the Eddie Barnes game, which door to open to get to the money, in
just one step, avoiding altogether the other three doors that lead to a hungry
tiger.

We have to appreciate the fact that so far there have been no
numbers (coefficients, for probability amplitudes) in the misty
states formalism. That’s what makes it accessible to students as
early as middle school. The initial state is gog1 = (). After
the first Hadamard gate it becomes |¥1) = (O{(), @}. That’s
the state at the barrier. We then have to calculate the effect of

ﬁ(O{O’ @) - {ﬁ(oo), ﬁ(@.)} SO we write:

V2) = {000 @@}
= {00, {00 00}}
= {0000 00}
1

1 1

\/3\00> + \/§|10> + 73
We switched to Qiskit ordering at the end but it’s clear that
the calculation is not accurate: the probability amplitudes don’t
match. Let’s do a little research:

11)

1 1
s wn 00 1 5
%f —% 0 0 0 a
(f 0 2 1 1 0 = jgi = {<:)<:>a<:)'.}
V2 V2
0 0 1 1 0 0
V2 V2

This is the effect of the first Hadamard gate acting on g; when
on the other wire we have the identity gate (the combined
matrix is their tensor product). Now we have to use the matrix
representation of the controlled Hadamard gate:

1 1
L2 (%) (%
V2 vz el =] 2
0 0 1 0 0 0
1 _ 1 1
0 % v~ 0 2
Now the resulting vector is equivalent to:
1 1 1
— —|01) + =11
750000 + 5101) + )
In Qiskit ordering this is:
1 1 1
— -1 —|11
750000 + 5110) + 5

So now we have the answer: as Terry warned us, in the MSF
“we can only [use] boxes whose representation in the quantum
formalism is via a unitary matrix which is proportional to
a matrix of integer entries.” Clearly this is not true of the
controlled Hadamard matrix and that’s the reason for which
our calculations fail. What can we do?

This is the point where the MSF and the conventional
formalism need to break even. We propose we extend the
MSF by allowing coefficients representing the probability
amplitudes. This will bring us closer to the Dirac algebraic
notation but at this point we have so much that we have been
able to understand with just the pure MSF. The upgrade does
not feel gratuitous, in fact it seems to be earned. Here’s how

the calculation proceeds now: |¥;) = O{%O, %.} and
then calculate ﬁ(@{%o, 7> @}) like we did before.



The difference is that now we have the probability ampli-
tudes with us. So we have the following sequence of steps:

F(Ou(0) = FO{70. 70
=155 5(00). 75 FOM)
~ {000 01}
~{55003;00.;00)

)+ %\10> + %|11>

1
= ——100
ﬁ'

On the last line above we switched to Qiskit ordering.

VII. /NOT AND /2

Now that we have extended the MSF with coefficients we
can introduce (and prove) S = v/Z and /X = HSH. First we
have s(O)) = () and s(@) = i@ where i = /—1. From
this it’s clear that S2 = Z so S = /Z because > = —1.

Likewise HSH - HSH = HS?H = HZH = X which we proved
early in this paper so HSH = /X = /NOT checks out.

These are also great opportunities to introduce students to
matrices and properties of matrix multiplication as well as the
notion of inverse and/or unitary matrix. When we can derive
a result in more than one way we feel more confident about
its correctness.

VIIL. R, (65)

It’s time to introduce another gate that does not have a
representation in the MSF (but readily has one in the extended
MSF). At QSEEC 2023 in Seattle we were asked how we
define arbitrary rotations in the MSF. The answer is: we define
them as primitives in the extended MSF. We were also asked
how we define arbitrary qubits, but by now we have already
answered that questioﬂ So let’s consider a specific rotation
gate that will be useful a bit later. The first axiom is:

R0 = (0. 20}

This is precisely the quantum state that we said, in the
beginning of the paper, that it did not have a representation in
the MSF. The other axiom is:

7,0 @) = (- =0/ S@)

From this we can already calculate in general how this gate
acts on a generic superposition of |0) = () and |1) = @. The
reason this gate does not exist in the MSF will become clear
below. First off 63 = 2 arccos % and so the matrix is:

3
03 i O3 I \/5
cos P sme ) _ [ V3 3
sin 5t cos 3 2 1
3 V3

leg, X({ao, B.}) = {6@, a.} Vo,B €C

IX. THREE-QUBIT W-STATES

We can now create W-entangled states:

import numpy as np
import math
theta = 2 % np.arccos(1/math.sqrt(3))

w = QuantumCircuit(3)
w.ry(theta, 0)
w.draw(output="mpl"')
w.barrier()

w.ch(@, 1)

w.cx(1, 2)

w.cx(@, 1)

w.x(@)

w.draw('mpl")

-

gi

qz

sv = Statevector.from_instruction(w)
sv.draw('latex"')

¥31001) + *2|010) + *2[100)

Let’s calculate: the initial state is still (X)(). After the

rotation we have {%O, \/g.} = {%OOO, %.“}

When the controlled Hadamard kicks in we have:
(700017 @00 =
(000, |/ 2000 @10} =
(000 =000, =080} -

1 1 1
ﬁ|000> + ﬁmm) + ﬁwn)

In the last line we switched to Qiskit ordering of qubits.
After the first C-NOT we have:

1 1 1
{507 (00) 0% (CO). -@% @O)} =
1 1 1
{5000, -000. - 008} -
1 1 1
3000 0N g

Again, we switched to Qiskit ordering at the very end.
The calculation after the second C-NOT proceeds similarly:

1 1 1

[ £XCO0 =¥ @00 =% 00} -
1 1 1

[ 5000 ;000 008} -

001) + —=|111)

L1000} + ——]011) + —[101)
V3 V3 V3



Finally after the X gate we have:
1 1 1
\/3.007 \/EQ.O’ \/gOQ.} -
L 1001) + L [010) + —|100)
V3 V3 V3
As before the Dirac notation is with Qiskit ordering.
Everything checks out.
X. COMMENCEMENT

The system presented uses string rewriting rules to show
what happens with the quantum state as it travels through
a circuit. By contrast the ZX-calculus is a diagrammatic
language that rewrites entire portions of the circuit (so it’s
a graph-rewriting technique) while preserving the equivalence
of the circuit. One is a global technique; the other helps trace
a quantum state through a circuit in “slow-motion”. As an
example consider the following circuit:

[0}
[0}

It can be written as a ZX-diagram (see [5]):

10}
nE - B
10}

Which can then be simplified as follows:

2 R e San e SRS

This proves (diagrammatically) that the circuit implements
a GHZ stat By comparison the same proof with the
“Quantum Abacus” proceeds as follows:

2The Greenberger—Horne—Zeilinger (GHZ) state is an entangled quantum
state for 3 qubits with this expression: 1000)+]111)

S (50, {000, 00@)).

Here superpositions are represented as “misty states” which
is just a graphically somewhat richer representation of our
superposition (set) operator. We now have all the tools to ad-
dress teleportation (inaccessible in the regular MSF). Initially
introduced in Bennett et al. (1993), quantum teleportation
describes a protocol allowing to reconstruct an unknown
quantum state |¥) = «|0) 4+ 3|1) at a new location by using
a classical information channel and a pair of entangled states.
So the first step is going to be to find a way to represent an
arbitrary |U) state in our “abacus” system. But following our
argument thus far this is no longer a challenge (since we are
now using the extended MSF). That will allow us to morph
gradually into the traditional, mathematical representation.

In that case Vo, 8 € C we may also haveE}

al0) +5[1) = {a O, F @}

Quantum teleportation ([10], [12]) requires three qubits,
where the first one holds the state to be teleported and the
remaining ones are initialised to |0). The protocol consists of
performing the following quantum circuit:

|‘IQ _H__/f\:.:

=]

7 XMHZr

[To)  [W1) [T2) [T3)  [Py)

The word teleportation does fit well here as this phe-
nomenon occurs instantaneously{ﬂ and is not affected by
distance or separating barriers. Let’s prove the protocol by
calculating intermediary stages |¥q), ..., |¥4). We start with:

[%0) = {« OO0, s @O0}
Traditional calculation confirms this:
o) = (|0) + B]1)) @ [00) = «[000) + 5]100)

In the classroom this would be a good moment to talk about
tensor products and relate the following:

Q@ ®=)=[0)x|l)=

O OO, OO OO

3This is the extension to the misty state(s) formalism (MSF).

14The instantaneously teleported state cannot be used to achieve faster than
light communication, as in order to be properly reconstructed requires classical
information about measurement performed at the sender location, making it
sensitive to limitations imposed by the speed of light.



Please don’t forget that |0) and |1) are in fact vectors. We will
revisit this topic briefly at the end of this section. Furthermore
we can continue to calculate and relate the results obtained
via the “abacus” to those obtained via standard mathematical
operations. As an example we can calculate:

H{a Q.0 @) = {0.@} +5{O. @} =
={(@+ 8O (e~ 5@}

This is clearly confirmed by the standard calculation:

504 (6)-50)
V2 \1l -1 B) V2 a—p
So now we can calculate:

1) = {2000, e OO0, @00, @O0}

Traditional calculation, again, confirms our result:

H(a|0) + B[1)) =

) = (a|000> + 0]010) + 8]100) + [3|110>)

va
After the first C-NOT gate:
{«C00. 000 000, ) 000}

Traditional calculation yields:

|Wa) =

0,y = (a|000> +al011) + B100) + 5|111>)

V2
The second C—-NOT acts on the first two qubits:
#5) = {a000.000. /000, /@08

Using standard calculation techniques:

W) = (a|000> +al011) + B110) + 5|101>)

V2
We now have only one stage left but it should be relatively

clear that developments are now in lockstep. So, after the
second Hadamard gate (acting on just the first qubit):

{0{0. @100 «{0. @/
50. 0100, 50. @108} =
= {0000, @00, C00.- 000.
5080/ 080, 5008,/ 008}

Traditional calculation meanwhile yields (same thing):

|Wy) =

W) = %|00> (a\0> +ﬁ|1>) +

+ %|01 (ﬁ\o + 1) )

+ %|10 <a\o — B )
(-

1
+ 51 (- 810 +a|1)

In this form it is visible what gates have to be applie(E] to the
last qubit to make it the input teleported state «|0) + 3|1).

Let’s now revisit, as we promised, the topic of tensorial
product in the context of our derivation:

20 Yozo

(o)) G 3 - e i
x1 Y1 21 x1 n 20 Z1 Y120
21 Y121

This is exactly what is happening in our “abacus” calcula-
tions, for example in the first stage, as we determine |U1):

gl _

Q. o L

o)

©)

1)

Two final comments in this section. First, that a(nother)
diagrammatical proof of teleportation would look like this:

L‘ Fl-(: ALICE
[ _H .
BOB

This is Penrose notation [6] and the approach is similar to what
we saw when we mentioned the ZX-calculus. Note also that
there is no transfer of matter or energy involved. No particle
has been physically moved (from Alice to Bob); only its
state has been transferred. The term “teleportation”, coined by
Bennett, Brassard, Crépeau, Jozsa, Peres and Wootters, reflects
the indistinguishability of quantum mechanical particles.

LN
S~
BOB

XI. CONCLUSION

So, in this paper we have argued that starting from the
original misty state formalism one can successfully introduce
the following topics to an audience that only knows basic
arithmetic and simple operations on sets: superposition, inter-
ference (both constructive and destructive), entanglement (Bell
states and GHZ states) and, as shown in this and other papers

I5The gates to be applied depend on the measurement of the first two qubits,
as teleported state is still entangled with them. That is the motivation behind
the idea of classical correction, which is the last stage in this protocol (and
indicated via annotations in this last equation).



(see references [17]], [18], and [18]) the following cases of
quantum advantage: Deutsch-Josza, Bernstein-Vazirani (based
on the phase kickback phenomenon), superdense coding, the
GHZ game (including the variant where we only use just the
pure misty state formalism as demonstrated in Terry’s book)
and Grover’s algorithm. For teleportaton we need the extended
misty state formalism (MSF) and we showed that the extension
is necessary if we want to deal with controlled Hadamard gates
and arbitrary rotations. We called that example the break-even
point of the quantum abacu

APPENDIX

This is probably a good place to review the basic rules of
the “abacus” as presented in this paper:

« the superposition operator describes a qubit as a set of
possible outcomes, with their associated probabilities

o the phase operator acts like the unary minus sign in a
multiplication (or product)

o when applied to a set of possible outcomes the phase
operator changes the sign (phase) on each of the elements
in that set (of possible outcomes)

« the tensor product between two qubits is the cartesian
product between the superposition sets representing those
qubits (and the order matters)

« if we allow (as we did when we explained teleportation)
complex coefficients in the superposition operator’s repre-
sentation introduced in the first few lines of the paper then
the full generality of representation for qubits is achieved.

Compared to the ZX-calculus the system presented in
our paper resembles the “slow-motion” replays in televised
sports. A slow-motion replay is an exponential process and
nobody would ever argue that it would be useful, advisable
or otherwise meaningful to watch an entire game in slow
motion. Graph-rewriting (mentioned in passing twice, with
examples) has significant advantages over the string rewriting
techniques that we presented. However graph rewriting is in
effect an orthogonal process to what we advocated here; it
can’t provide any of the insight this slow-motion “abacus”
technique provide Furthermore, a lot of the teaching (and
learning) that happens when a student is first introduced to a
complicated topic is, of necessity, of the slow-motion type.

Finally, we emphasized the implementation aspect and thus
the connection with the online Qiskit textbook
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